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Abstract. The exact solutions of either spherical or deformed mean-
field plus various types of pairing models are briefly reviewed. It is
shown that, besides the standard pairing model, there are several
special types of pairing interaction that can be solved exactly. In com-
parison to the standard pairing, the results of several pairing-driven
quantities, such as pairing excitation energies, even–odd mass differ-
ences, the moment of inertia, etc., show that these types of pairing
interaction can indeed be used to describe pairing correlations in nuclei
either more accurately or efficiently. Moreover, the shape phase tran-
sitional behaviors of nuclei described by the consistent-Q formalism of
the interacting boson model are summarized.

1 Introduction

Nuclear pairing correlation, as an important part of the residual interactions nec-
essary to augment any nuclear mean-field theory, represents one of the main and
longstanding pillars of current understanding of nuclear structure [1]. For example,
the pairing interaction of the nuclear shell model plays a key role to reproduce low-
energy spectroscopic properties of nuclei, such as binding energies, odd-even effects,
single-particle occupancies, excitation spectra, and moments of inertia, etc. [2,3].
Bohr, Mottelson, Pines, and Belyaev were the first to introduce the Bardeen–
Cooper–Schrieffer (BCS) theory for superconductivity in condensed matter [4] to
descriptions of pairing phenomena in nuclei [2,5]. Though the BCS and the more
refined Hartree–Fock–Bogolyubov (HFB) approximations provide simple and clear
pictures in demonstrating pairing correlations in nuclei [2,6,7], tremendous efforts
have been made in finding accurate solutions to the problem [8–14] to overcome
serious drawbacks in the BCS and the HFB, such as spurious states, nonorthogo-
nal solutions, etc. resulting from particle number-nonconservation effects in these
approximations [9,10,14–16]. Driven by the importance of having exact solutions of
either spherical or deformed mean-field plus the standard pairing Hamiltonian, much
attention and progress, building on Richardson and Gaudin’s early work [17–21] and
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extensions to it based on the Bethe ansatz, have been made [22–32]. For all these alge-
braic Bethe ansatz approaches, the solutions are provided by a set of highly non-linear
Bethe–Gaudin–Richardson equations (BGREs). Though these applications demon-
strate that the pairing problem is exactly solvable, solutions of these BGREs are not
easy and normally require extensive numerical work, especially when the number of
levels and valence pairs are large [27]. This limits the applicability of the method to
relatively small systems. However, it has been shown recently that the set of BGREs
for the standard pairing case can be solved relatively easily by using the extended
Heine–Stieltjes polynomial approach [33–35]. Since solutions of the standard pairing
model can be obtained from zeros of the associated extended Heine–Stieltjes polyno-
mials, the approach can be applied to study the model with more pairs over a larger
number of single-particle levels.

Moreover, if nuclear pairing interaction is restricted to nearest levels in a deformed
mean-field theory, it leads to a simply solvable hard-core Bose–Hubbard model Hamil-
tonian, which may also be suitable to describe well-deformed nuclei [36–38]. Later on,
the Nilsson mean-field plus an extended pairing model was also proposed to describe
deformed nuclei [39], which includes pairing interactions among valence pairs in dif-
ferent levels up to infinite order. It has been shown that the extended pairing model
can be regarded as the standard pairing Hamiltonian at a first-order approxima-
tion, namely, only the lowest energy eigenstate described by the Racah quasi-spin
formulism of the standard pairing interaction is taken into consideration, and the
results thus display similar pair structures to those in the low-lying states of the
standard pairing model [40]. The advantage of the model lies in the fact that it can
also be solved exactly and more easily than the standard pairing model, especially
when both the number of valence nucleon pairs and the number of single-particle
levels are large, which, therefore, is more suitable to describe well-deformed nuclei
[41–43].

In quantum many-body systems, such as atomic nuclei, quantum phase transition
(QPT) has been one of the interesting and important phenomena, which occurs at
zero temperature in the thermodynamic limit [44]. In nuclei, quantum phase is often
referred to as the shape (phase) of a nucleus. Typical shape is of spherical (vibra-
tional), indefinite triaxial (γ-unstable), or axially deformed (rotational) type, which
is manifested by the collective model [45] and the interacting boson model (IBM) [46].
Shape (phase) evolution can be observed at ground state or low-lying states of nuclei
along a chain of isotopes or isotones, in which noticeable changes in physical quan-
tities or called effective order parameters, such as energy ratios, B(E2) ratios, and
binding energy related quantities, are not only predicted in theory, but also experi-
mentally observed [47,48]. Besides the collective model and shell model descriptions,
as is well known, the interacting boson model (IBM) has been proven to be very suc-
cessful in the description of both collective valence shell [46] and multi-particle–hole
[49–51] excitations in nuclei. Most noticeably, the IBM Hamiltonian without configu-
ration mixing can be solved analytically in the U(5) (vibrational), O(6) (γ-unstable),
SU(3), or SU(3) (rotational) limits [46], and the U(5)–O(6) transitional case [52],
with which the shape (phase) evolution along a chain of isotopes or isotones can be
clearly demonstrated.

In the following sections, we briefly review either spherical or deformed mean-
field plus the standard pairing, the special separable and non-separable pairing, the
nearest level pairing, and the extended pairing models. Application of these models
to describe pairing excitations, even–odd mass differences, the moment of inertia, and
possible phase transition will also be presented. Then, the shape phase transitional
behaviors of nuclei described by the IBM are presented. A brief summary is given in
the final section.
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2 Mean-field plus pairing models and their applications

Once the mean-field contribution is determined by using the HF method or described
by an effective single-particle potential, which can be expressed as diagonal one-body
terms of a nuclear Hamiltonian in a complete or truncated subspace of (valence)
nucleons, there are several important residual interactions to be considered. The
pairing interaction among (valence) nucleon pairs is one of them. In the following,
only pairing interaction among like-nucleon pairs is considered. Thus, the general
spherical mean-field plus pairing Hamiltonian can be expressed as

Ĥ =
∑
j

εj n̂j −
∑
jj′

gjj′S
+
j S
−
j′ =

∑
j

εj n̂j + ĤP , (1)

where the sums run over given j-orbits of total number p, εj are nondegenerate single-

particle energies generated from any spherical mean-field theory, n̂j =
∑
m a
†
jmajm is

the number operator for (valence) like-nucleons in the jth level, S+
j =

∑
m(−)j−m×

a†jma
†
j −m (S−j = (S+

j )†) are pair creation (annihilation) operators, and {gjj′} are
pairing interaction strengths among like-nucleon pairs, which, in general, are treated
as adjustable parameters according to the binding energy and the low-lying excitation
spectrum for a given nucleus. On the other hand, the deformed mean-field plus pairing
Hamiltonian is written as

Ĥ =
∑
i

εin̂i +
∑
i,i′

Gii′b
†
i bi′ , (2)

where {εi} are a set of single-particle energies generated from any deformed mean-

field theory, b†i = a†ia
†
ī

and bi = aīai, in which a†i is the ith level single-particle

creation operator in the deformed basis, such as that of the Nilsson model, and a†
ī

the corresponding time-reversed state. In the following, some special cases of {gjj′}
in the spherical basis or {Gi′} in the deformed basis are considered, with which
the Hamiltonian (1) can be solved exactly. The exact solutions of spherical mean-
field plus various types of pairing will be discussed in Sections 2.1–2.4, while those of
deformed mean-field plus nearest level pairing or extended pairing will be presented in
Sections 2.5 and 2.6.

2.1 Mean-field plus standard pairing

The Hamiltonian of the standard pairing model (SPM) is given by

Ĥ =
∑
j

εj n̂j −G
∑
jj′

S+
j S
−
j′ =

∑
j

εj n̂j + ĤP , (3)

where G > 0 is the overall pairing strength, which is often adopted in many model
calculations [3].

The p copies of the local SU(2) algebras with the generators {S−jt , S
+
jt
, N̂jt} (t =

1, 2, . . . , p), generate p copies of SU(2) algebra satisfying the commutation relations

[N̂jt/2, S
−
jt′

] = −δtt′S−jt , [N̂jt/2, S
+
jt′

] = δtt′S
+
jt
, [S+

jt
, S−jt′ ] = 2δtt′S

0
jt , (4)
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where S0
jt

= (N̂jt − Ωt)/2 with Ωt = jt + 1/2. Let

S+(x) =

p∑
t=1

1

2εjt − x
S+
jt
, (5)

where x is the (spectral) parameter to be determined. According to the commutation
relations given in (4), we have[∑

t

εjtN̂jt , S
+(x)

]
=
∑
t

2εjt
2εjt − x

S+
jt

=
∑
t

S+
jt

+ xS+(x), (6)

[ĤP, S
+(x)] = G

∑
t′

S+
jt′

∑
t

2S0
jt

2εjt − x
= GS+ Λ0(x), (7)

where Λ0(x) =
∑
t

2S0
jt

2εjt−x
, S0

jt
= (Njt − Ωt)/2,

[[ĤP, S
+(x)], S+(y)] = 2G

∑
t′ S

+
jt′

∑
t

1
(2εjt−x)(2εjt−y)S

+
jt

= S+ 2G
x−y (S+(x)− S+(y)) , (8)

where S+ =
∑
t′ S

+
jt′

.

The Bethe–Gaudin–Richardson ansatz for k-pair eigenstates of (3) is written as
[17–21]

|ξ; k; νηJM〉 =
k∏
ρ=1

S+(x(ξ)
ρ )|νηJM〉, (9)

where x
(ξ)
1 6= x

(ξ)
2 6= · · · 6= x

(ξ)
k is assumed, ξ denotes the ξth set of the solutions

corresponding to the ξth eigenstate of (3). If the seniority number of the tth orbit
is νt, the pairing vacuum states of the p orbits are denoted as |νtηtJtMt〉 satisfying
S−jt |νjtηtJtMt〉 = 0, where Jt and Mt are the angular momentum quantum num-
ber and that of its third component, respectively, and ηt is the multiplicity label
needed to distinguish different possible ways of νt particles coupled to the angular
momentum Jt. Thus, a pairing vacuum state of the system with the total senior-
ity number ν =

∑p
t=1 νt and the total angular momentum J can be expressed as

|νηJM〉 ≡ |ν1η1, ν2η2, . . . , νpηp; (J1 ⊗ J2 ⊗ · · · ⊗ Jp), η, JM〉, where η is the outer-
multiplicity label needed for the coupling of J1 ⊗ J2 ⊗ · · · ⊗ Jp ↓ J . Thus, |νηJM〉
satisfies S−jt |νηJM〉 = 0 for t = 1, 2, . . . , p, which is used in (9).

Using equations (6), (7), and (8), one can directly check that∑
t

εt N̂jt |ξ; k; νηJM〉 =
∑k
i S

+
∏k
ρ (6=i) S

+(x
(ξ)
ρ )|νηJM〉

+
(∑k

i x
(ξ)
i

)∏k
ρ S

+(x
(ξ)
ρ )|νηJM〉 (10)
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and

ĤP|ξ; k; νηJM〉 =
k∑
i

GΛ0(x
(ξ)
i )S+

k∏
ρ (6=i)

S+(x(ξ)
ρ )|νηJM〉

+
k∑
i

k∑
i′ ( 6=i)

2G

x
(ξ)
i′ − x

(ξ)
i

S+
k∏

ρ (6=i)

S+(x(ξ)
ρ )|νηJM〉,

which leads to a set of Bethe–Gaudin–Richardson equations (BGREs) [17–21,28]:

1− 2G
∑
t

ρt

x
(ξ)
i − 2εjt

− 2G
k∑

i′(6=i)

1

x
(ξ)
i − x

(ξ)
i′

= 0 (11)

for i = 1, 2, . . . , k, where the first sum runs over all j-levels and ρt = −(Ωt − νt)/2.

For each set of solution {x(ξ)
1 , . . . , x

(ξ)
k }, the corresponding eigen-energy is given by

E
(ξ)
k =

p∑
t=1

εjtνjt +
k∑
i=1

x
(ξ)
i , (12)

in which
∑p
t=1 εjtνjt is contributed from particles in the pairing vacuum |νηJM〉.

As shown by Heine and Stieltjes, there is a one-to-one correspondence between a
set of the BGREs and a set of orthogonal polynomials, called the extended Heine–
Stieltjes polynomials [33,34]. Roots of these BGREs are zeros of the polynomials.
Let y(x) be a polynomial of degree k satisfying the following second order Fuchsian
equation:

A(x)y′′(x) +B(x)y′(x)− V (x)y(x) = 0. (13)

Here, A(x) =
∏p
j=1(x− 2εj) is a polynomial of degree p, the polynomial B(x) is given

as

B(x)/A(x) =
∑
j

2ρj
x− 2εj

− 1

G
, (14)

V (x) is called Van Vleck polynomial of degree p− 1, which is determined according
to equation (13). The polynomial y(x) of degree k with k zeros xi may be expressed
as

y(x) =
k∏
i=1

(x− xi). (15)

One can easily check that y(x) satisfies

y′′(xi)

y′(xi)
=

k∑
j=1

2

xi − xj
. (16)
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Equation (13) of y(x) at zero xi leads to the BGREs shown in (11). The number of
solutions should equal exactly to

η(p, k) =

−2ρ1∑
q1=0

· · ·
−2ρp∑
qp=0

δq,k (17)

with q =
∑p
i=1 qi. For the seniority-zero case, when Ωi = 1/2 ∀ i corresponding to p

Nilsson levels,

η(p, k) =
p!

(p− k)!k!
. (18)

Hence, one may turn to find polynomial solutions of y(x) satisfying (13)
In search for polynomial solutions of (13), we write

y(x) =
k∑
j=0

ajx
j , V (x) =

p−1∑
j=0

bjx
j , (19)

where {aj} and {bj} are the expansion coefficients to be determined. Substitution
of (19) into equation (13) yields two matrix equations. Namely, the condition that
the coefficients in front of xi (i = 0, . . . , k) must be zero yields a (k + 1) × (k +
1) matrix F with Fv = b0v, where the eigenvector v of F is simply given by the
expansion coefficients v = {a0, . . . , ak}. In addition, the condition that the coefficients
in front of xi (i = k + 1, . . . , p+ k − 1) must be zero yields another (p− 1)× (k + 1)
upper-triangular matrix P with Pv = 0, which provides a unique solution for bi
(i = 1, . . . , p − 1) in terms of {aj}. Entries of the two matrices are all linear in the
coefficients {b1, b2, . . . , bp−1}. Matrices F and P can be easily constructed, for which a
simple MATHEMATICA code is available [35]. Once the polynomial is known, zeros
of the single-variable y(x) can easily be evaluated numerically.

According to the Stieltjes results [53], an electrostatic interpretation of the loca-
tion of zeros of the polynomial y(x) may be stated as follows [24,28,33]. Put p
negative fixed charges ρt along a real line, and allow k positive unit charges to move
freely on the complex plane under such situation together with a uniform electric
field with strength 1/(2G). Therefore, up to a constant, the total energy functional
U(x1, . . . , xk) may be written as

U(x1, . . . , xk) =
1

2G

k∑
i

xi −
∑
it

ρt ln |2εjt − xi| −
∑
i6=i′

ln |xi − xi′ |. (20)

In this case, there are η(p, k) different configurations for the position of the k positive

charges {x(ξ)
1 , . . . , x

(ξ)
k } with ξ = 1, 2, . . . , η(p, k) corresponding to global minimums

of the total energy.
Using the polynomial approach, one can evaluate ground-state quantities of the

model and compared with experimental results, even when valence space is relatively
larger. For example, the pairing gap of the ground states of Ni and Sm isotopes were
calculated from the model [54], referred to as HS Pairing, which are compared with
the corresponding experimental data. The results of 58−77Ni obtained by using the
BCS approximation are also shown for comparison. In the calculation, the empirical
like-particle pairing gap was estimated by the third derivative of binding energies,
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Fig. 1. Pairing gaps in MeV calculated by the HS pairing •, the BCS approximation N,
and compared to experimental data � of 58−77Ni with four j-orbits, f5/2, p1/2, 3/2, g9/2

and G = 23/A MeV.

BE, with respect to the number of valence like-particles, which for neutrons is,

∆nn ≡
1

4
(BE(Z,N − 2)− 3BE(Z,N − 1) + 3BE(Z,N)−BE(Z,N + 1)). (21)

It is found that the model with paring strength G = 23/A MeV yields a close
reproduction of experimental results of 58−77Ni as shown in Figure 1.

2.2 Mean-field plus special separable pairing

The Hamiltonian of a mean-field plus separable pairing model (SP) may be written
as [55]

Ĥ =

p∑
t=1

εjtN̂jt + ĤP =

p∑
t=1

εjtN̂jt −G
∑

1≤t,t′≤p

cjtcjt′S
+
jt
S−jt′ . (22)

It is known from [55] that the exact solution of (22) becomes very complicated and
tedious for p ≥ 3. Nevertheless, there is a special case like the standard pairing that
can be solved exactly, of which the parameters {cjt} satisfy [56–58]

(cjt)
2 = g1εjt + g2 ∀ t, (23)

where g1 and g2 are parameters to be determined. It is obvious that the model
becomes the standard pairing case when g2 is a constant and g1 = 0.

Similar to the standard pairing, k-pair eigenstate of (22) in this case can also be
expressed in the form of (9), but the paring operator S+(x) should be of the following
form [56]:

S+(x) =

p∑
t=1

1

2εjt − x
cjtS

+
jt
. (24)
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According to the commutation relations given in (4), we have[∑
t

εjtN̂jt , S
+(x)

]
=
∑
t

2εjt
2εjt − x

cjtS
+
jt

=
∑
t

cjtS
+
jt

+ xS+(x), (25)

[ĤP, S
+(x)] = G

∑
t′

cjt′S
+
jt′

∑
t

2S0
jt

(cjt)
2

2εjt − x
= G

∑
jt′

cjt′S
+
jt′

Λ1(x), (26)

where Λ1(x) =
∑
t

2S0
jt

(cjt )
2

2εjt−x
, and

S+(x, y) = [[ĤP, S
+(x)], S+(y)]

= G
∑
t′

cjt′S
+
jt′

(
g1

x− y
(xS+(x)− yS+(y)) +

2g2

x− y
(S+(x)− S+(y))

)
. (27)

One can verify that the eigen-equation Ĥ||ξ; k; νηJM〉 = E
(ξ)
k |ξ; k; νηJM〉 is fulfilled

when and only when

p∑
t=1

(g1εjt + g2)(Ωjt − νjt)
2εjt − x

(ξ)
i

+
∑
l 6=i

g1x
(ξ)
l + 2g2

x
(ξ)
i − x

(ξ)
l

= 1/G for i = 1, 2, . . . k, (28)

with the corresponding eigen-energy still given by (12).

According to Heine–Stieltjes correspondence, for nonzero G, zeros {x(ξ)
i } of the

extended Heine–Stieltjes polynomials yk(x) of degree k are roots of equation (28),
where yk(x) should still satisfy the second-order Fuchsian equation (13). For this case,
A(x) = 1

2 (g1x+ 2g2)
∏p
t=1(2εjt − x) is a polynomial of degree p+ 1, the polynomial

B(x, k) of degree p− 1 is given as

B(x, k)/A(x) =
2

g1x+ 2g2

p∑
t=1

(g1εjt + g2)(Ωjt − νjt)
2εjt − x

− 2(k − 1)Gg1 + 2

(g1x+ 2g2)G
, (29)

where the identity

∑
1≤l( 6=i)≤k

x
(ξ)
l

x
(ξ)
i − x

(ξ)
l

= x
(ξ)
i

∑
1≤l(6=i)≤k

1

x
(ξ)
i − x

(ξ)
l

− (k − 1) (30)

is used.

2.3 Mean-field plus special non-separable pairing

It is shown in a recent work [59] that there is an extension of the special separable
pairing interaction with the Hamiltonian given by

Ĥ =

p∑
t

εt N̂jt + ĤP =

p∑
t

εt N̂jt +
∑

1≤t,t′≤p

gt,t′ S
+
jt
S−jt′ (31)
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with

gtt′ =
∑
µ,ν

Gµ,ν(ct)
µ(ct′)

ν , (32)

where µ, ν only run over +1 and −1. Thus, the pairing interaction ĤP can be
expressed as

ĤP = G+,+ S
+
1 S
−
1 +G+,− S

+
1 S
−
−1 +G−,+ S

+
−1S

−
1 +G−,− S

+
−1S

−
−1, (33)

where S±µ =
∑p
t=1 (ct)

µ
S±jt for µ = ±1. As adopted in the separable pairing, let the

k-pair eigenvectors of (31) can be written in the form of (9) with the paring operator
S+(x) the same as that shown in (24). For p = 3, S+(x) is a trinomial in S+

jt
with 3

independent terms. Hence, we have

[∑
t

εt N̂jt , S
+(x)

]
=
∑
t

2εt
c2t − x

ct S
+
jt

= α(x)S+(x) + β(x)S+
1 + γ(x)S+

−1, (34)

where α(x), β(x), and γ(x) are independent functions of x with

α(x) =
2
(
c21(c22 − c23)(x− c22)(x− c23) ε1 − c22(c21 − c23)(x− c21)(x− c23) ε2 + c23(c21 − c22)(x− c21)(x− c22) ε3

)
(c21 − c22)(c21 − c23)(c22 − c23) x

,

β(x) = β =
2 c21c

2
2(ε1 − ε2) + 2 c21c

2
3(ε3 − ε1) + 2 c22c

2
3(ε2 − ε3)

(c21 − c22)(c21 − c23)(c22 − c23)
,

γ(x) = γ/x =
2 c21c

2
2c

2
3

(
c21(ε2 − ε3) + c23(ε1 − ε2) + c22(ε3 − ε1)

)
(c21 − c22)(c21 − c23)(c22 − c23) x

(35)

for p = 3, where c1 6= c2 6= c3 is assumed. More generally, the parameters {εt} and
{ct} (t = 1, 2, . . . , p) must satisfy the constraints

εt =
1

2

(
u0 + u2(ct)

2 + u−2(ct)
−2
)

(36)

for t = 1, 2, . . . , p, where u0, u2, and u−2 are another three free parameters with

α(x) = u0 + u2 x−
u−2

x
, β = u2, γ(x) = −u−2

x
(37)

for p ≥ 3.
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Using equations (4), (24), and (34), one can directly check that

∑
t

εt N̂jt |ξ; k; νηJM〉 =
k∑
i

(
β S+

1 + γ(x
(ξ)
i )S+

−1

) k∏
ρ (6=i)

S+(x(ξ)
ρ )|νηJM〉

+

(
k∑
i

α(x
(ξ)
i ) +

p∑
t=1

εtνt

)
k∏
ρ

S+(x(ξ)
ρ )|νηJM〉 (38)

and

ĤP|ξ; k; νηJM〉 = −
k∑
i

(
S+

1 (G+,+ Λ1(x
(ξ)
i ) +G+,− Λ0(x

(ξ)
i ) )

+ S+
−1(G−,+ Λ1(x

(ξ)
i ) +G−,− Λ0(x

(ξ)
i ) )

) k∏
ρ(6=i)

S+(x(ξ)
ρ )|νηJM〉

−S+
1

k∑
i

k∑
i′ (6=i)

(G+,+
2x

(ξ)
i′

x
(ξ)
i′ − x

(ξ)
i

+G+,−
2

x
(ξ)
i′ − x

(ξ)
i

)

k∏
ρ (6=i)

S+(x(ξ)
ρ )|νηJM〉

−S+
−1

k∑
i

k∑
i′ ( 6=i)

(G−,+
2x

(ξ)
i′

x
(ξ)
i′ − x

(ξ)
i

+G−,−
2

x
(ξ)
i′ − x

(ξ)
i

)
k∏

ρ (6=i)

S+(x(ξ)
ρ )|νηJM〉, (39)

where

Λµ(x) = −
∑
t

(Ωt − νt)(c2t )µ

c2t − x
. (40)

Similar to the special separable pairing, the eigenvalue E
(ξ)
k is now given by

E
(ξ)
k =

p∑
t=1

εtνt +
k∑
i=1

α(x
(ξ)
i ), (41)

with 2k equations in determining the k variables {x(ξ)
i }:

β −G+,+ F (x
(ξ)
i )−G+,− V (x

(ξ)
i ) = 0 for i = 1, 2, . . . , k, (42)

γ

x
(ξ)
i

−G−,+ F (x
(ξ)
i )−G−,− V (x

(ξ)
i ) = 0 for i = 1, 2, . . . , k, (43)
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where

F (x
(ξ)
i ) = Λ1(x

(ξ)
i ) +

k∑
i′ ( 6=i)

2x
(ξ)
i′

x
(ξ)
i′ − x

(ξ)
i

, V (x
(ξ)
i ) = Λ0(x

(ξ)
i ) +

k∑
i′ ( 6=i)

2

x
(ξ)
i′ − x

(ξ)
i

. (44)

Since β and γ are all nonzero in general, the Hamiltonian (31) with G+,+ 6= 0,
G+,− 6= 0, G−,+ 6= 0, and G−,− 6= 0 cannot be diagonalized by using the ansatz
(9) with the paring operator S+(x) the same as that shown in (24) because (42) and
(43) cannot be simultaneously satisfied in this case. Nevertheless, there are two spe-
cial cases for nonzero {ct} (t = 1, 2, . . . , p) that can be solved exactly. One is γ = 0
case corresponding to u−2 = 0, while another is β = 0 case corresponding to u2 = 0.
The former case with G+,+ 6= 0, G+,− = G−,+ = G−,− = 0 is just the special sepa-
rable pairing (SSP) case discussed in [56–58], while the latter case with G−,− 6= 0,
G+,− = G−,+ = G+,+ = 0 is equivalent to the former one with the replacements:

ct → c−1
t for t = 1, 2, . . . , p. When

β −G+,+ (2(k − 1)− Ω)

G+,+
=

γ

G−,−
(45)

is satisfied, two sets of equations (42) and (43) coalesce into k equations in determining
the k variables

γ

G−,−
− x(ξ)

i V (x
(ξ)
i ) = 0 for i = 1, 2, . . . , k. (46)

For this case, the pairing interaction matrix elements (32) can be expressed in terms
of p+ 2 parameters {c1, c2, . . . , cp}, G+,+, and G−,− as

gtt′ = G+,+ ct ct′ +
G−,−
ct ct′

(47)

with the constraints (36) and (45), which are obviously non-separable in general.
To demonstrate the solution of both the Special Separable Pairing (SSP) and

the Special Non-Separable Pairing (SNSP), we consider the ds-shell with 3 orbitals
0d5/2, 1s1/2, and 0d3/2, of which the single-particle energies are provided in [60]. The

effective pairing interaction matrix elements {Gt,t′} in the {S+
jt
} basis with ĤPairing =∑

jj′ Gt,t′S
+
jt
S−jt′ for this case are obtained from the J = 0 and T = 1 two-body matrix

elements of the SDPF–NR interaction [60], where j1 = 1/2, j2 = 5/2, and j3 = 3/2
are assigned, and the mass scaling factor (A/18)1/3 of the two-body matrix elements
is not included. The separable pairing interaction parameters {cj}may be determined

from the two-particle ground state of the mean-field plus the ĤPairing, of which the
expansion coefficients of the two-particle ground state in terms of {S+

j } may be taken

to be the corresponding separable pairing interaction parameter {cj} of the spherical
mean-field plus the separable pairing model (SP) [55]. The overall pairing strength in
the SP was adjusted to reproduce the same two-particle ground state energy, which is
thus fixed though it also varies with k. Then, a linear fit of {c2j} by the single-particle

energies with 1 ≥ c2j = g1εj + g2 ≥ 0 is performed according to the constraint shown

in (23). The best linear fit in the SSP yields c2j = 0.1524 − 0.067εj for the ds-shell
[56]. Since the overall pairing strength varies with the number of pairs k, the overall
pairing interaction strength in the SSP was then adjusted to reproduce the same
ground state energy of the SP for a given k. In the SNSP, because {gt,t′} obtained
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from the SNSP (47) are independent of one of nonzero ci (i = 1, 2, 3) due to (45),
only c1, c2, and G+,+ were taken as fitting parameters, while G−,− is determined
according to (45). The fitting results of {gt,t′} are independent of nonzero c3 in this
case. Hence, c3 = 1 is taken in the calculation. Thus, one can use 3 of the 6 pairing
interaction matrix elements Gt,t′ to get c1, c2, and G+,+ shown in Table 1. The

pairing excitation energies E
(ξ)
k of the seniority-zero case up to the half-filling case

obtained from the SP, the SSP, the SNSP are shown in Table 2, in which the results
of the SPM with gtt′ = G used in (3) are also shown for comparison. Since the SP
results are closer to those obtained from the Hamiltonian with the experimentally
determined pairing interaction matrix elements Gt,t′ [60], the χ2 deviation defined
by

χ2 =
1

s

s∑
ξ=1

(
E

(ξ)
SP − E

(ξ)
)2

(48)

is adopted, where E
(ξ)
SP are pairing excitation energies of the SP, E(ξ) are those of

the SNSP, the SSP, and the SMP, respectively, and s is the total number of pairing
excitation states for given k, of which the corresponding value for each model is also
shown in the last row of Table 2. It can be observed from Table 2 that the SNSP and
the SSP results are quite similar and closer to the corresponding SP values, while
there are larger deviations of the SPM results from those of the SP. Therefore, both
the SNSP and the SSP are more accurate in pairing excitation energies. The situation
in the fp-shell is quite the same [56,59].

2.4 Non-separable pairing for two-orbit case

Besides the SSP and the SNSP, the Bethe–Gaudin–Richardson method can also be
applied to get the exact solution of the general orbit-dependent non-separable pairing
with two non-degenerate j-orbits [61]. The Hamiltonian of a spherical mean-field
plus orbit-dependent non-separable pairing model (NSPM) with two non-degenerate
j-orbits can be written as [61]

Ĥ =

p∑
t

εt N̂jt + ĤP =

p∑
t

εt N̂jt −
∑

1≤t,t′≤p

gt,t′ S
+
jt
S−jt′ , (49)

where p = 2 is the total number of orbits considered above a closed or sub-closed
shell. As adopted in the Richardson–Gaudin approach for the SPM, let

S+(x) =
2∑
t=1

1

2εt − x
S+
jt
. (50)

According to the commutation relations of the generators of the two copies of the
SU(2) algebra, we have

[∑
t

εtN̂jt , S
+(x)

]
=
∑
t

2εt
2εt − x

S+
jt

= S+ + xS+(x), (51)
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where S+ =
∑
t S

+
jt

, and

[ĤP, S
+(x)] =

∑
t′,t

gt′,tS
+
jt′

2S0
jt

2εt − x
, (52)

[[ĤP, S
+(x)], S+(y)] = 2

∑
t′,t

gt′,t
1

(2εt − x)(2εt − y)
S+
jt′
S+
jt
. (53)

The k-pair eigenvectors of (49) can be still written as the Richardson-Gaudin form (9).
Since the Hamiltonian (49) only contains one- and two-body interaction terms, the

q-time commutators [. . . [Ĥ, S+(x
(ζ)
ρ1 )], . . . , S+(x

(ζ)
ρq−1)], S+(x

(ζ)
ρq )] vanish when q ≥ 3.

Namely, one only needs to calculate single and double commutators of Ĥ with the

operators S+(x
(ζ)
ρ ). The commutator applied to the vacuum state |νηJM〉 gives

[ĤP, S
+(x)]|νηJM〉 =

∑
t′,t

gt′,t S
+
jt′

2S0
jt

2εt − x
|νηJM〉

= (α(x)S+ + β(x)S+(x))|νηJM〉. (54)

After solving the above binomial equations of the local operators S+
j1

and S+
j2

, one
obtains

α(x) = −
(x − 2ε2)

(
(x − 2ε1)g1,1 − (x − 2ε2)g1,2

)
(Ω1 − ν1) + (x − 2ε1)

(
(x − 2ε1)g1,2 − (x − 2ε2)g2,2

)
(Ω2 − ν2)

2(x − 2ε1)(x − 2ε2)(ε1 − ε2)
,

β(x) = −
(x − 2ε2)(g1,1 − g1,2)(Ω1 − ν1) + (x − 2ε1)(g1,2 − g2,2)(Ω2 − ν2)

2(ε1 − ε2)
, (55)

where the condition g2,1 = g1,2 is used. Similarly, the double commutator can be
expressed as

[[ĤP, S
+(x)], S+(y)] = 2

∑
t′,t

gt′,t
1

(2εt − x)(2εt − y)
S+
jt′
S+
jt

= a(x, y)S+S+(x) + b(x, y)S+S+(y) + c(x, y)S+(x)S+(y),

(56)

which expressed in terms of S+, S+(x), and S+(y) is only possible for two j-orbit
case. For a system with p j-orbits, p(p+ 1)/2 terms are needed on the right-hand-side
of (56). For example, six terms on the right-hand-side of (56) are needed for the three
j-orbit case.

After comparing the coefficients of S+
jt
S+
jt′

with the same t and t′ on both sides of

(56), one gets

a(x, y) =
1

2(x− y)(ε1 − ε2)2
F (x, y), b(x, y) = a(y, x),

c(x, y) =
1

2(ε1 − ε2)2
((x+ y)(2ε2(g1,2 − g1,1) + 2ε1(g1,2 − g2,2))

+ x y (g1,1 + g2,2 − 2g1,2) + 4ε22(g1,1 − g1,2) + 4ε21(g2,2 − g1,2)
)
, (57)
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which is obviously symmetric in x and y, where

F (x, y) = x (2ε1(g1,1 − g1,2) + 2ε2(g2,2 − g1,2))

+y (2ε2(g1,1 − g1,2) + 2ε1(g2,2 − g1,2))

+x y (2g1,2 − g1,1 − g2,2) + 4g1,2(ε21 + ε22)− 4ε1ε2(g1,1 + g2,2). (58)

It can be verified that the eigen-equation Ĥ|ξ; k; νηJM〉 = E
(ξ)
k |ξ; k; νηJM〉 is

fulfilled if and only if

1 + α
(
x

(ξ)
i

)
+

k∑
i′ (6=i)

a(x
(ξ)
i′ , x

(ξ)
i ) = 0 for i = 1, 2, . . . k, (59)

with the corresponding eigen-energy

E
(ξ)
k

=

p∑
t=1

εtνt +

k∑
i=1

x(ξ)
i

+ β(x
(ξ)
i

) +

k∑
i′=i+1

c(x
(ξ)
i
, x

(ξ)

i′
)

 =

p∑
t=1

εtνt

+

(
(g1,1 − g1,2)(Ω1 − ν1)ε2

ε1 − ε2
+

(g1,2 − g2,2)(Ω2 − ν2)ε1

ε1 − ε2
+
ε21(g2,2 − g1,2) + ε22(g1,1 − g1,2)

(ε1 − ε2)2
(k − 1)

)
k

+

(
1 −

(g1,1 − g1,2)(Ω1 − ν1)

2ε1 − 2ε2
−

(g1,2 − g2,2)(Ω2 − ν2)

2ε1 − 2ε2
+
ε2(g1,2 − g1,1) + ε1(g1,2 − g2,2)

(ε1 − ε2)2
(k − 1)

)

×
k∑
i=1

x
(ξ)
i

+
g1,1 + g2,2 − 2g1,2

4(ε1 − ε2)2

 k∑
i=1

x
(ξ)
i

2

−
k∑
i=1

(
x

(ξ)
i

)2

 . (60)

Similar to the SPM, the solutions of (59) are zeros of y(x) satisfying

A(x) y′′k (x) +B(x, k) y′k(x)− V (x, k) yk(x) = 0. (61)

Here,

A(x) =
1

2
(x2F12 + x (F1 + F2) + F0)

2∏
t=1

(2εt − x) (62)

is a polynomial of degree 4, in which

F1 =
ε1(g1,1−g1,2)+ε2(g2,2−g1,2)

(ε1−ε2)2 , F2 =
ε2(g1,1−g1,2)+ε1(g2,2−g1,2)

(ε1−ε2)2 ,

F12 =
2g1,2−g1,1−g2,2

2(ε1−ε2)2 , F0 =
2g1,2(ε21+ε22)−2ε1ε2(g1,1+g2,2)

(ε1−ε2)2 , (63)

the polynomial B(x, k) of degree 3 is given as

B(x, k)/A(x)

=
2

x2F12 + x (F1 + F2) + F0

(
2∑
t=1

α
(1)
t + α

(2)
t x

2εt − x
− (F1 + F12 x) (k − 1)− 1

)
, (64)

where

α
(1)
1 =

(ε1g1,1−ε2g1,2)(Ω1−ν1)
ε1−ε2 , α

(2)
1 =

(g1,2−g1,1)(Ω1−ν1)
2ε1−2ε2

,

α
(1)
2 =

(ε1g1,2−ε2g2,2)(Ω2−ν2)
ε1−ε2 , α

(2)
2 =

(g2,2−g1,2)(Ω2−ν2)
2ε1−2ε2

. (65)
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Table 3. Excited level energies E(ξ) (in MeV) of the NSPM and the overlap-square η(ξ) =
|〈ξ|ξ〉SP|2 of the pairing excited states with the corresponding ones of the SPM for k = 5 pairs
over j1 = 19/2 and j2 = 21/2 orbits with single-particle energies ε1 = 1 MeV, ε2 = 2 MeV,
and g1,1 = g2,2 = 1 MeV, where g1,2 = g, and δg = g − g1,1 (in MeV). The overall pairing
strength in the SPM is adjusted to reproduce the same ground-state energy of the NSPM
for each case, with which the corresponding overlap η(ξ) is obtained.

0+
1 0+

2 0+
3 0+

4 0+
5 0+

6

δg = −0.50 E(ζ) −48.95 −36.66 −26.23 −17.30 −9.90 −4.96
η(ζ) 99.600% 98.989% 97.968% 96.600% 95.370% 94.548%

δg = −0.25 E(ζ) −59.35 −42.61 −28.02 −15.10 −3.86 4.93
η(ζ) 99.949% 99.870% 99.756% 99.653% 99.714% 99.714%

δg = 0.25 E(ζ) −80.28 −54.81 −31.93 −10.96 8.34 25.66
η(ζ) 99.977% 99.946% 99.905% 99.883% 99.9287% 99.929%

δg = 0.50 E(ζ) −90.78 −60.98 −33.94 −8.91 14.49 36.12
η(ζ) 99.934% 99.842% 99.728% 99.674% 99.806% 99.818%

To demonstrate the use of the solution, the validity of the SPM was analyzed. We
consider 5 pairs in the NSPM with ε1 = 1 MeV and ε2 = 2 MeV, j1 = 19/2 and j2 =
21/2, with which each orbit can accommodate 5 pairs. The on-site pairing interaction
parameters g1,1 = g2,2 = 1 MeV are fixed. We calculated the pair excitation energies
of the NSPM for serval values of g1,2 = g, which are presented in Table 3. Then,
the overall pairing interaction strength of the SPM is adjusted according to the
ground-state energy of the NSPM for each case. Though pairing excitation energies
of the SPM are about 2 MeV different from the corresponding ones of the NSPM,
as shown in Table 3, the overlap-square of the NSPM with the corresponding one
of the SPM, η(ξ) = |〈ξ|ξ〉SPM|2, is always greater than 94% calculated in this way,
where |ξ〉 ≡ |ξ, k = 5; 0 0〉 is obtained according to (16) for each case, while |ξ〉SPM

is the corresponding eigen-state of the SPM. The results of the overlaps show that
the SPM seem a good approximation to the NSPM. In fact, with the increasing of
the pairing interaction strength g of nucleon pairs from different orbits, the system
undergoes a phase crossover from localized normal phase mainly determined by the
pure mean-field and the on-site pairing interaction strengths gt,t (t = 1, 2) among
nucleon pairs within the same orbits to the delocalized superconducting phase, for
which there are a few effective order parameters. Here we calculate the occupation
probability of nucleon pairs in the j1 orbit at the ξth excited state defined by

ρ(j1, ξ) =
1

k
〈ξ|S+

j1

∂

∂S+
j1

|ξ〉 (66)

for ξ = 1 and ξ = 2. As clearly shown in Figure 2, the ground-state (the first excited
state) occupation probability of the NSPM decreases (increases) with the increasing
of g noticeably around g ∼ 0.05–0.1 MeV, and there is a crossing point around g ∼
0.21 MeV. However, the occupation probability of the ground-state is always a little
smaller than that of the first excited state in the SPM, which is opposite to the result
of the NSPM when g is smaller than the value of the crossing point. They gradually
decrease with the increasing of g with the overall pairing interaction strength fitted to
the ground-state energy of the NSPM, and become close to those of the NSPM in the
strong g limit. Therefore, the SPM is a good approximation to the NSPM only when
the pairing interaction among nucleon pairs in different orbits is sufficiently strong.
Nevertheless, the SPM cannot account for the actual quantum phase crossover when
the pairing interaction strengths of different orbits are relatively weaker and differ
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Fig. 2. The occupation probability of nucleon pairs in the j1-orbit at the ξth excited state
for ξ = 1 and ξ = 2 as a function of g12 = g (in MeV) with other model parameters the same
as those shown in the caption of Table 3, where the solid curve represents the occupation
probability at the ground state (ξ = 1) of the NSPM, the dashed curve is that of the first
excited state (ξ = 2) of the NSPM, and the dotted lines from bottom (Red) to the top (Blue)
are that of the ground-state and the first excited state, respectively, in the SPM.

from those of the same orbits as required, for example, in the ds-shell nuclei [60].
Moreover, the on-site pairing interaction strengths gt,t can also change the actual
ordering of the single-particle energies. For example, when g2,2 is sufficiently greater
than g1,1, the ground state of the system may be dominated by the nucleon pairs of the
j2-orbit though ε2 is greater than ε1, which may be used to elucidate the inversion of
the single-particle energy ordering of a shell model. Obviously, these phase transition
associated issues cannot be described by the SPM, for which the NSPM should be
adopted. Moreover, as shown in [62], in the general orbit-dependent pairing model
[16,63], the overlaps between the exact and variationally optimized eigenstates are
also large, which is in line with the observation shown above.

2.5 Deformed mean-field plus nearest level pairing

Within the deformed mean field, there are several types of pairing interactions that
can be solved exactly. The nearest-level pairing interaction is inspired by the level-
dependent Gaussian-type pairing interaction with [64]

Gii′ = −GNLe
−B(εi−εi′ )

2

, (67)

where {εi} are a set of deformed single-particle energies concerned, B = 1
2d with

d =
∑
i,i′(εi − εi′)2/(p(p − 1)) according to the Gaussian distribution of deformed

single-particle level energies, in which p is the total number of the levels involved. As
an approximation, this pairing interaction was further simplified to the nearest-level
coupling [36], namely,

Gii = −GNL, Gii+1 = Gi+1i = −GNLe
−B(εi−εi+1)2

, (68)

where GNL > 0 is a real parameter, and Gii′ are taken to be 0 otherwise. Hence,
the deformed mean-field plus the nearest-level pairing (NLP) Hamiltonian can be
expressed as [36]

ĤNLP =
r∑
ρ=1

εqρ n̂qρ +
∑
i,i′

′
tii′b

†
i bi′ , (69)
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where tii = 2εi +Gii = 2εi −GNL and tii+1 = ti+1i = Gii+1 with tii′ = 0 otherwise,

b†i = a†ia
†
ī
, bi = aīai, (70)

where a†i is the ith level single-particle creation operator in the deformed basis, such

as that of the Nilsson model, and a†
ī

the corresponding time-reversed state. The b†i
and bi satisfy the following commutation relations:

[bi, b
†
j ] = δij(1− 2Ni), [Ni, b

†
j ] = δijb

†
j , [Ni, bj ] = −δijbj , (71)

whereNi = 1
2 (a†iai+a†

ī
aī) is the pair number operator in the ith level. The eigenstates

of (69) for k -pair excitation can be expressed as [36]

|k; ξ, nq1 , nq2 , . . . , nqr 〉

=
∑′

i1<i2···<ik
C

(ξ)
i1i2···ikb

†
i1
b†i2 · · · b

†
ik
|nq1 , nq2 , . . . , nqr 〉, (72)

where n = 2k +
∑r
ρ=1 nqρ is the total number of the system, q1, q2, . . . , qr are the

levels occupied by r single particles, the prime indicates that i1, i2, . . . , ik cannot
be taken to be q1, q2, . . . , qr in the summation, and nqρ = 1 (ρ = 1, 2, . . . , r). If
only even–even and odd-A nuclei are treated without including broken-pair cases, r
is taken to be 1 for odd-A nuclei, and 0 for even–even nuclei. In (72), The expansion

coefficient C
(ξ)
i1i2...ik

is a determinant given by

C
(ξ)
i1i2...ik

=

∣∣∣∣∣∣∣∣
gξ1ii gξ1i2 · · · gξ1ik
gξ2ii gξ2i2 · · · gξ2ik
· · · · · · · · · · · ·
gξkii gξki2 · · · gξkik

∣∣∣∣∣∣∣∣ , (73)

where ξ = {ξi} is a selected set of k eigenvalues of the t matrix without the corre-
sponding r rows and columns, denoted as t̃, which can be used to distinguish the
eigenstates with the same number of pairs, k, gξµ is the µth eigenvector of the t̃
matrix, and E(ξµ) is the µth eigenvalue of the t̃-matrix, that is∑

i′

t̃ii′g
ξµ
i′ = E(ξµ)g

ξµ
i . (74)

Then, the excitation energies corresponding to (72) can be expressed as

E
(ξ)
k =

r∑
ρ=1

εqρ +
k∑
i=1

E(ξi) (75)

where the first sum runs over r Nilsson levels each occupied by a single valence
nucleon, which occurs in odd-A nuclei or in broken-pair cases, the second one is a
sum of k different eigenvalues of the t̃-matrix. Obviously, t̃ is a (p−r)× (p−r) matrix,
since those levels occupied by single valence nucleons are excluded resulting from the
Pauli blocking. For even–even nuclei, the k-pair excitation energies are determined
by the sum of k different eigenvalues chosen from the p eigenvalues of the t̃ matrix
with r = 0, the total number of excited levels is p!/k!(p− k)!. While for odd-A nuclei
or broken-pair cases, the Nilsson level that is occupied by the single valence nucleon
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should be excluded in the original t matrix. In the latter case, the eigenvalue problem
of (69) can be solved simply by diagonalizing the corresponding t̃ matrix as shown in
(74) with the eigenstates and the corresponding eigen-energy given by (72) and (75),
respectively.

Many ground-state quantities, such as binding energy, the even–odd mass differ-
ence, and the moment of inertia, etc. were calculated [37,38]. The binding energy of
a nuclear system in the model is given by [42]

E = E(core) + E(ν) + E(π), (76)

where E(core) is the binding energy of the core, taken to be a constant, and E(ν) and
E(π) are the ground state energy of the NLP of the neutron and the proton sector,
respectively, calculated from (75). Then, the even–odd mass difference defined by

P (Z,N) = E(Z,N + 1) + E(Z,N − 1)− 2E(Z,N), (77)

where E(Z,N) is the binding energy of a nucleus with proton number Z and neu-
tron number N shown in (76), were calculated. Figure 3 shows the even–odd mass
differences (77) of 157−171Er, 159−174Yb, 223−235Th, and 226−239U calculated by using
the NLP and compared with the corresponding experimental data, with which the
pairing strength GNL for each nucleus was thus fixed. Once the pairing strength GNL

for each nucleus is determined, the NLP results are used to calculate the moment of
inertia of the first 2+ state of the even–even nuclei defined by =exp = 3~2/E(2+

1 ),
where E(2+

1 ) is experimentally observed excitation energy of the first 2+ state,
and =exp = ~2(2Ω + 3)/E(Ω + 2), where Ω is the ground-state bandhead spin with
Ω 6= 1/2, for the odd-A nuclei [42], according to the Inglis cranking formula [65]

=th = 2~2
∑
ξ

|〈k; ξ|Jx′ |k; ξ = 1〉|2

E
(ξ)
k − E

(1)
k

, (78)

where Jx′ is total angular momentum projected onto the x′ axis of the intrinsic frame,
|k; ξ = 1〉 and |ξ 6= 1〉 stand for ground and excited state calculated from the NLP,
and the sum should run over all excited states with broken pairs. Since excitation
energies with more than one broken pair are higher and contribute much less to the
moment of inertia according to (78), only one broken pair states are considered in
the calculation. It can be observed from Figure 4 that the moments of inertia of
these nuclei calculated from the NLP is very close to the corresponding experimental
values.

2.6 Deformed mean-field plus extended pairing

Based on the SPM, an extended pairing model for deformed nuclei was constructed
with the Hamiltonian given by [39]

Ĥ =

p∑
i=1

εini −Gex

p∑
i,i′=1

b†i bi′

−Gex

∞∑
µ=2

1

(µ!)2

∑
i1 6=i2 6=···6=i2µ

b†i1b
†
i2
· · · b†iµbiµ+1

biµ+2
· · · bi2µ , (79)
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Fig. 3. The binding energies E (in MeV) and the even–odd mass difference P (in MeV) of
157−171Er, 159−174Yb, 223−235Th, and 226−239U fitted by the NLP (th.) and compared with
the corresponding experimental data (exp.) taken from [66].

Fig. 4. Theoretical and experimentally deduced values related to the moment of iner-
tia 2=th/~2 [in (MeV)−1] for 157−171Er, 159−174Yb, 223−235Th, and 226−239U, where “th.”
denotes theoretical results obtained from the NLP, “nil.” denotes theoretical results obtained
in the Nilsson mean field without pairing interaction for comparison, and the values denoted
by “exp.” are extracted from the experimental spectra of these nuclei [66], where A is the
mass number.

where Gex > 0 is the overall pairing strength. Besides the Nilsson mean-field and the
standard pairing interaction, the Hamiltonian (79) also includes many-pair hopping
terms that allow nucleon pairs to simultaneously scatter (hop) between and among
different Nilsson levels, which is thus simply exactly solvable. Due to the Pauli exclu-
sion, the infinite sum in (79) naturally truncates, namely, µ ≤ [p/2], where [x] denotes
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the integer part of x. It is also clear that each term of the form b†i · · · b
†
i′ and bl · · · bl′

that enter into the eigenstates of (79) should have different indices i 6= · · · 6= i′ and
l 6= · · · 6= l′.

Let |j1, . . . , jm〉 be the pairing vacuum state that satisfies

bi|j1, . . . , jm〉 = 0 (80)

for 1 ≤ i ≤ p, where each of them levels, j1, j2, . . . , jm, is occupied by a single nucleon.
The k-pair eigenstates of (79) can be written as [39]

|k; ξ; j1, . . . , jm〉 =
∑

1≤i1<i2<···<ik≤p Λ
(ξ)
i1i2···ikb

+
i1
b+i2 · · · b

+
ik
|j1, . . . , jm〉, (81)

where Λ
(ξ)
i1i2···ik is the expansion coefficient with

Λ
(ξ)
i1i2···ik =

1

1− x(ξ)
∑k
µ=1 εiµ

, (82)

where, similar to the results given in the Bethe ansatz approach, x(ξ) should satisfy

2

x(ξ)
+

∑
1≤i1<i2<···<ik≤p

Gex

1− x(ξ)
∑k
µ=1 εiµ

= 0. (83)

The corresponding k-pair excitation energies are given by

E
(ξ)
k =

2

x(ξ)
−Gex(k − 1). (84)

If only the first few eigenstates are considered, the pair structure of the eigenstates
in the extended pairing model and the standard pairing model are similar, especially
in the ground state. For k-pair excitations, Gex in the extended pairing model and the
parameter G in the standard pairing Hamiltonian (3) in the deformed basis satisfy
the relation [40]

Gex = ((p− k)!k!(p− k + 1)k/p!)G. (85)

Therefore, Gex is very small in comparison to the standard pairing strength G. Once
the overall pairing strength G is fixed, and the parameter Gex is chosen according
to (85), it is easy to show that the difference between the ground-state energy of the

extended model, E
(g)
k (ex), and that of the standard pairing model in the first step

approximation, E
(g)
k , is given by

E
(g)
k (ex)− E(g)

k = −(k − 1)Gex, (86)

which shows that the extended pairing interaction contributes a little more attraction
among valence pairs than the standard pairing interaction. Since Gex decreases dras-
tically with increasing of k toward the half-filling, the ground sate energy difference
of the two Hamiltonians becomes negligible with increasing number of pairs k.

Since the extended pairing model can be solved exactly with a single one variable
equation (83), which is simpler than the Richardson-Gaudin equations with k vari-
ables shown in (11) for the standard pairing Hamiltonian in the deformed basis, the
extended pairing model can be applied to relatively large systems, especially when
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Table 4. The first pairing excitation energy (in MeV) of 156−164Er, 160−165Yb, and
166−168Hf, where only excited energies with K = 0 for even–even nuclei and K = Ω for
odd-A nuclei can be estimated from the model, the values in the Eth and Eexp columns are
the calculated pairing excitation energies and the corresponding experimental values taken
from [66], respectively, and the energies not experimentally available are marked by “–”.

Nucleus A Spin and parity Eexp Eth

156−164Er 156 0+
2 0.930 1.360

157 3
2

−
2

0.110 0.444

158 0+
2 0.806 0.886

159 3
2

−
2

– 0.231

160 0+
2 0.894 0.476

161 3
2

−
2

0.725 0.375

162 0+
2 1.087 1.264

163 5
2

−
2

0.164 0.359

164 0+
2 1.246 1.870

160−165Yb 160 0+
2 1.086 0.791

161 3
2

−
2

0.211 0.386

162 0+
2 0.606 0.487

163 3
2

−
2

0.871 0.559

164 0+
2 0.976 0.325

165 5
2

−
2

0.174 0.190

166−168Hf 166 02
+ 0.695 0.387

167 5
2

−
2

– 0.106

168 0+
2 0.942 1.298

only ground state and a few low-lying eigenstates, together with the corresponding
eigenenergies, need to be considered. Table 4 shows the first pairing excitation energy
of 156−164Er, 160−165Yb, and 166−168Hf calculated from the extended pairing model
after the pairing strength Gex for each nucleus fitted according to the even–odd mass
differences [42]. Moreover, the energy ratio R0+

2 /2
+
1

= (E0+
2
− E0+

g
)/(E2+

1
−E0+

g
) used

to describe the evolution from vibrational to rotational shape (phase) crossover of
even–even 156−164Er and 158−164Yb was also calculated [43], of which the results are
shown in Figure 5.

To further explore the nature of the crossover behavior in the present model,
the information (Shannon) entropy which seems suitable to reveal the crossover due
to pairing interaction was also calculated [42,43]. The information entropy measures
the correlations among the mean-field single-pair product states with k pairs in the
ground state |g〉 ≡ |k; ξ = 1〉 of the model, and is defined as

IH(|g〉) = −
d∑
i=1

|wi|2 logd(|wi|2), (87)

where {wi} are the expansion coefficients of |g〉 in terms of the mean-field single-pair
product states, and d is the dimension of the space spanned by all possible single-pair
product states, namely, k pairs distributed over the p levels of the Nilsson mean-field.
The information entropy IH varies within the closed interval [0, 1]. IH = 0 corresponds
to the ground state without the pairing interaction among valence nucleons. In this
case, all valence nucleons are in the localized normal state. While IH = 1 corresponds
to the phase, in which the pairing interaction is extremely strong leading the ground
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Fig. 5. The energy ratio R
0+
2 /2

+
1

= (E
0+
2
− E

0+
g

)/(E
2+
1
− E

0+
g

) of even–even 156−164Er and
160−164Yb as functions of neutron number N . Experimental values are denoted as “Exp.”,
which are taken from [66], and the values calculated from the extended pairing model are
denoted as “Th.”.

state to be a valence nucleon pair condensate, which is referred to as the delocalized
superconducting phase. Obviously, the variation of IH as a function of the pairing
interaction strength Gex for a given value of the deformation parameter sketches the
evolution from the localized normal phase towards the delocalized superconducting
phase. As shown in [43], IH calculated from the extended pairing model indicates
that the system undergoes the crossover from the localized normal phase with
Gex = 0 and IH = 0 to the delocalized superconducting (pair condensate) phase
with sufficiently large Gex and IH ∼ 1. Furthermore, there is also a noticeable change
in the information entropy around Gex ∼ 0.0078 – 0.012 MeV, which corresponds to
the region where R0+

2 /2
+
1

exhibits significant change around neutron number N = 90

shown in Figure 5.

3 Shape phase transitions in the IBM

As is well-known, the simple consistent-Q formulism can be used to characterize all
situations of transitional patterns in the IBM if only one- and two-body interactions
are taken into consideration. The consistent-Q Hamiltonian can be written as [46–48]

Ĥ = c

(
η n̂d +

η − 1

4N
Q̂(ζ) · Q̂(ζ)

)
, (88)

where N is the total number of bosons in a system, Q̂(ζ) = s†d̃+ d†s̃+ ζ(d†× d̃)(2) is

the quadrupole operator, c > 0, 0 ≤ η ≤ 1, and −
√

7/2 ≤ ζ ≤
√

7/2 are real parame-
ters. In Figure 6, the U(5) spherical shape (phase) corresponds to η = 1 case, the O(6)
γ-soft shape (phase) corresponds to η = 0 and ζ = 0, the SU(3) prolate shape (phase)

corresponds to η = 0 and ζ = −
√

7/2, the SU(3) oblate shape (phase) corresponds

to η = 0 and ζ =
√

7/2, respectively, and the E(5) and the X(5) or X(5) correspond
to the critical symmetry points determined by the special Bohr Hamiltonian [67,68].
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Fig. 6. An illustration of the extended Casten triangle.

Fig. 7. 0+
g ground-state energy E0/c as function of η and ζ for large N .

Figure 7 shows the 0+
g ground-state energy E0/c as function of η and ζ for N = 40

bosons [69]. It can be observed from Figure 7 that the surface is symmetric with ζ
reflection: ζ ←→ −ζ, and is divided into three regions: a spherical (S) region with
η > 0.5, a prolate (P) region with η < 0.5 and ζ < 0, and an oblate (O) region with
η < 0.5 and ζ > 0. The intersection or crossing point of the lines that divide these
regions is exactly the triple point corresponding to the E(5) symmetry of a special
Bohr Hamiltonian that describes the S, P, and O phases as existing simultaneously
[70]. The dividing line between adjacent regions is rather vaguely defined for small
values of N , but with increasing N it becomes sharper and sharper. Along these
lines there is a rather narrow band where the respective shapes coexist (two-phase
configurations) for small values of N . These bands of coexisting shapes grow narrower
and narrower with increasing N . The 0+

g ground-state energy E0/c surface within
these regions and the respective dividing lines are characterized in Figure 7, which
agrees with the fact that the O-P, S-P, and S-O are all first order quantum phase
transitions. The fact that there is a band of two-phase configurations along the lines
dividing the regions appears to be a finite N effect; that is, the larger the N the
narrower the band and the sharper the transition. These typical shape phases can be
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Table 5. Low-lying yrast level energy ratios from the CQ-Hamiltonian in various limits.

U(5) X(5) SU(3)

η = 1 η ∼ 0.5, ζ = −
√

7/2 η = 0, ζ = −
√

7/2
E41/E21 2.00 2.91 3.33
E61/E21 3.00 5.43 7.00

U(5) E(5) O(6)
η = 1 η ∼ 0.5, ζ = 0 η = 0, ζ = 0

E41/E21 2.00 2.20 2.50
E61/E21 3.00 3.59 4.50

identified from the classical limit of the IBM by using the coherent state formulism
[71–73].

Another quantity of the ground state is the two-neutron separation energy S(2n)
defined by S(2n) = −[E0(N − 1)−E0(N)], where E0(N) is the ground-state energy
with N bosons. In the finite-N case, S(2n) may be written as a smooth contribution
linear with the boson number N plus contribution from the deformation

S(2n) = −A−BN + S(2n)def , (89)

where A and B are free parameters, of which the deformation part S(2n)def is related
to the derivative ∂E0

∂η of the ground-state energy E0 with respect to the control

parameter η, and can be calculated in the classical limit with the coherent state
formulism. An example is shown on the U(5)-SU(3) leg for some even–even Sm and
Gd isotopes [74].

Besides the quantities of the ground state, more quantities related to some low-
lying excited states are also useful to reveal the nature of quantum shape (phase)
transitions in nuclei. For example, the first two energy ratios E41

/E21
and E61

/E21

in the yrast band shown in Table 5, which are of typical values in the vibrational
U(5), the rotational SU(3), the γ-unstable O(6) limit, and very close to the values
of the E(5) or the X(5) critical symmetry point [67,68]. Electric quadrupole moment
Q(2+

1 ) and some B(E2) or B(E2) ratios, where the E2 operator is taken simply as

T̂ (E2) = q2Q̂(ζ) (90)

can also be adopted as an order parameter to measure the shape (phase) transitions.
For example, as shown in Figure 8, Q(2+

1 ) < 0 in the prolate (SU(3) limit) case,
Q(2+

1 ) = 0 in the γ soft (O(6) limit) or spherical (U(5) limit) cases, and Q(2+
1 ) > 0 in

the oblate (SU(3) limit) case. These results are consistent with the early observations
made in [75,76]. Figure 9 shows B(E2; 2+

1 −→ 0+
1 )/q2

2 as a function of η and ζ in the
extended Casten triangle

The isomer shift defined by

δ〈r2〉 = α0

(
〈2+

1 ; η, ζ|n̂d|2+
1 ; η, ζ〉 − 〈0+

g ; η, ζ|n̂d|0+
g ; η, ζ〉

)
, (91)

where α0 is a constant, is also sensitive to the transitions, which is used to define
[77–79] the second order parameter ν2 = δ〈r2〉/(α0N). Figure 10 displays the isomer
shift in the extended Casten triangle.

In addition to the analysis of ground state properties in the extended Casten
triangle, we found that the quantum phase transition behavior can also be observed
in some excited states with the same angular momentum when η and ζ assume special
values. Here, we only focus on 0+

2 and 0+
3 level crossing−repulsion transition occurring
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Fig. 8. Q(2+
1 ) in the unit of q2 in the extended Casten triangle for N = 5 (a), N = 10 (b),

and N = 26 (c), respectively.

Fig. 9. B(E2; 2+
1 −→ 0+

1 )/q2
2 as a function of η and ζ in the extended Casten triangle, where

(a) N = 5, (b) N = 10, and (c) N = 26.

Fig. 10. The isomer shift ν2 = δ〈r2〉/α0N as a function of ζ and η in the extended Casten
triangle for N = 5 (a), N = 10 (b), and N = 26 (c), respectively.

near η = 0.3 due to a change in the ζ parameter [69]. As is clearly shown on the left
panel of Figure 11, there is a level crossing point near η = 0.3 when ζ is exactly
zero, while it becomes level repulsion when ζ < 0. The left panel of Figure 11 only
shows level repulsion curves with ζ = −0.1. Therefore, there is a clear N independent
quantum phase transition when ζ changes from ζ = 0 to ζ < 0. Such a quantum phase
transition can also be observed from the B(E2) values associated with these two levels.
The right panel of Figure 11 shows the ratios B(E2; 0+

2 → 2+
1 )/B(E2; 2+

1 → 0+
g ) and

B(E2; 0+
3 → 2+

1 )/B(E2; 2+
1 → 0+

g ) varying with η when ζ = 0 and ζ = −0.1. As can
be seen, there is a clear crossing point near η = 0.18 when ζ = 0, while there is
no crossing when ζ = −0.1. Though these ratio changes near the critical region are
rather small, they can be observed for some transitional nuclei [79].

It is also shown that two-particle transfer intensities may also provide a sensitive
order parameter for the shape phase transitions [80–82]. For example, the transfer
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Fig. 11. The 0+
2 and 0+

3 level crossing−repulsion transition (left) and B(E2; 0+
2 → 2+

1 )/
B(E2; 2+

1 → 0+
g ) and B(E2; 0+

3 → 2+
1 )/B(E2; 2+

1 → 0+
g ) as functions of η when ζ = 0, ζ =

−0.1 (right) with N = 10 bosons.

intensities defined as

I(N + 1, 0+
1 → N, 0+

1 ) = |〈N, 0+
1 |s|N + 1, 0+

1 〉|2,
I(N + 1, 0+

1 → N, 2+
1 ) = |〈N, 2+

1 |d0|N + 1, 0+
1 〉|2,

I(N + 1, 0+
1 → N, 0+

2 ) = |〈N, 0+
2 |s|N + 1, 0+

1 〉|2 (92)

indeed reflect the shape phase transition in some even–even Sm and Gd isotopes [81].

4 Summary

Recent advances in the Bethe–Richardson–Gaudin approach to various types of pair-
ing interaction, such as the spherical mean-field plus a special separable or special
non-separable pairing models, deformed mean-field plus nearest level pairing, and
deformed mean-field plus extended pairing models are presented with applications
to describe ground-state properties and some low-lying excitations in nuclei. Based
on the Bethe–Gaudin–Richardson method, the exact solution of the standard pairing
model and an effective polynomial approach to the solution are outlined. It is shown
the Bethe–Gaudin–Richarson method can be generalized and extended to solve a
large class of pairing problems. Exact solutions of the special separable and nonsep-
arable pairing problems are examples of the extension. Since the pairing interaction
among valence nucleons confined in a mean-field, in general, are orbit dependent, it
is obvious that the special separable and nonseparable pairing interactions should be
closer to the actual situations in nuclei as clearly shown in the analysis of the two-j
orbit case in Section 2.4. When more levels are considered, such as in the deformed
mean-field case, a general level-dependent pairing interaction is not practically avail-
able. It is shown that the nearest-level pairing and the extended pairing models can
be solved more efficiently than the standard pairing model with similar fitting qual-
ity to the experimental data. Finally, the shape phase transitions in the interacting
boson model described by the consistent-Q form with many effective order parameters
(observables) to quantify the transitions are summarized.
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