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Abstract. Understanding inequality energy consumption at the global
level delivers key insights for strategies to mitigate climate change. Re-
cent contributions [4,28,48,49] have studied energy inequality through
the lens of maximum entropy. They claim a weighted international dis-
tribution of total primary energy demand should approach a Boltzmann-
Gibbs maximum entropy equilibrium distribution in the form of an ex-
ponential distribution. This implies convergence to a Gini coefficient
of 0.5 from above. The present paper challenges the validity of this
claim and critically discusses the applicability of statistical equilib-
rium reasoning to economics from the viewpoint of social accounting.
It is shown that the exponential distribution is only a robust candi-
date for a statistical equilibrium of energy inequality when employing
one particular accounting convention for energy flows, the substitution
method. But this method has become problematic with a higher re-
newable share in the international energy mix, and no other accounting
method supports the claim of a convergence to a 0.5 Gini. We conclude
that the findings based on maximum entropy reasoning are sensitive to
accounting conventions and critically discuss the epistemological impli-
cations of this sensitivity for the use of maximum entropy approaches
in social sciences.

1 Introduction

Understanding inequality in per capita energy consumption at the global level deliv-
ers key insights for strategies to mitigate climate change1. Economic growth and

a e-mail: gsemieniuk@econs.umass.edu
1 Strictly speaking and abiding by the First Law of Thermodynamics, energy cannot be

consumed, just degraded. Sticking with common usage in social sciences we will nevertheless
write consumption. We will also write energy inequality short for inequality in the per capita
consumption of energy.
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per capita energy demand are tightly coupled [7,41], so energy inequality can be
an important indicator of uneven economic development. Moreover, climate change
mitigation now demands absolute reductions in global average energy per capita
consumption [39,42]. Achieving this requires an understanding of the global energy
consumption inequality. Current approaches such as carbon taxes can disproportion-
ately hit the poor because of their higher share of energy consumption in expenditure
[5,19,46]. Therefore, understanding the global distribution of energy consumption is
key to grappling with the political economy of climate change mitigation [24]. Finally,
attempts at reducing global resource inequalities, which can render climate mitigation
policies more feasible [36], must know the extent of these inequalities.

Given the systemic importance of energy inequality, it is surprising to see the
dearth of research on the extent and evolution of global energy inequality by
economists, in contrast with much more extensive work in the area of income and con-
sumption [2,8,20,27,32–34,38]. The most recent analysis of global per capita energy
inequality (proxied by taking country averages weighted by their population and
therefore called weighted international inequality) appears to be over a decade old
[21], [31] only consider electricity, and [13] does not weight observation by population.
The theoretical blinder of “convergence” in economic growth theory, focuses attention
away from the extent of inequality at the macro level, as inequality appears as a tran-
sitory phenomenon [14]; and at the micro level there are no global datasets. As far as
climate change is concerned, one can also look “directly” at greenhouse gas emissions
[6]. But there is a fundamental difference between energy (an input into production)
and emissions, an unwanted output. Constraints on the former can inform insight
into the latter, and ignorance about energy inequality forgoes an important piece of
information for policy.

In light of this lacuna, the research by Victor Yakovenko and his co-authors stands
out. In a series of papers [4,28,48,49], they analyse the weighted international energy
inequality from 1980 to 2010, computing Gini coefficients and Lorenz curves. Fur-
thermore, analysing the results through the lens of maximum entropy, Yakovenko et
al. predict that the distribution of total primary energy supply should approach a
microcanonical Boltzmann–Gibbs equilibrium distribution. This distribution has the
exponential form and implies a unique Gini coefficient of 0.5. The data they analyse
strongly confirms their hypothesis. Thus, the work is both descriptive of histori-
cal data and predictive, by combining maximum entropy reasoning with inequality
measures. However, in this paper we show that their hypothesis is not robust. We
compute and compare Gini coefficients over time for different methods of accounting
for primary, final and territorial versus footprint energy measures – the first such
exercise to our knowledge. We show that Ginis vary by up to 0.1 units for the same
year, and there is no sign of convergence to a particular value. Hence the validity of
the 0.5 Gini finding based on maximum entropy reasoning is sensitive to accounting
conventions. We explain the accounting conventions behind the divergent results and
critically discuss the epistemological implications of this sensitivity for the use of
maximum entropy approaches in social sciences.

2 Energy inequality re-estimated

A statistical mechanic perspective on economic inequality suggests to explain the
equilibrium distribution as the result of a process whereby the economic resource
is exchanged between agents under certain constraints [4]. An analogy with the
microcanonical ensemble in statistical mechanics is made by assuming that the total
amount of the resource and the number of agents over which the resource is parti-
tioned are held constant and that the process is ergodic. By far the most likely and
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hence maximum entropy or “statistical equilibrium” distribution is the Boltzmann–
Gibbs distribution. Under the given assumptions it is exponentially distributed. Evi-
dence that this predicts many national income distributions apart from the richest
few percent is in Tao et al. [45]. What makes the exponential prediction particularly
powerful from an inequality perspective is that it implies a Gini coefficient of 0.5,
regardless of the distribution’s parameter, the mean [11], which is unique among the
canonical probability distributions2.

Extending the maximum entropy reasoning to a global income distribution is
difficult, however as there is no single correct exchange rate, and purchasing power
parity estimates vary between methods and over time [2,43]. Yakovenko and co-
authors therefore propose that focussing instead on energy consumption circumvents
this accounting problem: a Joule is a Joule regardless of context (Lawrence et al.
[28]). This paper, however, shows that the statistical equilibrium results for energy
consumption depend on the choice of method of accounting for energy consumption:
what counts as a Joule depends on how we decide to count.

Empirical analysis in Lawrence et al. [28] of the Energy Information Agency
(EIA) dataset shows that weighted international inequality in energy consumption
is indeed converging to a 0.5 Gini along an S-curve trajectory from above. This
pattern is confirmed by more recent vintages of the EIA data that appeared after the
publication of their results (see Fig. 1). However, our analysis of five other datasets
that use different methods of accounting for energy consumption shows that the Gini
does not converge to 0.5. Instead, all five datasets start with Gini coefficients above
0.5 but fall to values significantly below 0.5 between 2003 and 2009 (also Fig. 1, see
Appendix A for data source description). Therefore, the maximum entropy-based
prediction of an exponential distribution cannot be confirmed across methods of
accounting for energy consumption.

3 Accounting for energy consumption

The key to our finding that the statistical equilibrium prediction does not hold across
datasets is that multiple reasonable methods exist for summing heterogeneous pri-
mary energy sources such as fossil fuels or renewables. Just like for currencies, in
the messy reality of economics, there is no one right way of accounting for energy.
Unlike in physics, in social accounting for energy a Joule is not a Joule independent
of the method of its generation, the form of its use or the point of measurement in
the sequence of conversion.

Energy values are calculated according to the heat content of an energy carrier,
however, there are at least three different ways of accounting for primary energy. The
first method asks what is the equivalent amount of fossil fuels needed to produce
some amount of energy from non-combustible sources and is called the substitution
method. This is the accounting method used by the Energy Information Agency
(EIA) data underlying Yakovenko’s results. For instance, electricity from hydro is
accounted for with the heat content of fossil fuels required to produce the same
amount of electricity. With a conversion efficiency from chemical energy in coal to

2 This is because the Gini coefficient is scale invariant, i.e. if all incomes are scaled by the
same factor (and so is the mean), the Gini coefficient stays constant. Since the exponential
distribution’s only parameter is the mean, the Gini is the same for this family of distri-
butions. Note that this holds for all scale invariant inequality measures: for instance, the

Atkinson measure of the exponential distribution is I = 1 − (Γ (η + 1))
1
η , only dependent

on the inequality aversion parameter η of Atkinson measure, but not on the distribution’s
parameter. See the Appendix B for a derivation.
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Gini: Weighted international energy per capita consumption
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Fig. 1. Time series of weighted international inequality in energy consumption measured by
the Gini coefficient for various ways of accounting for energy consumption. See Appendix A
for data sources.

electricity of 37%, this implies hydro electricity is multiplied by almost three and
then added to primary energy from fossil fuels. Second, the physical content method
asks what is the first form in which the energy from an energy carrier can be used
for multiple purposes. For example, for hydro the first form of energy that can be
used for multiple purposes is electricity. For nuclear energy on the other hand, the
thermal energy from fission is that first form: it could be converted into electricity
but also used directly as heat. This method is employed by the International Energy
Agency (IEA) whose data underpin all time series in Figure 1, other than that of
Yakovenko’s EIA-based series. The third method called direct equivalent and used in
the International Panel on Climate Change (IPCC) uses the heat content of electricity
for all non-combustible energy carriers.

Note, fossil fuels are accounted in the same way in all three methods as the
reference energy carrier. So the key difference between the three methods is the
treatment of non-fossil fuels. Table 1 illustrates the different energy balances for a
hypothetical situation with only fossil, hydro and nuclear power3. For example, hydro
power is accounted as 2.7 J/s when using the substitution method but only as 1 J/s
with the physical content method. Though less stark, the two methods also yield
different results for nuclear due to varying assumptions about conversion efficiencies.
See Koomey et al. [25] and Macknick [30] for further discussion.

When accounting for the primary energy demand of a country, the choice of
method can make a dramatic difference. This is illustrated in Figure 2 for Norway,
a country that generates 99% of its electricity from hydro. Using the substitution

3 The partial substitution primary energy to electricity conversion efficiencies of hydro
(37.0%) and nuclear (32.6%) are calculated from Table A6 in [15] and the physical content
33% efficiency for nuclear from [26].
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Table 1. Hypothetical primary energy balance for three accounting methods.

Substitution Physical Content Direct Equivalent
(e.g. EIA) in J/s (e.g. IEA) in J/s (e.g. IPCC) in J/s

Fossil fuels 1.00 1.00 1.00
Hydro 2.70 1.00 1.00
Nuclear 3.07 3.03 1.00
Total 6.77 5.03 3
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Fig. 2. Primary energy demand in a selection of countries as measured by the partial
substitution method in the EIA (solid) and physical content method in the IEA (empty).

method of the EIA, Norway is found to consume more than 1.6 times as much energy
per capita as compared to the physical content method employed by the IEA. But
even for countries with a large nuclear share in their energy mix such as France the
difference is significant. Given that rich countries tend to have a more diverse energy
mix compared to a high degree of fossil fuel and combustible biomass dependence
of poor countries, the EIA data also ascribe higher values to energy rich countries
and lower values to energy poor countries (see China and India in Fig. 2). This
explains the higher inequality for EIA data in Figure 1. Hence, the confirmation of the
statistical equilibrium prediction of an exponential distribution hinges on the method
of accounting and is therefore not a robust one. Importantly, the only method for
which this prediction holds is precisely the one that is least suitable for accounting
for renewable energy and hence informing climate policy’s attempts at improving
energy efficiency, as it masks an improvement in conversion efficiency of primary to
secondary energy [25]. As nuclear energy is consumed mainly in energy rich countries,
the direct equivalent method of primary energy accounting is likely to produce even
lower inequality estimates.
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But the problems with energy accounting do not stop with how we define primary
energy. A further ambiguity stems from attributing primary energy either to the
territory where it enters production (territorial measurement, used in all datasets
discussed so far); or to the country where the final goods produced with the help of
energy are consumed, the consumption-based or energy footprint measurement [35].
Which of these two measures is more suitable depends on the economic question
one wishes to address. For our analysis, what matters is that both measurements
refute the statistical equilibrium prediction: Akizu-Gardoki et al. [1] have recently
estimated the energy footprint for most of the world. Even though its inequality is
higher than a territorial estimate for the same population, the footprint Gini also
falls significantly below the 0.5 predicted value instead of converging to it (see black
and grey lines in Fig. 1).

Finally, energy can also be measured at different stages in the conversion chain
(somewhat analogous to pre or post tax income). Primary energy, which has been
discussed so far considers both the energy needed by the energy sector to convert
energy to the state in which it is used by end users, e.g. the energy needed to refine oil
and transmit and distribute electricity, and the energy consumed by end users. Final
energy on the other hand counts only the energy reaching end users. Figure 1 also
shows inequality in final energy consumption which is even lower as it disproportion-
ately reduces energy consumption in very high primary energy per capita countries
such as OPEC oil producers.

The overarching insight is that the maximum-entropy derived prediction of an
exponential distribution is not robust. Different data sources, and different accounting
conventions produce various results, and all but one measure do not converge to the
unique Gini predicted with maximum-entropy reasoning4.

4 Discussion

The results about the distribution of energy consumption that emerge by viewing the
problem through a maximum entropy lens provide a starting point for an urgently
needed better understanding of the patterns of global energy inequality. This paper
has shown, however, that the bold hypotheses from statistical mechanics about the
equilibrium energy inequality are not robust when confronted with different methods
of constructing the data. Only for primary energy that is accounted for according to
the substitution method do the results hold, but this is precisely the method least
suited for climate policy analysis as it poorly represents renewable energy sources.
The sensitivity to accounting methods is particularly problematic for a maximum
entropy approach, since it claims that its predictions only rely on combinatorial
reasoning under given constraints. The selection of an accounting method and intro-
duction of a new constraint to represent it cannot be resolved in any objective way by
more information as the principle of maximum entropy would postulate [50]. Unlike
in physics, accounting for social phenomena relies heavily on conventions without any
clear “right” or “wrong” method, which has been illustrated here for the case even of
a seemingly homogenous, physical quantity. This reflects the differences in the basic
nature and structure of social and physical reality that requires different ontologies
in the social and natural sciences including economics (see e.g. [29] pp. 2–28). With-
out a study of the nature of the things being measured, empirical knowledge about

4 Additional complications would arise from taking into account inequality in access
to certain energy carriers (e.g. electricity) and services (clean cooking stoves), i.e. energy
quality [12,17,37]. And while final energy is currently the best approximation to energy
services, for which data are available for most countries, useful energy would be a more
accurate measure of the energy inequality that ultimately matters [22,44].
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the things that matter and an economic or other social theory that connects them
to the problem at hand (e.g. climate change), maximum entropy reasoning cannot
decide what accounting method is more suited to the problem of energy consumption
inequality or, for that matter, any social accounting problem.

Lawrence et al. [28] attempt to circumvent the ambiguity of an income measure by
finding another measure. We have demonstrated in this paper that this other ostensi-
bly determinate measure is not unambiguous either. Given the fundamental reliance
on social accounting, which is conventional, rather than exact, we are sceptical that
any one measure can be found that would be unambiguous. In sum, a maximum
entropy approach to economic problems only has a chance at predicting, when it is
embedded in the appropriate social context which needs to be detected with knowl-
edge of the concrete empirical problem understood via a social theory. Therefore,
maximum entropy reasoning can be a tool to operationalize economic theory but
cannot substitute for either theory or context-driven empirical analysis5.

Apart from these epistemological aspects, the great variation of Ginis across differ-
ent accounting methods also highlights more general, practical difficulties for policy
making towards climate change mitigation. The variance in Ginis implies that at
present there is no way of objectively determining the distribution of energy con-
sumption levels across countries. If mitigation policies are meant to be in relation
to current consumption levels, this means that we are lacking a reliable point of
reference. Beyond the lack of knowledge about the present state of global energy
inequality, the failure of the maximum entropy programme to robustly predict the
Gini value to which the world is converging also means that we lack predictive tools
needed for policy projections.

As a silver lining, another regularity robustly manifests across all measures of
energy consumption: the s-curve shape of Gini values from about the 1990s onwards
which Yakovenko and co-authors found based on their maximum entropy reasoning.
All measures display an s-curve, only at different levels. Crucially, while the maximum
entropy perspective is frequently employed searching for equilibria, the actual data
seem to suggest that there are repeated s-curves or transitions (see the series based
on [41] for an additional one in the 1950s). To further theorise this finding, it could be
linked to developmental patterns and processes of evolutionary change rather than
convergence to some unique and stable equilibrium. The new ways of looking at data
that maximum entropy reasoning encourages are instrumental in discovering such
patterns. But to gain an understanding of the underlying drivers we need to also
draw on insights from economic history and theory.
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5 For attempts to join maximum entropy reasoning about observed distributions with
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and to provide a general principle dos Santos [9]. Farjoun and Machover [16] and Foley [17]
discuss conceptual foundations.
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Appendix A: Data sources

This paper uses energy balances data from the International Energy Agency (IEA),
the Energy Information Agency (EIA) and the United Nations (UN), which are
detailed below. Population data are taken from the “indicators” supplied both by
the IEA and EIA databases, and from Penn World Table and Maddison Project
Statistics for periods not available in the IEA dataset (for details see [41]).

EIA: primary energy. Primary energy data from the EIA are available freely from
its website [15], and have the widest coverage of countries (nearly 100% of the
world’s population covered). Surprisingly the geographical coverage has actually
decreased since the paper by Lawrence et al. [28] has been published, for instance
data for Bermuda in the current, 2019 web download interface, are only available from
1988, while the version on which Lawrence et al. [28] run their calculation includes
Bermuda’s data from 1980. The data have not been updated beyond 2013. The three
newest data points are from the 2019 data, the others from Lawrence et al. [28] who
have made available their data as open access supplementary material.

IEA: primary and final energy. The IEA covers a comprehensive set of countries’
energy balances both for primary and final energy starting in 1971. In the last year of
data, 2016, about 95.5% of global population are covered. Data are available against
a fee from the International Energy Agency [23].

IEA and UN: primary energy. To extend the data series in the IEA to more countries
and backwards in time beyond the year 1971, Semieniuk [41] has spliced the data with
the United Nations Energy Statistics [47] database which contains primary energy
data starting in 1950, and from additional sources for non-commercial use of biomass.
The resulting dataset covers upward of 98% of population for every year after 1970
and above 92% before that. Note that the one-time low energy inequality in 1961
is due to China’s rapid increase that year in energy consumption under the “Great
Leap Forward” programme [41].

Territorial and consumption-based primary energy. Akizu-Gardoki et al. [1] have
used the 26 sector multi-sectoral input-output database from Eora and IEA sectoral
energy demand to reconstruct the flows of embodied energy in trade, and arrive
at the footprint of energy consumption, i.e. the sum of a country’s consumption of
energy directly on its territory and the net imports of energy embodied in manu-
factured commodities and international services. Due to merging different databases
they arrived at an intersection of 126 countries, which cover 94.4% of population on
average.

Appendix B: Derivation of the Atkinson inequality for the
exponential distribution

The Atkinson index of inequality, I, is defined as

I = 1− yede

µ
(B.1)
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where µ is the mean holding per person of the resource over which inequality is
measured, e.g. income or energy, and yede is the equally distributed equivalent income
that would suffice to make society as well off as the actual, unequally distributed
income according to a social welfare function [3]. It is defined as

yede =
(
∞
∫
0
f (y) yηdy

) 1
η

(B.2)

where y is income, η is the inequality aversion parameter of the social welfare function
and f(y) the density. If f(y) is exponential then

yede =
(
∞
∫
0
λe−λyyηdy

) 1
η

(B.3)

where the integral is the Gamma function Γ (x), therefore

yede =
(
λ−1Γ (η + 1)

) 1
η . (B.4)

Plugging this back into the inequality measure in (B.1) and noting that the expo-
nential distribution parameter is the inverse of the distribution’s mean λ = 1/µ, we
have

I = 1− (Γ (η + 1))
1
η . (B.5)
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