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Abstract. Predictability of earthquakes has been vigorously debated in
the last decades with the dominant -albeit contested -view being that
earthquakes are inherently unpredictable. The absence of a framework
to rigorously evaluate earthquake predictions has led to prediction ef-
forts being viewed with scepticism. Consequently, funding for earth-
quake prediction has dried out and the community has shifted its focus
towards earthquake forecasting. The field has benefited from collabo-
rative efforts to organize prospective earthquake forecasting contests
by introducing protocols, model formats and rigorous tests. However,
these regulations have also created a barrier to entry. Methods that do
not share the assumptions of the testing protocols, or whose outputs
are not compatible with the contest format, can not be accommodated.
In addition, the results of the contests are communicated via a suite
of consistency and pair-wise tests that are often difficult to interpret
for those not well versed in statistical inference. Due to these limit-
ing factors, while scientific output in earthquake seismology has been
on the rise, participation in such earthquake forecasting contests has
remained rather limited. In order to revive earthquake predictability
research and encourage wide-scale participation, here we introduce a
global earthquake prediction platform by the name RichterX. The plat-
form allows for testing of any earthquake prediction in a user-defined
magnitude, space, time window anywhere on the globe. Predictions
are assigned a reference probability based on a rigorously tested real-
time global statistical earthquake forecasting model. In this way, we
are able to accommodate methods issuing alarm based predictions as
well as probabilistic earthquake forecasting models. We formulate two
metrics to evaluate the participants’ predictive skill and demonstrate
their consistency through synthetic tests.
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1 Introduction

Earthquake prediction is a hard problem, which has remained an elusive holy grail
of seismology. Unfortunately, the current incentive structures are pushing researchers
away from hard problems where results are rarely positive. Negative results are less
likely to lead to a publication or a citation. While the utility of these quantities
is being put into question [8], they are still widely used as performance criteria in
academia.

To avoid negative results and public reactions associated with failed earthquake
predictions, the seismological community has mainly shifted its focus to descriptive
case-studies, long-term probabilistic hazard analysis, and probabilistic forecasting
experiments. However, by not engaging the prediction problem, we have effectively
left it to be exploited by less reputable actors. These actors often emerge during
times of crisis, spreading disinformation leading to public anxiety. As a result, it
has become common to view any sort of prediction effort with suspicion and often
negative prejudice, forgetting that the scientific principle requires hypotheses to be
tested rather than disregarded due to prior held beliefs. It can be argued that many
of these prediction claims are not formulated as falsifiable hypotheses, yet it is our
duty as scientists to assist those interested by providing guidelines, protocols, and
platforms facilitating the scientific method.

To help revive the earthquake prediction effort and bring scientific rigor to the
field, here we propose a general platform to facilitate the process of issuing and eval-
uating earthquake predictions. The platform is general as it allows for the testing of
both deterministic alarm based predictions and probabilistic forecasts. The common
metrics proposed to evaluate the respective skills of these two different model classes
will put methods relying on different theories, physical mechanisms and datasets on
the same footing. In this way, we aim to achieve larger participation, to facilitate the
inclusion of different methods from various fields, and to foster collaborative learning
through regular feedback.

The paper is structured as follows. First, we introduce the general requirements
that a public earthquake prediction platform must satisfy and briefly explain how
RichterX addresses these. Second, we describe the implementation of our global real-
time earthquake forecasting model that the RichterX platform uses to inform the
public of short term earthquake probabilities, and that is also taken as a reference
to evaluate all submitted predictions. Next, we introduce two complementary perfor-
mance metrics that allow us to assess the predictive performance of the participants.
Finally, we conduct synthetic contests with known ground truth and candidate mod-
els to test the consistency of the proposed metrics.

2 Characteristics of the earthquake prediction platform RichterX

Participation: Considering that earthquakes have a huge global impact, previous
and current forecasting experiments have reached out to only a small number of par-
ticipants [41,42]. Our platform aims to attract broader participation, not only from
the relatively small seismology community in academia but also other scientific disci-
plines including fields like machine learning, pattern recognition, data mining, remote
sensing, etc., active in information technologies and engineering applications. The
platform also encourages and rewards public participation to increase public aware-
ness of the earthquake hazard, motivate prediction efforts, and, more importantly,
allow citizens to participate in a scientific challenge. Previous prediction experiments
have been criticized in this regard because they have treated the public as mere sub-
jects of a scientific experiment and sometimes as means to higher ends (i.e increased
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Fig. 1. The RichterX platform accessible at www.richterX.com, as viewed on a mobile
phone. (1) Forecast screen (a) Map colors indicate the monthly M5 earthquake count; black
circle represents the target area of the prediction; pop-up message reports the probability
according to the RichterX model; (b) Three tabs with a slider for adjusting the radius, time
duration and minimum magnitude of the prediction; (c) Toggle button to switch between
probabilities to-occur and not-to-occur ; the number of events to-occur can be specified via
the up/down arrows; (d) Summary of the RichterX forecast in human-readable format. (2)
Forecast at the same location with radius reduced from 300 km to 100 km. (3) Forecast
screen with the Predict toggle on: (a) Slider for setting the prediction stake. (4) Prediction
preview screen showing a summary and the round at which the prediction closes.

public awareness) [43]. Participating in a global earthquake prediction contest will
allow the public to gain hands-on insight, internalize the current achievements and
difficulty of the problem. To achieve this, we have built a minimal graphical user
interface, compatible with desktop devices as well as most mobile phones, allowing
anyone to participate (see Fig. 1). We also provide an application programming inter-
face (API), allowing more sophisticated participants to submit predictions using a
computer algorithm. Moreover, we see the language barrier as one of the main fac-
tors hindering participation. We will, therefore, make the platform and the relevant
publications available in multiple languages.

Privacy: The negative connotation associated with failed predictions is an important
factor hampering prediction efforts. The RichterX platform provides the participants
with the option to anonymize their identity, allowing them to focus on the scientific
question instead of worrying about the possible loss of reputation.

Transparency: Results and conclusions of any forecasting or prediction contest must
be accessible to the general public. The results of previous forecasting contests such as
CSEP and RELM have been published, but these papers are often behind paywalls.
The CSEP public website containing results of several models and tests, although
rather technical and not very intuitive for the general public, has since gone offline. In
our view, transparency and ease of access to contest results, reinforce responsibility
and accountability.

Assuming that science is conducted to enhance public utility, the public is entitled
to know of its progression, which entails not only successes but also failures. Thus,
we are committed to making the results openly available to the public. In addition to
results about each earthquake (whether it was predicted or not), metrics regarding
the overall performance of each participant are updated on an hourly basis and in

http://www.richterX.com
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the form of regularly issued public reports. The provision of this information will
counter false prediction allegations, serve as a verifiable track record, and allow the
public to distinguish between one-time guesses and skilled predictions.

Global coverage: Earthquakes do not occur randomly in space, but cluster on tec-
tonic features such as subduction zones, continental plate boundaries, volcanic regions
and intraplate faults. These active features span across the whole globe and produce
large earthquakes continuously. Previous forecasting experiments have focused mainly
on regions with very good instrumental coverage, available only in a small number
of countries (USA, Japan, New Zealand, Iceland, Italy, etc) [42]. Our goal is to fos-
ter a worldwide earthquake prediction effort by providing the community and the
public with a global reference earthquake forecasting model. With the help of such
a reference model, our platform will be able to accommodate any regional model
by evaluating it against the same global baseline, putting regional added value in a
global perspective.

Real-time updates: Temporal clustering is another main feature of earthquake
occurrence: the probability that an earthquake will occur in a given space window
can vary greatly in time. Thus, if a prediction is to be evaluated according to a
reference model probability, such a reference model should be updated in near real-
time as soon as a new event occurs. Together with global coverage, this requirement
poses serious computational demands that have hindered the implementation of such
models. Recent advances in the field of statistical earthquake modeling [17,24,33,34]
have allowed us to undertake this challenge. Having secured the computational and
hosting capabilities, the RichterX platform is able to provide the global community
with worldwide earthquake forecasts updated on an hourly basis.

Active learning: The reference model provided on the RichterX platform aims to
reflect the current state-of-art in statistical seismology. Hence it is not set in stone
but is subject to further improvements as the participants, through successful predic-
tions, effectively highlight regions and time frames where the model performance is
lacking. In this way, the participants serve as referees continuously peer-reviewing the
reference model, which thereby is permanently improving, providing the community
with a higher bar to surpass.

Feedback mechanism: The goal of our prediction experiment is to provide the par-
ticipants with meaningful feedbacks, allowing them to test their hypotheses, models,
assumptions, and auxiliary data. Through repeated iteration of submitting predic-
tions, testing, and receiving feedback, we expect the participants to improve their
prediction performance. For the public observers, the results should be presented
transparently and succinctly, allowing for an intuitive comparison of the participants’
performances. Therefore, we have developed a skill assessment scheme that is both
easy to understand for the public and powerful in distinguishing between different
predictive skills. It is important to note that the participants may lose interest if the
experiment takes too long to deliver results. The provided feedback may also lose its
relevance if not provided in a timely fashion. The RichterX platform issues results
on a bi-weekly basis and cumulative metrics spanning longer durations. In contrast,
consider that previous earthquake forecasting experiments by CSEP were carried out
for 5 years [27], with preliminary results being released only after 2.5 years [41].

Incentives: We hope that the opportunity to easily test and compare different
hypotheses and models on a global scale would provide enough stimulus for the
academic community. At the same time, it is important to recognize that science can
be costly. Apart from the devoted time, many published studies are behind paywalls,
data processing requires expensive hardware, and some data sources can be subject
to fees. Thus, we believe amateur scientists, students, and the general public can
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be incentivized to participate by providing rewards, with “scientific microfundings”
similar to microcredits in the business field. These can be monetary or in the form
of technical equipment or journal subscriptions. Some studies have raised concerns
that improper use of monetary rewards can reduce the intrinsic motivation of the
participants [28]. However, recent studies have shown that financial rewards have a
positive effect on engagement and satisfaction [4,12]. The delivery of such monetary
rewards is now much easier due to the popularization of crypto-currencies [10,26].
These recent developments allow us to financially transact with the successful partic-
ipants without requiring a bank account, which almost half of the world’s population
does not have access to [5].

Social responsibility: It is essential to recognize that earthquake prediction is not
only a scientific goal but also a topic that has the potential to affect the lives of many
people, especially those living in seismically active regions. The contest participants
should be aware that the events that they are trying to predict are not just num-
bers on a screen, but actual catastrophes causing human suffering. We believe that
providing a mechanism for expressing solidarity with the victims can help raise this
awareness. To this end, the RichterX platform encourages the participants to donate
their rewards to charitable organizations such as GiveWell, Humanity Road [44] and
UNICEF [11], which take part in global earthquake relief efforts. Recent studies indi-
cate that the use of decentralized ledger technologies can improve transparency and
accountability in humanitarian operations [7]. Therefore, all donations on RichterX
are made using cryptocurrencies and recorded on the blockchain, allowing for anyone
to verify the amount and destination independently. In this way, we hope to prevent
a possible detachment between a community that engages with earthquakes from a
scientific perspective and people who suffer their physical consequences.

3 A global, real-time reference earthquake forecasting model

3.1 Introduction

The characteristics summarized in the previous section have emerged due to the expe-
rience gained from previous earthquake prediction and forecasting experiments. In
his address to the Seismological Society of America in 1976, Clarence Allen proposed
that an earthquake prediction should be assigned a reference probability indicating
how likely it is to occur by chance [2]. Indeed, the development of a model that
can assign a probability for any time window anywhere in the world has been one
of the main hurdles. There have been several accomplishments in the modeling of
global seismicity. Those efforts began with models based on smoothing locations of
observed large earthquakes [22], progressing to combining past seismicity with strain
rates estimates [3,21]. Recently, the Global Earthquake Model working group led a
collaborative effort to harmonize many regional models [39]. Although these models
are important milestones, they model seismicity as a memoryless, stationary process.
As a result, they do not capture the time-dependent aspect of earthquake occurrence.
The choice of treating earthquakes as a stationary process likely is motivated by the
risk assessment practices in the civil engineering and insurance industry. Yet, we
believe that, as the seismology community reassesses its assumptions and develops
more realistic models, the industry will, in turn, adapt to these changes.

Based on empirical laws derived from observed seismicity, the Epidemic Type
Aftershock Sequence (ETAS) model was introduced to enhance stationary statistical
earthquake models by accounting for the time-space clustering of seismicity [38].
Retrospective and prospective studies show that statistical models outperform models
derived from physical concepts such as rate-and-state, stress transfer, seismic gaps,
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or characteristic earthquakes [6,23,48]. The recent developments in ETAS modeling
have not only made a global scale application possible, but they have also highlighted
the importance of abolishing assumptions about the distribution of simulated events
[34,35]. Details about the model development, testing, and prospects can be found in
the accompanying paper [36]. Here we describe the real-time online implementation
and operation of the model in the context of the platform.

3.2 Data

The RichterX platform employs a dedicated server, the so-called “grabber”, that
periodically connects to web-based earthquake data center feeds. The grabber com-
pares our current local database with the remote host for the addition of new or the
deletion of old events. If any change is detected, the grabber synchronizes our current
event catalog with the remote database. We are obtaining data from multiple global
agencies, such as the GFZ Geofon [14] and INGV Early-Est [29], but our primary
data source is the USGS ComCat feed [45]. Our data polling frequency is usually
around once every few minutes but can be increased automatically during elevated
seismic activity.

3.3 Model selection, calibration, and forward simulations

We have developed multiple candidate models that are different variations of the
ETAS model or use different input datasets. We use pseudo-prospective testing to
select among these models. See details of the experiment and competing models in
the accompanying paper [36]. In this procedure, only data recorded before a certain
time is considered and divided into sets of training and validation; competing models
are trained on the training data, and their forecasting performances are compared
on the validation set. The performances are averaged by moving forward in time and
repeating the tests. The top-ranking model, and its final parameter set optimized
over the whole dataset, is deployed online on the platform servers. These servers use
the real-time earthquake event data provided by the grabber as input and conduct
forward simulations on an hourly basis. The result of these forward simulations is a
collection of synthetic event datasets that represent a spatio-temporal projection of
how global seismicity will evolve.

The ETAS model is stochastic, i.e., its output samples statistical distributions,
and therefore multiple forward simulations are needed to obtain an accurate rep-
resentation of the underlying probabilities. Each such simulation produces a global
synthetic catalog containing location, time, and magnitudes of events for the next 30
days. The total number of events produced at each real-time update can reach sev-
eral millions. These simulated events are uploaded onto our online database, where
they can be queried via the web-based user interface on www.richterX.com. Using this
interface, the participants can select any point on the globe, define a circular region, a
time window, and a magnitude range that they are interested in (see Fig. 1). The full
distribution of the simulated events within the user-specified time-space-magnitude
range is then used to calculate the probability of earthquake occurrence. In essence,
this probability corresponds to the number of simulations having events satisfying
the user-defined criteria divided by the total number of simulations.

To cope with the computational demands of these simulations, we have scheduled
several servers to run periodically in a staggered fashion. In this way, we can assure
that the model forecasts are updated within less than an hour after each earthquake.
The servers are also distributed in different locations to add redundancy in case of
service interruptions.

http://www.richterX.com
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4 How RichterX works

Earthquake predictions and forecasts have been issued and studied for decades. How-
ever, there is still confusion about their definition and proper formulation. We believe
it is essential to be strict about terminology. Science advances by accumulating evi-
dence in support or against hypotheses, and vague statements can become a missed
opportunity for testing and obtaining such evidence.

4.1 Earthquake forecast and earthquake prediction

We define an earthquake forecast as the statement of a probability that a minimum
number of events will occur within a specific time-space-magnitude window. There-
fore, a statement cannot be regarded as an earthquake forecast if either one of these
four parameters is omitted. For instance, the operational aftershock forecasts issued
by the USGS do not specify a space window for the issued probabilities (Field et al.,
2014; USGS, 2019), and therefore cannot be tested. Similarly, any ambiguity in the
parameters also renders the statement untestable. For instance, the statement “The
probability (that the San Andreas fault) will rupture in the next 30 years is thought
to lie somewhere between 35% and 70%” [20] does not satisfy the forecast definition
because both rupture size and occurrence probability are ambiguous. Unfortunately,
this is a common malpractice, and public officials often communicate probabilities by
giving a range [9]. The range is usually due to several models or different scenarios
leading to different probabilities. Using different approaches and assumptions is to be
encouraged; however, the resulting probability should be communicated as a single
value. There exist various techniques on how models can be weighed and ensembled
according to their predictive performances [13].

We define earthquake prediction as the statement that a minimum number of
earthquakes will, or will not occur in a specific time-space-magnitude window. Under
our definition, an earthquake prediction always results in a binary outcome: it is either
true or false. This definition is more general than its commonly used predecessors
[18,20,49] because it considers the negative statement, that an earthquake will not
occur, as an equally valid earthquake prediction. By construction, if the probability of
an earthquake to occur in a space-time-magnitude window is P, the probability of an
earthquake not to occur is 1-P. While P is often small, it can exceed 0.5 immediately
after large earthquakes or during seismic swarms. In such cases, a prediction of no
occurrence carries more information potential, as it refers to a more unlikely outcome.
In this way, negative predictions can serve as a feedback mechanism that counters
overestimated earthquake forecast probabilities.

Once an earthquake prediction is issued, it is considered to be in a pending (i.e.
open) state. The “To-occur” predictions, which predict the occurrence of an event
or events, are closed as true if the number of predicted events is observed in the
predefined space-time-magnitude window, or as false if otherwise. The “Not-to-occur”
predictions, which predict that no event will occur, are closed as true if there are no
events in their predefined space-time-magnitude windows, or as false if at least one
such event occurs.

The definitions of earthquake forecast and earthquake predictions are similar, as
they both refer to a constrained space-time-magnitude window. They differ in that
the former conveys the expected outcome with a real number while the latter uses
a binary digit. In that sense, regardless of the observed outcome, a forecast carries
more information compared to a prediction. Forecasts are also more straightforward
to evaluate; any set of independent earthquake forecasts (i.e having non-overlapping
space-time windows) can be evaluated based on the sum of their log-likelihood, which
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Fig. 2. (1) Ranks screen showing the scores for a selected round: (a) round beginning and
end dates; (b) table showing anonymized user names, skill class and current rX score, see
Section 3.3 for details. (2) M5+ target events colored as blue for predicted and red for
not-predicted : (a) magnitude vs time plot; (b) spatial distribution of the events. (3) Results
screen for a participant: (a) filter criteria; (b) results table list of prediction locations, round
number and status; (c) expandable row with further details. (4) Prediction details screen:
(a) magnitude-time plot highlighting the elapsed portion of prediction window with red;
(b) spatial distribution of events around the prediction circle; (c) prediction statement with
space-time-magnitude and event number details.

is analogous to their joint likelihood:

LL =
N∑

i=1

log (OiPi + (1−Oi) (1− Pi)) (1)

where N is the total number of forecasts, Pi denotes the probability of each forecast
and Oi represents the outcome as 1 (true) or 0 (false). The larger the sum, the higher
the joint likelihood and hence the more skillful a forecast set is. The performance
evaluation of prediction sets is covered in the Performance Assessment section.

4.2 Rules and regulations

The goal of the RichterX platform is to organize a prediction contest that provides
timely feedback, skill assessment, and incentives for participation. Therefore, we have
tried to devise a system that fosters collaborative competition and rewards skill while
maintaining fairness. To attract broader participation, we tried to make the contest’s
regulations intuitive and straightforward without sacrificing statistical rigor. Here,
we will present these rules and the reasons behind them.

4.2.1 Limited number of predictions

Each participant is allowed to place a maximum of 100 predictions every 24 hours.
This prediction budget is expressed in units of so-called “earthquake coins” (EQC). It
is recharged continuously in real-time, such that after ∼15 minutes, the participant
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accumulates 1 EQC and can submit another prediction. The accumulated budget
cannot exceed 100 EQC. Hence if participants want to submit more predictions, they
have to wait. In this way, we hope to encourage the participant to engage with the
platform regularly and follow the evolution of seismicity and think thoroughly before
using it to submit predictions. We expect the participants to perceive their limited
prediction budget as valuable, since it is scarce.

4.2.2 One user – one account

Each participant is allowed to have only one account on the platform. Since we
are providing monetary rewards as an incentive for public participation, users could
increase their chance of getting a reward by creating multiple accounts and placing
random predictions. We have addressed this by requiring each user to validate their
account via a mobile phone application, i.e., a chatbot. The bot runs on the messaging
platform Telegram and verifies the user by requiring them to enter a secret code. If
the code is correct, the user is matched with their unique Telegram ID, which requires
a valid mobile phone number. All reward-related operations are verified through this
unique ID.

It is important to note that policies limiting participation rate and preventing
multiple accounts are common in online courses and contests such as Kaggle [37,47].
However, previous earthquake forecasting competitions conducted by CSEP, and also
its upcoming second phase CSEP2 [40], do not impose such policies. As a result,
participants who submit several versions of a model can increase their chance of
obtaining a good score, creating a disadvantage for participants who submit only a
single model.

4.2.3 Submitting earthquake predictions

The user interface provided on the RichterX platform allows the participants to query
our global reference model and obtain its forecasts within the following ranges: time
duration from 1 to 30 days, a circular region with radius from 30 to 300 km, lower
magnitude limit from M5+ to M9.9+ and a number of events from 1+ to 9+. Once
these parameters are set, the platform will report a probability of occurrence P (or
non-occurrence 1−P ). The participant can then submit a prediction assigned with
this model probability. This probability is used to assess the participant’s prediction
skill by accounting for the outcome of their closed predictions.

In addition to the time, space, magnitude, and number parameters, the user can
also specify a so-called “stake” for each prediction. The stake acts as a multiplier
allowing the participants to submit the same prediction several times, provided that
it is within their prediction budget (EQCs). Therefore the stake can be thought of
as a proxy for the confidence attributed to a prediction.

The reference model updates automatically on an hourly basis. Thus, when a
new earthquake occurs, the region in its vicinity becomes unavailable for submitting
predictions. Once the new earthquake is incorporated as an input and the model has
been updated, the region becomes available for the submission of new predictions.
This allows us to fairly compare users and our reference model, as both parties are
fed with the same amount of information. The radius of the blocked area (Rb) scales
as a function of the event magnitude according to the empirical magnitude-surface
rupture length scaling [46] given in the following equation.

Rb = 10 + 10−3.55+0.74M (km) (2)
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This assures that the projection of the fault rupture, where most aftershocks are
expected to occur, remains within the restricted region regardless of the rupture
direction. The additional 10 km in the Rb term accounts for the typical global location
uncertainty.

4.2.4 Evaluation of earthquake predictions

Target events are all M ≥ 5 events, as reported by the USGS ComCat [45]. Predic-
tions are evaluated on a bi-weekly round basis. A time frame of only 14 days may
seem too short, yet our target region is the whole Earth rather than a specific local-
ity. To put this in perspective, the first regional forecasting experiment, the Regional
Earthquake Likelihood Models (RELM), was limited to the state of California, USA,
took place during a 5 year period of 2006–2010 and had a total of 31 target events
[27]. This corresponds to roughly half of the global bi-weekly M5+ event count (mean
63, median 58 since 1980).

5 Performance assessment metrics

5.1 Conditions for proper metrics

In the case of probabilistic forecasts, a scoring rule is said to be proper if it incen-
tivizes the forecaster to convey their actual estimated probability [19]. In other words,
a proper scoring rule does not affect the probability issued by the forecaster. An
improper scoring rule, however, can be exploited by modifying one’s forecast in a
certain way specific to the scoring rule. For example, if a scoring rule does not penal-
ize false positives, then participants can gain an advantage by issuing more alarms
than they usually would have. Deterministic predictions do not convey the informa-
tion of probability; thus, the definition of properness given above becomes irrelevant
[19]. Yet it is useful to consider a more general definition: a proper scoring rule, in
the context of a contest, aligns the goals of the organizers and the incentives of the
participants.

One goal of the RichterX platform is to encourage broad public and academic
participation from various fields of expertise. Therefore, we need a scoring rule that
is statistically rigorous, easy to understand, and applicable on short time scales. The
scoring rule should also ensure that the public participants are rewarded propor-
tionally to their predictive skills, as opposed to a winner-takes-all approach, while
incentivizing their regular participation. Another important goal is to provide the sci-
entific community with a generalized platform where different models and hypotheses
(be it alarm based or probabilistic) can be evaluated to determine performance and
provide feedback to researchers. For this second goal, the scoring rule needs to be
exclusively focused on skill and be generally applicable. To achieve both goals, we
have chosen to implement two scoring strategies that complement each other. These
are the RichterX score and the information ratio score. In the following section,
we will describe how these two scores are implemented and used jointly in the
competition.

5.2 RichterX Score (rX)

The definition of the rX score is straightforward; each submitted prediction counts
as a negative score equal to the prediction stake (s). If a prediction comes true, the
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value of the stake(s) multiplied by the odds (1/p) is added to the score; if a prediction
fails, the score remains at −s:

∆R =

{
s
(

1
p

)
− s if true

−s if false
(3)

This can be rewritten as

∆R = O

(
s− sp
p

)
+ (O − 1) s (4)

where O = 1 if the prediction is true and O = 0 if false.
Our goal is to incentivize the participants to challenge our model and highlight

regions or time frames where it can be improved; thus, we want to reward those who
perform better than our reference model. The expected gain from any prediction,
according to the model, can be written as the probability-weighted sum of wins and
losses:

E [R] = p

(
s

(
1
p

)
− s
)

+ (1− p) (−s) = 0. (5)

The expected gain of a participant is thus zero (positive scores indicating a better
performance than our model). The significance of a positive score (i.e. the probability
for a participant to improve on it by chance assuming that the model is correct) has
to be estimated for each participant. The latter performance estimator will become
more reliable as a participant accumulates independent submitted predictions.

At the end of each bi-weekly contest round, each participant’s score is calculated
using all their N predictions closed during the round. Thus, summing expression (4)
over all N predictions yields:

R =
N∑

i=1

Oi

(
Si − SiPi

Pi

)
+ (Oi − 1)Si (6)

where Si is the stake, Pi is the prediction probability given by the reference model,
and Oi is a binary variable representing the prediction results as 1 (true) or 0 (false).
Monetary reward is distributed proportionally among all participants with positive
scores.

The scores are reset to 0 at the beginning of each round to encourage new partic-
ipants to join the competition. However, resetting the scores each round introduces a
problem. Since the only participation cost is the invested time, participants who see
that their negative scores are reset at the beginning of each round are incentivized
to make low-probability/high reward predictions, especially towards the end of the
round. If a few such predictions come true, the user can get a positive score, and if
they end up with a negative score, the participants would just have to wait for the
next round for their scores to be reset, and then they can try again. This would be
problematic because the participants can start treating the experiment as a game of
chance with no penalty for false predictions, rather than a contest of skill.

To counter this, we apply a carry-over function that introduces a memory effect
for negative scores: if a participant has a negative score not less than −100 at the
end of the round, they carry-over 10% of this negative score to the next round as a
penalty. The carry-over percentage increases proportionally with the amount of the
negative score and caps of at 90% as given in the following equation:

∆Ct =

{
max {|∆Rt−1|/1000, 0.9}∆Rt−1 if ∆Rt−1 < −100
0.1∆Rt−1 if 0 >∆Rt−1 ≥ −100

(7)
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Hence, a participant with a score of −200 would carry over a penalty of −40,
while a user with −1000 would carry over −900 to the next round. In this way,
participants are incentivized to obtain positive scores consistently, instead of inter-
mittently. Nevertheless, since predictions can be submitted at any time, a participant
may stop submitting new predictions as soon as they have reached a positive score.
This problem, which has already been discussed by [19], is somewhat alleviated by
distributing the reward proportionally to the participant’s score with respect to the
combined total of all other positive participants. Therefore, there is always an incen-
tive to continue participating as other users become positive and start claiming larger
portions of the fixed overall reward.

Another aspect of the rX score is that it is a function of the prediction stake.
Two participants with the same predictions but different stakes will get different
scores. Assuming they possess some information gain, regular participants will be
able to submit the same prediction repeatedly, thereby increase their stake, and
obtain higher scores compared to those who follow a different strategy, testing their
predictions regardless of their returns. This makes sense in the context of a com-
petition where the participants provide added value by testing our reference model
through their predictions. Yet, as we are not necessarily interested in the optimiza-
tion of staking strategies, there is also a need to assess the predictive skill of each
participant regardless of their staking weights. For this purpose, we employ a second
metric.

5.3 Information ratio score (IR)

To assess the predictive skill of a participant, we need to answer the following two
questions: Firstly, how much better is the participant’s performance compared to the
reference model, and secondly, is this performance significant. To answer the first
question, we calculate a metric called the “information ratio” (IR):

IR =

1
N

N∑
i=1

Oi

1
N

N∑
i=1

Pi

(8)

IR is essentially the participant’s success rate (fraction of true predictions among
all predictions) divided by the reference model probability averaged over all predic-
tions (i.e., the model’s expected success rate) of the participant. This formulation
implies that there is an upper bound of IR = 1/min(Pi) and incentivizes the partici-
pants to achieve higher success rates in regions and time frames for which the model
gives low probabilities. Assuming that the reference model is true, the expected IR
value for any set of predictions would tend to 1.

To answer the question of whether a participant’s IR is statistically significant, we
employ Monte Carlo sampling to build an IR distribution given their set of submitted
predictions. This distribution is independent of the actual prediction outcomes as
we sample the model probability of each prediction Pi to generate several possible
outcomes O′i

xi ∈ U(0, 1)

O′i =

{
1 if xi < P

0 if xi ≥ Pi

(9)

where U(a, b) is the uniform distribution within bounds a and b. We then calculate
the IRm of each outcome set according to equation (8), where m denotes the index of
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the Monte Carlo sample. This forms the null-distribution that is used to benchmark
the actual IR value of the participant. The ratio of the sampled model IR values
that are above or equal to the participant’s value (α) can then be interpreted as the
probability of observing an IR at least as high as the participant’s, i.e., the p-value
under the null hypothesis that the reference model is true:

gm =

{
1 if IRm ≥ IRu

0 if IRm < IRu

α = 1
M

M∑
m=1

gm

(10)

where IRu is the participant’s information ratio, and M is the number of Monte
Carlo samples used to sample the distribution. If α ≤ 0.05, then the participant is
considered to be significantly better than the reference model.

5.4 Accounting for overlapping predictions

In all previous equations, we have assumed that the submitted predictions are inde-
pendent, i.e., that they do not overlap in space and time. This assumption simplifies
the derivations of expected success rate, allowing for probabilities of independent
predictions to be averaged, and also makes it easier to calculate significance levels by
sampling each prediction independently during the Monte Carlo procedure. However,
the participants are free to submit predictions at anytime, anywhere on the globe.
Since predictions are submitted as circles with a maximum radius, participants who
want to cover larger areas completely will have to submit several overlapping predic-
tions. We also see that some participants re-issue predictions at the same locations
when an earthquake does not occur (assuming some local stress accumulation or a
characteristic period) or when it occurs (expecting aftershocks). Updating a hypoth-
esis as new information becomes available is the hallmark of the scientific method.
In the ideal case, if a precursory signal becomes gradually more prominent as an
earthquake approaches, one can expect overlapping predictions with narrower space-
time windows to be issued. Therefore instead of constraining the participants by
forbidding overlapping predictions, we prefer to deal with such predictions.

The question of evaluating overlapping predictions has been investigated previ-
ously by Harte and Vere-Jones, Harte et al. [15,16], who introduced the entropy score
as a pseudo-likelihood to evaluate M8 predictions, which are expressed as a set of
overlapping circles [25]. The entropy score is rather complicated and “awkward”, as
the authors put it, thus we have refrained from using it as we would like to keep the
performance criteria as intuitive as possible for the general public. The Molchan dia-
gram, which accounts for the total time-space volume covered by prediction alarms,
can also be employed to deal with predictions overlapping in space and time [31,32].
It is worth noticing that Molchan and Romashkova [30] successfully adopted their
methodology to the M8 predictions using specific features, such as constant large
circle sizes and large magnitudes, to assess its predictive skill. This is rather differ-
ent from our application, which involves evaluating and comparing different sets of
predictions that can each be a mix of to-occur and not-to-occur, with varying circle
sizes.

For the particular case of the RichterX prediction contest, the rX score is additive
and already incorporates the concept of “stake” that has the same effect as re-issuing
the same prediction; thus, it does not require any modification. However, the over-
lapping predictions constitute a problem for the IR score and its significance α. This
can be seen with a simple example of two non-overlapping to-occur predictions that
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Fig. 3. Left: a set of overlapping predictions showing time and space domain. Right: a sample
of 4 sets containing only non-overlapping predictions obtained by the selective sampling
procedure described in the text.

require two earthquakes to come true. In comparison, two identically overlapping
predictions would come true with a single event. Intuitively, it follows that true inde-
pendent predictions are “worth” more in terms of significance than overlapping ones.
To take into account the presence of overlapping predictions, we employ a sampling
approach, whereby we begin with the full set of overlapping and non-overlapping pre-
dictions of each participant and, by selective sampling, create sets consisting only of
non-overlapping predictions (see Fig. 3). The IR metric and the associated α values
are calculated for each of these sampled sets, and the resulting averages are assigned
as the participant’s skill and significance. The selective sampling of each participant’s
predictions is performed in the following steps:

1. Considering all closed predictions in a given round, we calculate the distance
between the prediction centers for all predictions that overlap in the time domain.

2. If the distance between the centers of two predictions that overlap in time is less
than the sum of their radii, then these predictions are labeled as “overlapping”.
Predictions that do not overlap with any other prediction are labeled as “non-
overlapping”.

3. After all predictions are labeled, the overlapping predictions are put in the “can-
didate” set. We begin by randomly selecting one of these candidates and remove
all the predictions that overlap it (both in space and time).

4. We put the selected prediction in the “selection” set and repeat the procedure
by randomly selecting one of the predictions in the candidate set. We repeat this
until the candidate set is exhausted.

5. We then add all the non-overlapping predictions to the selection set. This set
constitutes a sample set of independent prediction that we then use to calculate
the IR score and α values as described above. We calculate an average value for
both metrics by repeating this sampling procedure several times.

Based on the significance threshold (α ≤ 0.05) combined with the IR metric, we
categorize the participants into the following skill classes: (A) significant participants
with IR≥ 2 and at least 5 independent predictions; (B) significant participants with
IR≥ 1.33 and at least 5 independent predictions; (C) participants with IR> 1 but
who fail to satisfy either the significance, prediction number or IR criteria to become
an A or B; (D) all participants with IR< 1. It can be argued that requesting a
minimum number of predictions may affect the participants’ behavior; some might
start placing predictions that they would not have placed just to reach the limit. We
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concede that the contest regulations will affect participant behavior in one way or
another and deem such effects admissible as long as they do not hinder the goals
of the competition. Participants who achieve skill classes of A or B are rewarded
additionally to the reward distributed proportionally to the rX score. By distribut-
ing rewards according to two different but complementary performance metrics, we
hope to make exploiting a single metric less enticing and to incentivize demonstrating
actual skill. The rX score is relatively easier to calculate since the score of each new
prediction is simply added to the current balance. However, the skill classes based on
the IR score are more difficult to calculate because each new prediction affects the
average prediction probability and estimating significance requires numerical simu-
lation. We acknowledge that such statistical concepts can be intimidating for the
general public and hinder participation. Therefore, we have implemented a recom-
mendation algorithm that uses the currently closed predictions of each participant
to suggest an additional number of true predictions with a probability sufficient to
achieve skill classes B or A. The flowchart of the recommendation algorithm is given
in Figure 4. In essence, the algorithm estimates what is the minimum number and
highest reference model probability of additional true predictions that would satisfy
both the significance and the IR criteria. If the participant has achieved skill class
B, the algorithm would recommend predictions for achieving skill class A, while for
classes C and D the recommendation would aim at B. In principle, similar recom-
mendations can be calculated not necessarily for the minimum but for any number of
predictions; the minimum probabilities would increase as the number of predictions
increases. Figure 5 shows the outputs of the recommendation system based on the
closed predictions of two different participants.

6 Synthetic consistency tests

We proposed the two score metrics introduced in the previous section to assess the
predictive skills of individual participants as well as probabilistic forecasting mod-
els that can be sampled with deterministic predictions through an application pro-
gramming interface. Fairness in reward distribution and reputation based contest is
an essential factor that motivates participants. Moreover, from a scientific point of
view, it is crucial to establish that the proposed metrics are powerful enough to dis-
criminate between good and bad models such that research can be focused in more
promising directions.

To test the consistency of the proposed metrics, we conduct a simplified synthetic
ranking test. The test consists of three main components: (1) the ground truth model
that generates the events; (2) several competing models that issue predictions trying
to predict the generated events; (3) a reference model that is used as the basis of
prediction probabilities entering in the rX and IR metrics. The synthetic prediction
contest is carried out by all of the competing models issuing Np predictions based on
their expectations and the reference model probability. The outcome of the submitted
predictions is dictated by the ground truth model. The scores are then calculated
using the outcomes and the reference model probabilities assigned to the predictions
submitted by the candidate models. The synthetic test is carried out in these steps:

1. The ground truth model is defined as a 1D probability vector with Np elements
T = U(0.01, 0.99)

2. Outcomes, occurrence, or no-occurrence, are generated by sampling each of the
individual probabilities in the T vector to create an outcome vector O as per
equation (9)

3. A set of m progressively worse candidate models Ci is created by perturbing the
ground truth model by adding uniform random noise with increasing amplitude.
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Fig. 4. Flow chart of the recommendation algorithm estimating the probability and number
of true predictions needed to achieve a higher skill class. SR: success rate, ARP : average
RichterX probability, IRtar : target information ratio.

The perturbed probabilities are capped to remain within the [0.01, 0.99] interval

xi ∈ U(0, 1)

Ci = max
(

min
(
T +

i(x− 0.5)
m

, 0.99
)
, 0.01

)
(11)

4. For each of the Np predictions, a candidate model indexed j decides to issue
a to-occur or not-to-occur prediction by choosing the prediction type with the
maximal expected return.
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Fig. 5. (1) Summary of prediction outcomes for a participant: (a) Two bar charts indicating
outcome of to-occur and not-to-occur predictions as false (red) or true (blue), the length
of each bar scales with the prediction stake; (b) Map showing the location of the to-occur
and not-to-occur predictions as purple up or beige down arrows. (2) Skill assessment plot
for a participant: (a) Current skill class, from A to D, significance value (1−α) and number
of independent predictions; (b) Recommendation containing the number of true predictions
with a given probability needed to achieve a higher skill class; (c) Success rate vs average
RichterX probability. Participants with less than 5 independent predictions are shown as
triangles, others as squares. Colors indicate the skill class; A bright green, B green, C yellow,
D gray. The selected participant is indicated by a symbol with thicker edges. (3) Same as
(1) but for a different participant. (4) Same as (2) but for a different participant.

E[Occ] = Ci (j)
(

1−R (j)
R (j)

)
− (1− Ci (j))

E[Noc] = (1− Ci (j))
(

R (j)
1−R (j)

)
− Ci (j)

(12)

where E[Occ] and E[Noc] denote a candidate model’s expected return for a to-
occur and not-to-occur prediction respectively.

5. All the issued predictions are assigned as true or false according to the outcome
vector O, and each candidate model receives rX and IR scores.

We expect the consistency to improve with an increasing number of predictions
Np. Thus, we conducted the synthetic test for Np = [100, 1000, 5000]. Figure 6 shows
the results of the synthetic tests for the case when the reference model is chosen
as the median (Ci = 250) and when the reference model is chosen as the worse
(Ci = 500), respectively. We can see that, as the number of predictions increases, the
fluctuation in both score metrics decreases, highlighting a linear relationship with
the true rank. The skill of the reference model relative to the candidate models also
plays an important role in interpreting the consistency results.

Since we created the candidate models by adding an increasing amount of noise
to the ground truth model we also know the true ranking. We can study the scoring
consistency by comparing the ranking obtained by each metric to the true ranking
via the Kendall’s rank correlation coefficient τ [1] in the following equation, where
pc and pd are concordant (i.e having the same relative order) and discordant pairs,
and n is the number of elements being ranked:
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Fig. 6. The rX (left column) and IR (right column) scores for the 500 competing models
resulting from Np independent predictions. Increasing Np values are shown in darker shades.
Top row plots the results when the reference model is chosen as rank 250, i.e the average
model. Bottom row corresponds to the reference chosen as rank 500, i.e. the worst model.

τ =
2 (pc − pd)
n(n− 1)

(13)

The coefficient τ is equal to 1 when the two rankings are exactly the same; −1
when they are the reverse of each other and values close to zero when they are
unrelated. Figure 7 plots the τ coefficients as a function of increasing number of
predictions, for different reference model choices. We observe that the IR score is
more powerful in retrieving the original ranking, resulting in consistently higher τ
values, both at small and large number of predictions and regardless of the choice of
the reference model

Another important observation is that, when the reference model is chosen as the
best model (i.e very close to the generating one), the ranking becomes inconsistent.
Remember from equation (5), that, if the reference model is the generating model,
we expect the rX score for any set of predictions to have an expected value of zero.
Similarly, for the IR metric, the expected value would be 1 (see Eq. (9)). Figure 8
confirms this by plotting the individual model scores when the reference model is
chosen as the best. For any number of predictions, the score values fluctuate around
0 and 1 for rX and IR respectively, explaining the near zero rank correlation values
observed in Figure 7.
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Fig. 7. Rank correlation between true rank and inferred ranked of 500 models as a function
of increasing number of predictions. Results based on IR and rX score are shown as solid
and dashed lines respectively. Different color are used to show the results when the true
rank of the reference model is chosen as 1(best), 100, 250, 400 or 500 (worst).

Fig. 8. The same as Figure 6 when the reference model is chosen as rank 1, i.e the best
model.

It is important to note that the complete inability to distinguish between worse
models will occur only when the reference model is very close to the truth. In the
context of a prediction contest, this would mean that we have reached our final goal
and that further research cannot provide added value. In reality, we know that our
current models have a lot of room for improvement. We have demonstrated that,
when this is the case, the proposed metrics are able to rank both models better
and worse than the reference (see Figs. 6 and 7). Nevertheless, if there are concerns
regarding the ranking of models that are much worse than the RichterX reference
model, these can be easily addressed by invoking a very weak reference model, such
as smoothing past seismicity assuming Poissonian rates.
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7 Conclusion

The RichterX platform aims to rekindle the earthquake prediction effort by organiz-
ing a prediction contest invoking large scale participation both from the public and
from different fields of academia. To facilitate this contest, we have implemented a real-
time global earthquake forecasting model that can estimate the short term earthquake
occurrence probabilities anywhere in the world. On one hand, this platform makes the
contest highly accessible, allowing anyone with just a mobile phone to submit a pre-
diction. On the other hand, it allows the public to query earthquake occurrence proba-
bilities in real-time for any specific region, which becomes vital information, especially
after the large mainshocks. In this way, with a single platform we hope to achieve three
main goals: (1) Inform the public about short-term earthquake probabilities anywhere
on the globe in real time; (2) Serve as a public record empowering the media and public
officials to counter claims of earthquake prediction after the fact; (3) Allow researchers
from various fields to easily participate in an earthquake prediction contest and chal-
lenge state-of-the-art global statistical seismology models.

Wide scale participation has the potential to bring forward and allow for the test-
ing of various data sources that may or may not have precursory information. Current
earthquake forecasting contests, which rely on systematic reporting of earthquake
rates for large regions in predefined space-time resolutions, are not suitable for the
testing of intermittent observations, such as earthquake lights, groundwater chem-
istry, electromagnetic and thermal anomalies, and so on. The RichterX platform can
easily accommodate alarm based predictions based on such data sources. In addi-
tion, through synthetic ranking tests, we have shown that the proposed performance
metrics can distinguish between probabilistic models that are better or worse than
the reference model, and retrieve the true performance ranking.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
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