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Abstract. A dynamical distributed model of glycolysis with the dif-
fusion is considered in the parametric zone of self-oscillations. A
phenomenon of the diffusion-induced suppression of self-oscillations is
found and studied by technique of harmonic coefficients. We show how,
under increase of diffusion, temporal oscillations of homogeneous solu-
tions transform into stationary non-homogeneous structures in the form
of patterns-attractors. A phenomenon of multistability in this spatially
distributed glycolytic model is discussed and a variety of coexisting
patterns and their amplitude characteristics is quantified.

1 Introduction

The study of processes of pattern formation, initiated by seminal paper of Turing
[1], attracts attention of a wide community of researchers in various fields of science
[2–8]. An understanding of the basic mechanisms of self-organization in complex spa-
tial nonlinear systems with diffusion can be achieved by developing analytical and
numerical computer approaches [9–12]. Most of the research is devoted to the analy-
sis of pattern formation in the parametric zones, where diffusion makes equilibrium
homogeneous solutions unstable. Nevertheless, undoubted interest is attracted by the
question of how diffusion affects self-oscillating regimes [13–15].

Processes of self-organization in glycolysis are actively studied. A generation of
spatial waves in the glycolytic system was predicted in [16]. An experimental confir-
mation of self-organization in yeast extracts was presented in [17–19]. Mechanisms of
pattern formation in glycolysis were studied on the basis of appropriate mathematical
models in [20–22].

One of the first mathematical models explaining the nature of glycolytic oscilla-
tions was suggested by Higgins [23]. Using this conceptual model, it was shown that
the transition from equilibrium to oscillatory mode is associated with Hopf bifurca-
tion. A spatially distributed version of this model with diffusion was investigated in
[24] where the phenomenon of pattern formation was studied in the parametric zone
of the Turing instability. It was shown that this model is multistable and exhibits a
coexistence of several nonhomogeneous wave-form spatial pattern-attractors. In the
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presence of noise, a phenomenon of “stochastic preference” in pattern formation was
revealed.

In this paper, we consider this distributed Higgins model in the parametric zone
of self-oscillations, and study how diffusion can deform these oscillatory regimes. In
Section 2, we give results of the bifurcation analysis and present the numerical scheme
for computer simulation of spatiotemporal dynamics. In Section 3, a phenomenon of
the diffusion-induced suppression of self-oscillations is revealed and studied with the
help of harmonic coefficients. A transformation of self-oscillations of homogeneous
solutions into stationary nonhomogeneous patterns is discussed. In Section 4, we
study multistability of this spatially distributed Higgins model, and describe a variety
of patterns and their amplitude characteristics.

2 Spatially distributed model of glycolysis

Consider the spatially distributed Higgins glycolytic model with diffusion

u̇ = 1− uv +Du
∂2u

∂x2

v̇ = pv

(
u− 1 + q

q + v

)
+Dv

∂2v

∂x2
.

(1)

This model describes a kinetics of the glycolysis on the spatial interval 0 ≤ x ≤ L
with no-flux conditions at boundaries x = 0 and x = L:

∂u

∂x
(t, 0) =

∂u

∂x
(t, L) =

∂v

∂x
(t, 0) =

∂v

∂x
(t, L) = 0. (2)

Here, functions u(t, x), v(t, x) defined in [0,+∞) × [0, L] represent concentrations
of the substrate and product respectively, and parameters p and q are positive.
Parameters Du, Dv are positive diffusion coefficients.

The system (1), (2) has the homogeneous stationary solution u ≡ 1, v ≡ 1. In
system (1) without diffusion [23], the critical value q∗ = p − 1 corresponds to the
Andronov–Hopf bifurcation: the equilibrium (1, 1) is stable if q > q∗. In the parameter
zone q < q∗, the system (1) without diffusion exhibits self-oscillations.

In system (1) with diffusion, the critical value

D∗
u =

q + 1

p

(√
q +

√
q + 1

)2
Dv

corresponds to the Turing bifurcation: the Turing instability is observed for Du > D∗
u

[24].
Here and further, we fix p = 3, Dv = 1. For this set of parameters,

q∗ = 2, D∗
u = (q + 1)

(√
q +

√
q + 1

)2
/3.

In Figure 1, the Andronov–Hopf bifurcation border q = q∗ is shown by green, and
Turing bifurcation border Du = D∗

u(q) is plotted by red.
In the Turing zone q > q∗, Du > D∗

u, because of the diffusion instability of the
homogeneous equilibrium, the system (1), (2) exhibits a phenomenon of pattern for-
mation. This phenomenon was studied in [24] where variety of nonhomogeneous
patterns-attractors was shown. It was also revealed that in the Turing instability
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Fig. 1. Bifurcation diagram of system with p = 3, Dv = 1. Here, green line marks the
Andronov–Hopf bifurcation, and red line is the Turing bifurcation border.

Fig. 2. Limit cycle and corresponding time series of Higgins model without diffusion for
p = 3, q = 1.

zone, this system is multistable: for different initial states different stable patterns
are generated. These patterns differ in spatial waveforms and amplitudes.

In this paper, we focus on the behavior of system (1), (2) in the parameter zone
q < q∗ where, in absence of diffusion, the system (1) exhibits self-oscillations. An
example of such oscillations is shown in Figure 2 where limit cycle and corresponding
time series are plotted.

Consider now how diffusion affects these self-oscillatory modes.
For numerical analysis of system (1), (2) dynamics, we will use the explicit scheme

[25] with the temporal step τ and the spatial step h:

uj+1,i = uj,i + τfj,i + τDu
uj,i−1 − 2uj,i + uj,i+1

h2

vj+1,i = vj,i + τgj,i + τDv
vj,i−1 − 2vj,i + vj,i+1

h2
.

(3)

Here,

tj = jτ, xi = ih, uj,i = u(tj , xi), vj,i = v(tj , xi),

fj,i = f(uj,i, vj,i), gj,i = g(uj,i, vj,i),

f(u, v) = 1− uv, g(u, v) = pv

(
u− 1 + q

q + v

)
.
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Fig. 3. Temporal periodic oscillations of homogeneous solution for p = 3, q = 1, Du = 5,
Dv = 1: (a) u(t, x), (b) v(t, x).

The boundary conditions (2) are approximated as follows:

uj,0 = uj,1, vj,0 = vj,1, uj,n = uj,n−1, vj,n = vj,n−1, L = nh.

In our calculations, we fix L = 40 and use τ = 10−4, h = 0.2. For this discretization,
the numerical scheme (3) is stable.

Our numerical simulations were organized as follows. We fixed a point M(ũ, ṽ)
on the limit cycle of the corresponding system without diffusion (Du = Dv = 0) and
started from the initial values

uε0,i = ũ+ εξi, vε0,i = ṽ + εηi, (4)

where ξi, ηi are independent random values uniformly distributed in the interval
[−1, 1], and ε characterizes a magnitude of initial disturbances.

In Figure 3, we show results of numerical simulation of system (3), (4) for p = 3,
q = 1, Du = 5, Dv = 1, ũ = 0.2597, ṽ = 3.4028, ε = 0.1. As one can see, here, the
temporal periodic oscillations of homogeneous solution are observed. So, in presence of
such diffusion, self-oscillations are preserved. Experiments show that these oscillations
are stable even for increasing ε. Note that under conditions of constant homogeneity,
diffusion does not actually work, and therefore the amplitude and frequency of the
oscillations do not change.

3 Suppression of self-oscillations by diffusion

Under increasing parameter Du, the behavior of the system essentially changes. In
Figure 4, dynamics of the solutions is shown for Du = 10. At the initial temporal
stage, the system repeats several times the oscillations of the homogeneous structure.
Further, these homogeneous structures are destroyed and transformed into nonho-
mogeneous structures with decaying time oscillations of the amplitudes. As a result,
the stationary nonhomogeneous spatial pattern-attractors are formed. These stages
are well seen in Figures 4a and 4c for u- and v-coordinates of solutions. Here, oscil-
lations of the homogeneous structure continue till t ≈ 20, further we see a stage of
the destruction, and for t > 50, one can observe stabilization of the nonhomogeneous
pattern.
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Fig. 4. System with Du = 10: (a) dynamics of u-coordinate with corresponding harmonic
coefficients (b); (c) dynamics of v-coordinate with corresponding harmonic coefficients (d).

Fig. 5. System with Du = 10 at t = 8, t = 27, and t = 100: (a) snapshots of u-coordinate
of structure; (b) dynamics of v-coordinate of structure.

For detailed quantitative description of the spatiotemporal changes in the behavior
of the function ϕ(t, x), one can use harmonic coefficients

Ck(t) =

∫ L

0

ϕ(t, x) cos(2πxk/L)dx.

In Figures 4b and 4d, plots of the function Ck(t) are shown for u(t, x) and v(t, x) for
several k. At the first stage, we see growth of amplitude of harmonic coefficients and
dominance of C3. At the second stage, coefficients are re-arranged, and C4 starts to
dominate. Further, the coefficient C4 is stabilized while others vanish.

Three snapshots of this transient process are shown in Figure 5 for the variables
u and v, and t = 8, t = 27, and t = 100.

To distinguish spatial patterns, we will use the following notations: pattern is
identified by the number of peaks, and the direction ↑ or ↓, which is determined by
the behavior of u-coordinates near the right border x = L. Note that for u and v
these directions are always opposite.
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Fig. 6. System with Du = 20: (a) dynamics of u-coordinate with corresponding harmonic
coefficients (b); (c) dynamics of v-coordinate with corresponding harmonic coefficients (d).

Fig. 7. Suppression of self-oscillations for q = 0.5, Du = 7: (a) dynamics of u-coordinate with
corresponding harmonic coefficients (b); (c) dynamics of v-coordinate with corresponding
harmonic coefficients (d).

For example, in Figure 5c, we see 4 ↑-pattern. Comparing Figures 4 and 5, one
can conclude that temporal dominance of C3 at the second stage corresponds to
the transient structure 3 ↑, and the stabilized C4 corresponds to the final pattern-
attractor 4 ↑. So, the dominance of the harmonic coefficient Ck signals about the
prevalence of k-wave pattern.

Consider what happens under further increase of Du. In Figure 6, transforma-
tion of self-oscillations of homogeneous structures into stationary non-homogeneous
patterns are shown for Du = 20. Colored diagrams of transient processes and plots
of harmonic coefficients show that the increase of Du results in the shortening the
transient process.

One more example of the diffusion-induced of suppression of self-oscillations is
shown in Figure 7a for q = 0.5 and Du = 7. Here, the system exhibits a more complex
transient process with transitions: homogeneous 0-pattern → 3-pattern → 6-pattern
→ 4-pattern. These changes in temporal dynamics, are clearly reflected by harmonic
coefficients.
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Fig. 8. Dynamical regimes of system with diffusion. Blue points mark homogeneous self-
oscillations, and green points mark non-homogeneous stationary pattern formation.

Fig. 9. System with Du = 20: (a) dynamics of u-coordinate; (b) dynamics of v-coordinate.
Here, another pattern is formed in comparison with Figure 6.

So, in the parameter zone q < q∗, self-oscillations appearing in the system without
diffusion can both be preserved or destroyed by diffusion of appropriate intensity. In
Figure 8, for p = 3 and Dv = 1, (Du, q)-parametric diagram shows these two regimes.
Here, blue zone corresponds to homogeneous self-oscillations, and green zone describes
the diffusion-induced non-homogeneous stationary pattern formation.

4 Multistability

It is worth noting that in green zone (see Fig. 8), the system (1),(2) exhibits a wide
diversity of non-homogeneous patterns-attractors. These patterns essentially differ
in the quantity of spatial waves and amplitudes. Moreover, the system (1),(2) with
all fixed parameters can exhibit different stationary patterns in dependence of the
initial data. For example, in Figures 6 and 9, a process of pattern formation in system
(1),(2) with the same set of parameters p = 3, q = 1, Dv = 1, Du = 20 and slightly
varying initial values results in the different final patterns. Indeed, in Figure 6 it is
3 ↓-pattern whereas in Figure 7 it is 4 ↑-pattern.

Indeed, the system (1),(2) exhibits a complex multistability with several coexisting
attractors. In Figure 10, examples of some of them are shown forDu = 7 andDu = 20.

Zones of the existence of these patterns can be seen in Figure 11 where extremum
values of spatial waves for u-coordinate are plotted versus diffusion coefficient Du.

In our numerical simulations, we used various realizations of the random initial
states (4) and observed various patterns-attractors with different probability. Results
of our statistical analysis are presented in Figure 12 for three values of the diffusion
coefficient Du and 2000 samples. These results can be interpreted as the “preference
of attractors.” Indeed, for Du = 7, patterns with 4 and 4.5 peaks are most probable.
For Du = 10, the system prefers patterns 4 ↑. For Du = 20, a top list of preferences
is 3 ↑, 3.5 ↓, and 3.5 ↑.
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Fig. 10. Examples of patterns: (a) Du = 10, (b) Du = 20.

Fig. 11. Extrema of u-coordinates of stationary patterns in system (1), (2) with p = 3,
q = 1, Dv = 1.

5 Conclusion

We studied the distributed glycolytic model with the diffusion. It was shown that the
diffusion in this model can cause stationary nonhomogeneous patterns even in the
parameter zone where initial local model (without diffusion) exhibits self-oscillations.
This phenomenon of the diffusion-induced suppression of self-oscillations was stud-
ied by harmonic coefficients. We revealed that considered system is multistable with
coexisting stationary patterns-attractors of different wave forms. A parametric study
of amplitudes and variety of wave forms of patterns was carried out. Statistical analy-
sis revealed the “preference” for certain types of patterns under the random variation
of the initial data.
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Fig. 12. Statistics of patterns: (a) Du = 7, (b) Du = 10, (c) Du = 20.
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