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Abstract. The influence of the phase transition temperature shift on
the growth dynamics of a polydisperse ensemble of spherical crystals in
metastable melts and solutions is studied. This shift is connected with
the Gibbs–Thomson effect and the attachment kinetics of atoms at the
phase transition interfaces of evolving crystals. The nonlinear model of
kinetic and balance equations with allowance for the particle “diffusion”
term is solved analytically. The obtained solution is compared with
the case when this temperature shift is not taken into account. It is
shown that the Gibbs–Thomson and attachment kinetics effects slightly
accelerate the system desupercooling for a single-component titanium
melt. This shifts the particle-size distribution function and changes the
shape of its tail, which is responsible for the concluding stage of Ostwald
ripening.

1 Introduction

It is well-known that the growth of crystals from metastable melts and solutions
frequently met in natural phenomena and different areas of applied science [1–6].
Such processes are also a powerful tool in the production of crystals of given sizes
and properties in the chemical and food industries, as well as in the synthesis of
certain drugs [7–13]. A wide range of applications of crystal growth processes from
metastable liquids substantiates the importance of studying the various features of
these processes and phenomena.

The intermediate stage of phase transformation phenomena occurs when crystals
actively appear and evolve in supercooled melts and supersaturated solutions and
form a polydisperse ensemble of growing particles. Such an ensemble is described by
the particle-size distribution function, the moments of which completely characterize
the current state of a metastable system. Note that for the sake of simplicity of the
theoretical description, growing particles are usually assumed to be spherical. Taking
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this into account, the theory of particles evolution was constructed in a series of works
[14–20] with allowance for the “diffusion” mechanism of the distribution function in
the space of crystal radii. However, these studies do not take into account the shift
in the phase transition temperature caused by two effects: (i) the interface curvature
or the Gibbs–Thomson effect, and (ii) the attachment kinetics of atoms at the solid-
liquid interface. These effects shift the phase transition temperature at the growing
surfaces of all particles and, therefore, change the system metastability as well as the
distribution function.

Indeed, the phase transition temperature Ti at the solid–liquid interface of a
spherical crystal becomes [21,22]

Ti = T∗ −
χ

R
− 1

µk

dR

dt
, (1)

where T∗ is the phase transition temperature without taking into account the cur-
vature and attachment kinetics, R(t) and t stand for the radius of a growing crystal
and time, µk is the kinetic coefficient, and χ = T∗α/LV (α and LV represent the
coefficient of surface tension and the latent heat parameter).

The boundary-value problem that describes the temperature distribution T
around the crystal as well as its radius R(t) and growth rate dR/dt has the form

∂2T

∂r2
+

2

r

∂T

∂r
= 0, r > R(t),

dR

dt
= − λl

LV

∂T

∂r
= β∗(Ti − T ), r = R(t),

T → Tl, r � R(t),

(2)

where r is the radial variable in the spherical coordinate system, β∗ is the growth
coefficient, λl is the thermal conductivity, and Tl is the temperature far from the
growing particle. Note that the temperature conductivity equation is written out in
the quasi-steady-state approximation when the time derivative ∂T/∂t is assumed to
be small.

Substituting Ti from (1) into (2) and omitting tedious mathematical manipula-
tions, we arrive at the following solution

dR

dt
=
β̃∗ (∆T − χ/R)

1 + β̃∗qTR
, β̃∗ =

β∗
1 + β∗/µk

, ∆T = T∗ − Tl, qT =
LV

λl
,

T (r) = Tl +
β̃∗qTR

2 (∆T − χ/R)(
1 + β̃∗qTR

)
r

, (3)

t =
qT
(
R2 −R2

∗
)

2∆T
+
χqT
∆T 2

(
1 +

∆T

χβ̃∗qT

)(
R−R∗ +

χ

∆T
ln

∣∣∣∣ R∆T − χ
R∗∆T − χ

∣∣∣∣) ,
where R = R∗ at t = 0. Note that the first and second lines of this expression deter-
mine the growth rate of a spherical particle and the temperature field around it,
whereas the third line describes the radius R(t) in the form of its inverse function
t(R). An important point is that all functions dR/dt, T , and t in expressions (3) are
parametrically dependent on the liquid supercooling ∆T .

It is significant that the Gibbs–Thomson effect additively decreases the super-
cooling ∆T in the numerator of the growth rate dR/dt and the effect of attachment
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kinetics decreases the modified kinetic coefficient β̃∗ in comparison with the original
kinetic coefficient β∗.

Let us now estimate the contribution induced by the Gibbs–Thomson effect. The
radius of nucleating and growing crystals is of the order of [23] R & R∗ & 10−9 m. The
parameter χ for succinonitrile (SCN), nickel (Ni) and titanium (Ti) can be calculated
as [24,25]

χSCN = 6.6× 10−8 ,m K, χNi = 2.1× 10−7 m K, χTi = 4.2× 10−6 m K.

Now estimating ∆T as ∆T . 102 K, we see that the shift χ/R can substantially
compensate the supercooling ∆T in the numerator of the growth rate dR/dt. Of
course, for crystal growth, shifted supercooling must remain positive. Let us especially
note that the growth rate (3) transforms to the previously found expression [9,26–28]
in the absence of curvature shift χ = 0.

When considering supersaturated solutions the growth rate dR/dt of an indi-
vidual crystal induced by the liquid supersaturation ∆C becomes (see, for details,
Appendix A)

dR

dt
=

β̃∗ (∆C − κ/R)

1 + β̃∗qCR (1 + κC/R)
, β̃∗ =

β∗
1 + β∗/µk

, (4)

where β∗ and µk stand for the growth and kinetic coefficients for the supersatu-
rated solutions, κ = 2Cpαv

′/T∗, Cp is the concentration at saturation for the plane
solid/liquid boundary, v′ is the molecular volume of solute, T∗ is the phase transition
temperature for a supersaturated solution, qC = Cp(k0− 1)/Dl, k0 is the equilibrium
partition coefficient, Dl is the diffusion coefficient, and κC = κ/Cp.

The evolution of a polydisperse ensemble of crystals with allowance for the growth
rates dR/dt from expressions (3) and (4) is considered below.

2 A polydisperse ensemble of particles evolving in a supercooled
melt

Let a homogeneous metastable melt (solution) has the supercooling ∆T0 (super-
saturation ∆C0) and does not contain any crystals at the initial moment of time
t = 0. Introducing the dimensionless supercooling w = ∆T/∆T0 (supersaturation
w = ∆C/∆C0), we come to the heat (mass) balance law

w(t) = 1− b
∞∫

R∗

R3Φ(R, t)dR, t > 0, (5)

where b = 4πLV /(3ρmCm∆T0) for supercooled melts and b = 4πCp/(3∆C0) for
supersaturated liquids. Here, ρm and Cm stand for the density and specific heat
of a metastable melt.

The particle-radius distribution function Φ(R, t) satisfies the kinetic equation [14]

∂Φ

∂t
+

∂

∂R
(gΦ) =

∂

∂R

(
D
∂Φ

∂R

)
, R > R∗, t > 0, (6)

where g = dR/dt, and D is the coefficient of mutual Brownian diffusion of
particles in the space of their radii. This coefficient takes the form [14,18]
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Table 1. The nucleation rate I and function ϕ for the Weber–Volmer–Frenkel–Zeldovich
and Meirs kinetics corresponding to supercooled melts (subscript sm) and supersaturated
solutions (subscript ss), ϕ0 = ln−2

(
1 + w−1

p

)
, wp = Cp/∆C0. The dimensionless constants

I∗ and p entering in these expressions are different [26].

WVFZ kinetics Meirs kinetics

Iss I∗ exp
[
−p ln−2(C/Cp)

]
I∗ (∆C)p

Ism I∗ exp
[
−p (∆T0/∆T )2

]
I∗ (∆T )p

ϕss ϕ0 − ln−2 (1 + w/wp) lnw
ϕsm 1 − w−2 lnw

D = −kBTg/(dWmin/dR). Here, kB is the Boltzmann constant, and Wmin is the
minimal work needed to create a crystallite with radius R (for simplicity, we consider
the case when T ≈ T∗).

The natural initial and boundary conditions read as

Φ = 0, w = 1, t = 0; Φ→ 0, R→∞,

gΦ−D∂Φ

∂R
= I(w), R = R∗,

(7)

where I(w) stands for the nucleation rate (frequency). This rate is equal to the flux
of crystallites that overcome the critical energy barrier of nucleation. The nucleation
rate is given in Table 1 for two frequently used kinetic mechanisms.

For the sake of simplicity, let us chose the dimensionless parameters and variables
as follows:

t′ =
t

t0
, s =

R

l0
, F = l40Φ, g0 =

ds

dt′
=
t0g

l0
, D =

d0g(t)

P (R)
, I0 = I(1), t0 =

l0
α∗
,

l0 =

(
α∗
I0

)1/4

, u0 =
d0
l0
, s∗ =

R∗
l0
, χ1 =

χ

l0∆T0
, κ1 =

κ

l0∆C0
, κC1 =

κC
l0
,

(8)

where α∗ = β̃∗∆T0 for supercooled melts (sm) and α∗ = β̃∗∆C0 for supersaturated
solutions (ss).

Note that dWmin/dR = −8πα(R − R∗) near the point R = R∗ accordingly to
the classical theory developed by Lifshitz and Pitaevskii [14]. By this is meant that
d0 = kBT/(8παl0) and P (R) = (R−R∗)/l0 = s− s∗.

Now the kinetic equation (6) can be rewritten as

∂F

∂t′
+ g0

∂F

∂s
= u0g0

∂

∂s

(
1

P (l0s)

∂F

∂s

)
, s > s∗, t

′ > 0. (9)

The crystal growth rate in dimensionless form is defined by expressions

g0(t′) =
ds

dt′
=
w − χ1/s

1 +QT s
, sm,

g0(t′) =
ds

dt′
=

w − κ1/s
1 +QCs (1 + κC1/s)

, ss,

(10)

where QT = β̃∗qT l0, QC = β̃∗qC l0, and s(t′) can be determined from the correspond-
ing Cauchy problem with allowance for the initial condition s = s∗ at t′ = t′∗ (here
t′∗ designates the time moment when a spherical nucleus originates).
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Further, introducing the modified time (x1) and spatial (z1) variables

x1 =

t′∫
0

g0 (t′′)P (l0s (t′′)) dt′′, z1 =

z∫
0

P1 (z′′) dz′′, (11)

we rewrite the kinetic equation (9) in the form of

∂F

∂x1
+
∂F

∂z1
= u0

∂2F

∂z21
, z1 > 0, x1 > 0, (12)

where z = s− s∗, and P1(z) = P (l0 (z + s∗)).
Combining expressions (11) with the growth rate g0 = ds/dt′ and P1 = z′′, we

arrive at the coordinate of particle surface s(t′) written out in the form z1(x1) = x1
and z1 = z2/2 = (s− s∗)2/2.

Keeping this in mind, we rewrite the heat (mass) balance equation (5) as follows

w(x1) = 1− b
∞∫

s∗

s3F (x1, z1(s)) ds, x1 > 0. (13)

It is significant that g0 can be represented as a function of x1 with allowance for
the dependence z1(x1) = x1, i.e.

g0(x1) =

w(x1)− χ1

s∗ +
√

2x1
1 +QT

(
s∗ +

√
2x1
) , sm,

g0(x1) =

w(x1)− κ1
s∗ +

√
2x1

1 +QC

(
s∗ +

√
2x1
)(

1 +
κC1

s∗ +
√

2x1

) , ss.

(14)

Now keeping in mind that dx1/dt
′ =
√

2x1g0(x1) from (11), we obtain the real
dimensionless time t′ in terms of the modified time x1 as

t′(x1) =

x1∫
0

1 +QT

(
s∗ +

√
2x̃1
)

√
2x̃1

[
w(x̃1)− χ1

s∗ +
√

2x̃1

]dx̃1, sm,

t′(x1) =

x1∫
0

1 +QC

(
s∗ +

√
2x̃1
)(

1 +
κC1

s∗ +
√

2x̃1

)
√

2x̃1

[
w(x̃1)− κ1

s∗ +
√

2x̃1

] dx̃1, ss.

(15)

Expressions (7) in dimensionless form become

F = 0, w = 1, x1 = 0; F → 0, z1 →∞,

F − u0
∂F

∂z1
= J(x1) =

exp {pϕ[w(x1)]}
g0(x1)

, z1 = 0.
(16)
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Note that the function ϕ(w) is listed in Table 1 for different kinetic mechanisms
frequently met in practice.

The boundary-value problem (12), (16) can be solved using the famous Laplace
transform method. The final solution reads as (see, for details, Appendix B)

F (x1, z1(s)) =

x1∫
0

J(x1 − y1)γ(y1, z1)dy1, (17)

where

γ(y1, z1) =
1

2u0
exp

(
2z1 − y1

4u0

)[
2
√
u0√
πy1

exp

(
−z21

4u0y1

)
− exp

(
z1

2u0
+

y1
4u0

)
erfc

(
z1

2
√
u0y1

+

√
y1

2
√
u0

)]
.

Expression (17) determines the particle-radius distribution function, which depends
on the metastability degree w [J(x1 − y1) depends on w, see expression (16)].

Combining (13) and (17), we come to the following integral equation for w

w(x1) = 1− b
x1∫
0

J(x1 − y1)h(y1)dy1, (18)

where

h(y1) =

∞∫
0

(
s∗ +

√
2z̃1
)3
γ(y1, z̃1)

√
2z̃1

dz̃1.

Let us now introduce the inverse dependence y1(w) and replace the variable of
integration in expression (18) as

w = 1− b
w∫
1

exp [pϕ (w̃)]

G0 (w̃)

dy1
dw̃

h [y1 (w̃)] dw̃, G0(w) = g0 at z1 = 0. (19)

Keeping in mind (14), we get

G0(w) =
w − χ1

s∗
1 +QT s∗

, sm,

G0(w) =
w − κ1

s∗

1 +QCs∗

(
1 +

κC1

s∗

) , ss.

(20)
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Differentiating (19) with respect to the metastability degree, we come to the
differential equation connecting w and y1. Its integration leads to

w∫
1

G0 (w̃)

exp [pϕ (w̃)]
dw̃ = H(x1) = −b

x1∫
0

h(y1)dy1. (21)

Expression (21) determines w as a function of modified time x1.
Note that in the case of Meirs kinetics, this equation can be easily evaluated. The

final result reads as

(1− p)
(
w2−p − 1

)
− χ1

s∗
(2− p)

(
w1−p − 1

)
= (1− p)(2− p)ΥT (x1), p 6= 1, p 6= 2,

w − 1− χ1

s∗
lnw = ΥT (x1), p = 1,

lnw +
χ1

s∗

(
1

w
− 1

)
= ΥT (x1), p = 2,

ΥT (x1) = (1 +QT s∗)H(x1)
(22)

for supercooled melts, and

(1− p)
(
w2−p − 1

)
− κ1
s∗

(2− p)
(
w1−p − 1

)
= (1− p)(2− p)ΥC(x1), p 6= 1, p 6= 2,

w − 1− κ1
s∗

lnw = ΥC(x1), p = 1,

lnw +
κ1
s∗

(
1

w
− 1

)
= ΥC(x1), p = 2,

ΥC(x1) =

[
1 +QCs∗

(
1 +

κC1

s∗

)]
H(x1)

(23)

for supersaturated solutions. Let us especially emphasize that expressions (22) and
(23) transform to the previously found solution in the limiting case χ1 = 0, κ1 = 0
and κC1 = 0 [18] when the Gibbs–Thomson effect is not significant.

3 Discussion and conclusion

The exact analytical solution (15), (17) and (22) is shown in Figures 1–4 for
the pure titanium melt in the case of Meirs nucleation mechanism. It is easy to
see that the melt supercooling w decreases with the growth of modified time x1
and real dimensionless time t′ (Fig. 1). Note that x1 builds up with increasing t′

(Fig. 2). The Gibbs–Thomson and attachment kinetics effects (solid lines) are com-
pared with the case when these effects are not included in the model equations (dashed
lines). As is easily seen, these effects lead to slightly faster desupercooling for the melt
under consideration. This is clearly seen in Figure 3, where the modified time vari-
able x1 is eliminated using the dynamical law (15), which is illustrated in Figure 2.
As a result, the distribution function, which takes into account the aforementioned
effects, is shifted up and to the left (compare the solid and dashed curves in Fig. 4).
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Fig. 1. The dimensionless supercooling w as a function of the modified time x1. The materi-
als parameters for a single-component Ti melt are [25]: ∆T0 = 300 K, β∗ = 10−4 m s−1 K−1,
I0 = 2.7 × 1021 m −3 s−1, p = 3, u0 = 10−2, s∗ = 0.1, l0 = 1.83 × 10−6 m, QT = 0.91,
qT = 4.98 × 109 K s m−2, b = 139.06.

Fig. 2. The dimensionless time t′ as a function of the modified time x1. The materials
parameters are the same as in Figure 1.

Indeed, the growth rate dR/dt and the nucleation rate I in the presence of the Gibbs–
Thomson effect (see the first expression (3) and the second expression (7)) become
lower as compared with the case of no the Gibbs–Thomson temperature shift. As
this takes place, the distribution function moves faster to larger crystal radii in the
absence of the interface curvature and attachment kinetics effects (the dashed line lies
to the right of the solid line for large values of z1). In addition, the difference between
the solid and dashed curves grows with time. Thus, the effects under consideration
substantially change the granulometric composition of the supercooled melt.

Let us especially highlight that the tail of the distribution function at large times
undergoes essential changes in the presence of the Gibbs–Thomson and attachment
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Fig. 3. The dimensionless supercooling w as a function of the real dimensionless time t′.
The materials parameters are the same as in Figure 1.

Fig. 4. The dimensionless particle-radius distribution function F versus the dimensionless
radius z1 of crystals at different time moments t′. The materials parameters are the same
as in Figure 1.

kinetics effects. It is easily seen by comparing the solid and dashed lines for t′ = 1
and the large values of dimensionless coordinate z1. As this tail determines the initial
state of the phase transformation process at the concluding stage of Ostwald ripening
[30–34], the system behavior at final stages should be studied with allowance for these
effects.

It is also important to develop the present theory, taking into account the simul-
taneous occurrence of the bulk and directional phase transitions in a supercooled
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two-phase region, where nucleation and growth of crystallites, as well as the evolu-
tion of dendrite-like structures, are possible. Such a generalization can be made by
analogy with the previously developed theories [35–48].

Appendix A: Evolution of a spherical crystal in a metastable
solution

The boundary-value problem that describes the concentration distribution C around
the crystal as well as its radius R(t) and growth rate dR/dt has the form

∂2C

∂r2
+

2

r

∂C

∂r
= 0, r > R(t),

dR

dt
=

Dl

(k0 − 1)C

∂C

∂r
= β∗(C − Ci), r = R(t),

C → Cl, r � R(t),

where Cl = Cp + ∆C is the solute concentration far from the growing particle. Note
that the diffusion equation is written out in the quasi-steady-state approximation
when the time derivative ∂C/∂t is assumed to be small. The interfacial concentration
Ci is given by [14]

Ci = Cp +
κ

R
+

1

µk

dR

dt
.

Integrating the diffusion equation and using the far-field boundary condition, we
have

C(r) = Cl −
C0

r
.

Substituting this profile into the first boundary condition at r = R(t), we find C0

in terms of the growth rate g = dR/dt as

C0 =
ClgR

g +Dl/[R(k0 − 1)]
.

Its substitution into the second boundary condition at r = R(t) enables us to deter-
mine the growth rate. Taking into account that the growth rate g is sufficiently small
in the steady-state approximation, we neglect the quadratic term g2 and come to the
following expression

g =
dR

dt
=

β̃∗ (∆C − κ/R)

1 + β̃∗qCR (1 + κC/R)
, β̃∗ =

β∗
1 + β∗/µk

.

Now keeping in mind that

C0 = R

(
∆C − κ

R
− 1

β̃∗

dR

dt

)
,
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we arrive at the concentration distribution around the growing crystal

C(r) = Cl −
qC β̃∗ (∆C − κ/R)R2 (1 + κC/R)[

1 + β̃∗qCR (1 + κC/R)
]
r

.

Further, integrating the growth dR/dt, we obtain the dynamical law R(t) in the
form of its inverse function t(R), which reads as

t(R) =

R∫
R∗

1 + qC β̃∗Ξ (1 + κC/Ξ)

β̃∗ (∆C − κ/Ξ)
dΞ.

Thus, the aforementioned expressions determine the analytical solutions describ-
ing the quasi-steady-state growth of a spherical crystal in the supersaturated
solution.

Appendix B: The crystal-size distribution

This Appendix is devoted to the question of how to solve the boundary-value problem
(12), (16).

So, applying the Laplace transform to this problem, we obtain

F ∗(λ, z1) =
2J∗(λ)

1 +
√

1 + 4u0λ
exp

(
1−
√

1 + 4u0λ

2u0
z1

)
,

where the Laplace transform with respect to x1 is designated by the superscript ∗ (λ
stands for the Laplace transform variable).

Inverting this expression with respect to λ, we arrive at the distribution function
F (x1, z1). To do this, we use the tabulated Laplace transform [29]

exp
(
−
√
β(λ+ b1)

)
b2 +

√
λ+ b1

→ exp (−b1x1)

[
1
√
πx1

exp

(
− β

4x1

)
−b2 exp

(
b2
√
β + b22x1

)
erfc

( √
β

2
√
x1

+ b2
√
x1

)]
,

and obtain the density distribution function

F (x1, z1) = exp

(
z1

2u0

) x1∫
0

J(x1 − y1)

2u0
exp

(
−y1
4u0

)

×
[
2

√
u0
πy1

exp

(
−z21

4u0y1

)
− exp

(
z1

2u0
+

y1
4u0

)
erfc

(
z1

2
√
u0y1

+

√
y1

2
√
u0

)]
dy1.

Here

b1 =
1

4u0
, b2 =

1

2
√
u0
, β =

z21
u0
.
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This function gives the distribution function (17).
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