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Abstract. Using the developed sharp-interface model of solidification
we quantitatively estimate influence of tiny amount of impurity and
forced convection on kinetics of dendritic growth. As tested systems,
we choose Ni and Ni–Zr dendrites which are growing into a stagnant
undercooled melt, the melt with incoming forced flow and with/without
impurity (that is small amount of Zr diluted in a pure Ni). The model
predictions and comparisons allow us to quantitatively estimate pre-
dominant influence of impurity (chemical segregation), thermal influ-
ence (due to temperature inhomogeneity) and hydrodynamic effects
(due to investigated laminar and forced melt flow) on the dendrite
growth kinetics.

1 Introduction

Small amounts of impurity and convective flow may drastically influence on the
growth kinetics of crystals [1,2]. It has been shown in a number of experimental and
computational works. For instance, small amounts of impurities on the level of 0.01
at. % may lead to an enhancement of the growth velocity in the range of small and
intermediate undercoolings [3–7] and the convective flow may have an influence pure
Ni and Ti as well as on the alloying systems such as Ni–Al, Ni–Cu, Ti–Al, Ni–Zr
solidifying under terrestrial conditions, in microgravity and under the influence of
external fields [8–20].

On the basis of these investigations, it was suggested that the solute effect shows
a different temperature characteristics than the transport effect by fluid flow, which
makes it possible to discriminate between both these effects by investigating the den-
dritic growth velocity as a function of undercooling [4–7,10]. In the present work we test
this idea using the sharp interface modeling of dendritic solidification (for the model
development, see Refs. [16,17], literature references there and supplementary materi-
als). To see the predominant influence of flow and/or impurity we compare results of
modeling for solidification of Ni and Ni–Zr alloys in a wide range of undercooling.
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2 Governing equations

The growth of a parabolic needle-like dendrite in a binary undercooled liquid in local
non-equilibrium conditions can be described by the stable dendrite growth model
provided in [16]. We consider the atomic diffusion in the solid phase to be negligible.
The concentration field in the liquid is governed by the following mass transport
equation

τD
∂2Cl
∂t2

+
∂Cl
∂t

+ (w · ∇)Cl = DC∇2Cl, (1)

where Cl is the solute concentration in the liquid, w is the flow velocity, DC is the
diffusion coefficient of the solute, t is the time and τD is the relaxation time of the
diffusion flux to its steady state.

The mass transport can be described by the hyperbolic equation (1) which includes
the finite value of the diffusion speed VD = (DC/τD)1/2, the evolution of the tem-
perature field is described by a parabolic equation which assumes an infinite speed
for the heat propagation.

Designating Tl and Ts as temperatures in the liquid and solid phases, one can
write

∂Tl
∂t

+ (w · ∇)Cl = DT∇2Tl,
∂Ts
∂t

= DT∇2Ts, (2)

where DT stands for the thermal diffusivity.
At the dendritic interface, conservation of mass and energy yields boundary con-

ditions of the form

τD
∂

∂t
[(Cl − Cs)v · n] + (Cl − Cs)v · n +DC∇Cl · n = 0, (3)

TQv · n = DT (∇Ts −∇Tl) · n, (4)

where n is the unit vector normal to the dendrite interface, v is the interface velocity,
Cs = kvCl is the concentration in the solid phase at the dendritic interface, kv is the
velocity dependent solute distribution coefficient, TQ = Q/cp, Q is the latent heat
released per unit volume of solidified matter and cp is the heat capacity.

The temperature at the dendrite interface Ti = Tl;i = Ts;i is connected to the
crystallization temperature T0 of the pure liquid, the local curvature 2/R of the front,
the liquid concentration Cl, and the intensity of atomic flux providing the normal
growth velocity (v · n) = vn by

Ti = T0 +mvCl −Qc−1
p 2R−1d(θ)− β̃(θ)vn. (5)

Here θ is the angle between the normal to the dendrite interface and its preferred
growth direction (e.g., 〈001〉 directions for cubic crystals), β̃ is the anisotropic coef-
ficient of growth, d(θ) is the anisotropic capillary length, and mv is the velocity-
dependent liquidus line slope in the kinetic phase diagram of a binary system.

Anisotropic properties of the interface, such as surface energy, depend on the
spherical angles which define the orientation of the normal to the dendrite interface
to its growth direction. Considering a case of axisymmetric needle-like crystal one can
apply averaging over one spherical angle and essentially simplify analytical form of the
anisotropic properties of the crystal-liquid interface [21]. As a result of such averaging
for the cubic crystal symmetry, the capillary length d(θ) and kinetic coefficient β̃(θ)
are represented as

d(θ) = d0 {1− αd cos [4 (θ − θd)]} , (6)

β̃(θ) = β0Qc
−1
p {1− αβ cos [4 (θ − θβ)]} , (7)
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where d0 and β0 are the capillary and kinetic constants, αd � 1 and αβ � 1 are the
anisotropy parameters whereas θd and θβ represent the angles between the direction
of growth and the preferred growth directions, which correspond to the minima of
d(θ) and β(θ).

Far from the dendritic surface the solute concentration, the temperature and the
flow velocity in the liquid are fixed, i.e.

Cl = C∞, Tl = T∞, |w| = U, (8)

where U being the characteristic flow velocity far from the dendrite. A family of exact
solutions of the hydrodynamic problem can be found in two cases when the fluid flow
is potential or of Oseen type. Here, the more realistic case of viscous flow described
by the so-called Oseen and mass conservation equations is considered:

U
∂w
∂z

= − 1
ρ`
∇p+ ν∇2w, ∇ ·w = 0, (9)

where z is the direction of dendritic growth, ρ` is the liquid density and ν is the
kinematic viscosity. Equation (9) should be solved with no-slip boundary conditions
for the fluid velocity.

The system of equations (1)–(9) couples the concentration and the thermal prob-
lem and describes the growth of a parabolic dendrite under local non-equilibrium
conditions. It extends the previous problem considered by Ben Amar and Péclet [22]
for anisotropic dendrite growth under local equilibrium conditions, generalizes the
study of [11] for sufficiently large growth rates in the local equilibrium limit, and,
finally, advances the isotropic description [23,24] of the local non-equilibrium dendrite
growth.

3 Selection criterion

Consider the steady state tip of a needle-like dendrite with radius R propagating
with constant velocity vn = V and having the tip concentration the liquid phase as
Cl = Ci. The selection criterion for the steady state dendritic growth can be found
by the combination of previously obtained solutions, which describe the anisotropic
dendrite growing in the presence of convective flow [13] and the local non-equilibrium
dendritic growth in rapid solidification processes without convection [25].

In searching and sewing the criteria, we have assumed that the final selection
criterion σ∗ must have the scaling σ∗ ∝ βn with the same exponent n and the same
general form [21] if the anisotropy for three dimensional or two dimensional spaces
are taken into account [25]. An existence of the same scalings in these cases has been
shown in [26,27] in which a difference consists only in a constant of proportionality
for the scaling σ∗ ∝ βn. Therefore, in the present selection criterion σ∗ we shall use
the case of simplest form of anisotropy given by (6) and (7) under the assumption
that the final scaling might be applied to the three dimensional case of dendrite
growth. As a result, the selection criterion for the thermo-solutal dendritic growth in
non-isothermal binary mixture with convection can be expressed as

σ∗ =
2d0DT

R2V
≡ d0V

2DTP 2
T

=
σ0α

7/4
d

1 + b
(
ᾱ/α

3/4
d

)11/14

{
1[

1 + a1
√
αdPTΛT

]2
+

2(1− kv)mvCiDTC

TQ
[
1 + a2

√
αdP ∗CDΛC

]2 [1 + χ

(
1− 1√

1−W 2

)]2}
, (10)
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where all functions and parameters are given in Table 1 and in [13], in particular,
the thermal Péclet number PT , chemical Péclet number PCD, flow Péclet number
Pf , and Reynolds number Re are defined by

PT =
RV

2DT
, P ∗CD =

PCD√
1−W 2

, PCD =
RV

2DC
,

Pf =
RU

2DT
, Re =

RU

ν
, (11)

with the velocity dependent functions and parameters

a(Re) =
exp(−Re/2)

E1(Re/2)
, W =

V

VD
, ᾱ = (1 + 2DTC)

a(Re)Ud0

4RV P
,

P = 1 +
2mvCi(1− kv)DTC

TQ
, P0 = Pf + PT , (12)

and the concentration dependent functions

Ci =
C∞

1− (1− kv)PCDIC exp (P0DTC)
,

IC =

∞∫
1

exp

2PfDTC

η′∫
1

g(η′′)√
η′′

dη′′ − P0DTCη
′

 dη′
η′
,

g(η) =
√
ηE1(Re η/2)
2E1(Re/2)

+
exp(−Re/2)− exp(−Re η/2)

√
ηReE1(Re/2)

,

E1(q) =

∞∫
q

exp(−u)
u

du, (13)

and parameters

DTC =
DT

DC
, a1 =

a2√
2
, a2 =

(
16σ0

7

)1/2( 3
56

)3/8

,

χ2 =
4
7

(
3
56

)3/4

α
−3/4
d , ΛT = 1 +

δ0DTβ0

d0
, ΛC = 1 +

δ0DCβ0

d0CD
,

δ0 = 20

√
7
24

(
56
3

)3/8

, d0CD =
TQd0

2meCi(1− ke)
· (14)

Note that the anisotropy of growth kinetics αβ does not enter in the selection crite-
rion (10). This is due to the fact that terms with αβ contain terms of higher order
(and therefore with smaller values) than the terms taken into account in the linear
instability analysis carried out in [13].

Equation (10) contains previously known criteria of the following limiting cases.
First, in the absence of convection (U = 0, ᾱ = 0) and solute concentration (Ci = 0)
this criterion transforms to the well-known expression σ∗ = σ0α

7/4
d derived for the

first time by Langer, Hong, Péclet and Bensimon [28,29] in the limit of small Péclet
number (PT → 0). Second, at small growth velocities (PT � 1, PCD � 1 and
W � 1) and with U = 0, criterion (10) reduces to the criterion derived by Ben
Amar and Péclet [22]. Third, in the case of a pure material (Ci = 0) and small
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growth rates (PT � 1 and W � 1) equation (10) coincides with the selection law
derived by Bouissou and Péclet [30]. Fourth, in the limit of small Péclet numbers
(PT → 0, PCD → 0) within the framework of the parabolic mass transfer mechanism
(W = 0), the criterion (10) corresponds to the previously derived criterion in [12].
Fifth, in the case of stagnant fluid (U = 0) and local-equilibrium solidification with
arbitrary Péclet numbers (W = 0) in the absence of growth kinetics (β0 = 0), the
aforementioned criterion tends to the interpolation expression obtained by Müller-
Krumbhaar et al. [31]. Sixth, at the same assumptions, this criterion transforms to
the criterion derived in [11] for the thermo-solutal problem with arbitrary Péclet
numbers. Seventh, in the case of a single-component melt (Ci = 0) in the limit of
small Péclet numbers (PT � 1 and PCD � 1) without convection (U = 0) and
when W = 0 the criterion (10) leads to the selection law found by Brener [32]. Thus,
the selection criterion (10) generalizes earlier known criteria on both thermal and
diffusion limited dendritic growth.

4 Sharp interface model

The criterion (10) selects the unique combination of the dendrite tip radius R and
dendrite tip velocity V from the family of needle-like shapes under convective flow.
The present section shows how these selected values of R and V are related to the
experimentally controlled parameter of the process, the total undercooling ∆T .

The framework of a model for the dendritic tip growth has been established in
the works [33,34], which was extended to the case of rapid solidification in [35–38]
and finally to the local non-equilibrium case in [23,24]. The basic idea of these works
consists of the combination of a selection criterion with the balance of undercooling
contributions at the dendritic tip.

The total undercooling ∆T = T0 − meC∞ − T∞, represents the undercooling
balance at the dendrite tip as

∆T = ∆TT + ∆TC + ∆TN + ∆TR + ∆TK , (15)

where C∞ and T∞ are the initial (i.e. far-field) composition and temperature in
the alloy, respectively, ∆TT is the thermal undercooling, ∆TC is the constitutional
undercooling, ∆TN = (me−mv)C∞ is the undercooling arising due to the shift of the
equilibrium liquidus line from its equilibrium position in the kinetic phase diagram of
steady-state solidification, ∆TR = 2d0TQ/R is the curvature undercooling due to the
Gibbs-Thomson effect and ∆TK = V/µk is the kinetic undercooling corresponding
to the kinetic growth coefficient µk. Equation (15) connects the temperature Ti and
concentration Ci at the dendrite tip [see Eq. (5)] with the temperature T∞ and
concentration C∞ in the bulk of the undercooled melt, showing a full consistency of
equations (5) and (15).

The convection effects will change the heat and mass transport around the grow-
ing dendrite from the standard Ivantsov solution. The thermal undercooling ∆TT is
defined by the modified Ivantsov function Iv∗(PT , Pf ) as

∆TT = TQIv∗(PT , Pf ). (16)

Here the modified Ivantsov function for the conductive and convective heat transport
is described by

Iv∗(PT , Pf ) = PT exp(PT + Pf )IT (PT , Pf ), (17)
with the integral

IT (PT , Pf ) =
∫ ∞

1

exp

[
2Pf

∫ η′

1

g (η′′)√
η′′

dη′′ − P0η
′

]
dη′

η′
,
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which is completely analogous to the integral in equation (13) (see [12]). The consti-
tutional undercooling ∆TC is expressed as

∆TC = kv∆v
Iv∗(PCD, Pf )

1− (1− kv)Iv∗(PCD, Pf )
, V < VD,

∆TC = 0, V ≥ VD, (18)

where the modified Ivantsov function for the conductive and convective mass trans-
port follows from the concentration at the dendritic tip in equation (13) as

Iv∗(PCD, Pf ) = PCD exp(PCD + PfDTC)IC(PCD, Pf ). (19)

The velocity dependent non-equilibrium interval ∆v of solidification in equa-
tion (18) is given by

∆v = mvC∞(1− kv)/kv, V < VD,

∆v = 0, V ≥ VD. (20)

Note that if the dendrite tip velocity V is equal to or greater than the solute diffusion
speed VD, the constitutional undercooling ∆TC is equal to zero, corresponding to the
transition to the diffusionless regime of solidification. Obviously, with zero convective
velocity (U = 0), solutions (16) and (19) revert to the standard Ivantsov functions
Iv(PT ) and Iv(PCD), respectively.

The velocity dependent liquidus slope is described by [39]:

mv =
me

1− ke

{
1− kv + ln

(
kv
ke

)
+ (1− kv)2

V

VD

}
, V < VD,

mv =
me ln ke
ke − 1

≡ const, V ≥ VD. (21)

The velocity-dependent partition coefficient kv = Cs/Ci is given by [40]:

kv =
(1− V 2/V 2

D)ke + V/VDI
(1− V 2/V 2

D)[1− (1− ke)Ci] + V/VDI
, V < VD,

kv = 1, V ≥ VD. (22)

In comparison to previous local equilibrium models, two additional kinetic param-
eters, VDI and VD, enter the non-equilibrium partitioning function kv defined by
equation (22) and consequently propagate to the functions ∆TC , ∆v, and mv related
to the solute diffusion in the balance of undercoolings (15). A detailed description
of values for VDI and VD is given in [41]. Within the local equilibrium limit in bulk
liquid, VD → ∞, equations (15)–(22) transform into the corresponding equations
of the models [36,38] which relax the local equilibrium at the interface by atomic
kinetics and interfacial diffusion. In contrast, the present description adopts a finite
diffusion velocity in the bulk of undercooled liquid as a further contribution to local
non-equilibrium.

The condition in equation (18) for the absence of constitutional undercooling
at V ≥ VD results from the analytical solution of the model of solute diffusion,
applicable to rapid solidification [23,24]. In such a case, the liquidus and solidus lines
merge into one line in the kinetic phase diagram of the alloy and the non-equilibrium
interval of solidification becomes exactly zero [see Eq. (20)]. Therefore, the velocity
V = VD is considered as that finite velocity at which complete solute trapping kv = 1
occurs, (22), and beyond which solidification proceeds with the initial (nominal)
composition C∞. At this velocity the transition from solutal to thermal dendrites
is completed with the onset of diffusionless solidification and with the beginning of
purely thermal growth of dendrites.
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Table 1. Material parameters for Ni and NiZr used in calculations as is given in [7,43].

Material parameter Dimension Pure Ni Ni-0.01 at.%Zr Ni-0.1 at.%Zr Ni-0.5 at.%Zr Ni-1 at.%Zr
Nominal concentration, C∞ at.% 0 0.01 0.1 0.5 1
Melting temperature, Tm K 1728 1728 1728 1728 1728
Thermal diffusivity, DT m2/s 1.2× 10−5 1.2× 10−5 1.2× 10−5 1.2× 10−5 4.2× 10−5

Diffusion coefficient, DC m2/s – 2.8× 10−9 2.5 × 10−9 2.5× 10−9 2.5× 10−9

Equilibrium partition coeffi-
cient, ke

– 0.02 0.02 0.03 0.04

Liquidus slope, me K/at.% – −9 −9 −10 −11
Capillary constant, d0 m 7.89× 10−10 7.89× 10−10 7.89× 10−10 7.89× 10−10 2.02× 10−10

Kinetic growth coefficient, µk m/s/K 0.59 0.59 0.59 0.42 0.22
Strength of the surface energy
anisotropy, αd

0.66 0.66 0.66 0.675 0.75

Bulk diffusion speed, VD m/s – 23.5 23.5 21.5 21
Interface diffusion speed, VDI m/s – 22.5 22.5 20 20.5
Latent heat of crystallization,
Q

J/mol 17150 17150 17150 16700 16230

Heat capacity, cp J/mol/K 41 41 41 41 41
Density, ρ` kg/m3 8.1× 103 8.1× 103 8.1 × 103 8.1 × 103 8.1 × 103

Dynamic viscosity, η Pa · s 4.3× 10−3 4.3× 10−3 4.3× 10−3 4.3× 10−3 4.3× 10−3

Fig. 1. (a) Dendrite tip velocity V as a function of undercooling ∆T in pure Ni and
Ni-0.1 at.%Zr. Curves show the different influence of convective flow and alloy concentration
on the dendrite tip velocity V when the flow velocity changes from U = 0 (m/s) to U =
0.35 (m/s). (b) Dendrite tip radius R as a function of undercooling ∆T for pure Ni and
Ni-0.1 at.%Zr. Curves show the different influence of convective flow and alloy concentration
on dendrite tip radius when the flow velocity changes from U = 0 (m/s) to U = 0.35 (m/s).

5 Results and discussion

To evaluate the effect of convective flow on the dendrite growth from pure and binary
melts we have chosen the Ni melt and the melt on Ni with small amounts of Zr.
Material parameters of Ni and Ni–Zr are summarized in Table 1.

Figure 1 shows the complicated behavior of dendrite tip velocity V in a wide
range of undercooling ∆T = 0−100 K for a stagnant melt (U = 0 m/s) and with
incoming forced flow (U = 0.35 m/s). The chosen velocity of incoming flow is typ-
ical for ground based experiments in electromagnetically levitating liquid samples
[2,7,10,14,15,19,42] at which one can expect an essential influence of flow on the
crystal growth due to their comparable velocities [16]. Such a complicated behavior
is seen in multiple crossing of solid and dashed lines V −∆T due to the predominant
effects of convection or tiny amounts of impurity at different undercooling ranges. To
interpret the peculiarities of this behavior Figures 2–5 give the detailed pictures of
calculated dependencies.

Figures 2a and 2b show that the addition of a small amount of impurity leads
to increasing the growth velocity of the alloying dendrite in comparison with a pure
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Fig. 2. Intersection of a dendrite tip velocity V curves at given undercoolings ∆T indicated
by arrows in pure Ni and Ni-0.1 at.%Zr with flow velocity (a) U = 0 (m/s) and (b) U =
0.35 (m/s).

Fig. 3. Intersection of a dendrite tip velocity V curves at given undercoolings ∆T indicated
by arrows in pure Ni and Ni-0.1 at.%Zr with flow velocity (a) U = 0 (m/s) and (b) U =
0.35 (m/s).

dendrite. It occurs due to the appearance of additional concentrational undercooling
appearing due to the presence of small amount of impurity as an additonal driv-
ing force. In addition to this, Figures 3a and 3b demonstrate that the convection,
which plays a key role at small undercooling (up to ∆T ≈ 1 K), degenerates at large
undercoolings due to much high velocity of dendrite growth.

A very interesting effect can be observed in the range of undercoolings from
∆T = 1 to ∆T = 100 K. This effect occurs due to the rejection of solute in a
bulk liquid by the growing dendritic surface. An accumulation of solute leads to
the concentrational gradients and the appearance of concentrational undercooling.
As the result, the velocity of alloying dendrite becomes larger than the growth rate
of pure dendrite. With the largest undercoolings all curves merge. This shows the
predominant influence of kinetics and nonequilibrium growth effects (solute trapping)
over the influence of convective flow.

As is shown in Figure 3a, the convection dominates at small undercooling up to
∆T ≈ 0.45 K. Then the influence of impurity becomes predominant in comparison
with the effect of flow on the alloying dendrite up to ∆T ≈ 35 K, see Figure 3b. Such
an influence has been confirmed in experiments carried out on the ground and under
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Fig. 4. Effect of dendrite growth velocity enhancement in diluted alloys. It is shown that
the tips of very diluted alloying dendrites, Ni-0.01 at.%Zr and Ni-0.1 at.%Zr are growing
faster in specific regions of undercooling than the tip of Ni dendrite and also faster than
simply diluted alloyed dendrites Ni-0.5 at.%Zr, Ni-1 at.%Zr. The computation has been
made for the flow velocity U = 0 (m/s).

Fig. 5. The thermal length scale `T and solutal length scale, `C , in comparison with the
hydrodynamic length scale `H for the growth of Ni and Ni–Zr dendrites, as calculated from
equations (23)–(26). Range I: influence of the solutal length scale in concurrence with the
effect of fluid flow. Range II: the increase in the thermal length influence. Range III: the
predominant influence of the thermal and hydrodynamics transport. Range IV: dendrite
growth kinetics do not sensitive to the hydrodynamic motion due to high growth velocity.

reduced gravity [10] as well as in the phase-field modeling [6]. Hence the predominant
role of the flow effect appearing in rapid solidification is visible for Ni–Zr alloys at
the dendrite growth velocities becomes greater than 1 m/s.

Usually, thicker dendrites grow faster due to existing of the concentrational gra-
dient with the appearing of the concentrational undercooling. However, in some spe-
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cific cases thicker dendrites can grow faster due the flow effect of the incoming forced
stream. This effect is illustrated in Figure 3 for the Ni–Zr dendrites at undercoolings
greater than 20 K (in order of magnitude), where the tip radius R begins to grow
with increasing the melt undercooling (the tip velocity V is always an increasing
function of ∆T as is demonstrated in Figs. 1–3). Additional increasing of the den-
drite tip radius exists due to the presence of a forced flow (compare the dash-dotted
and double dash-dotted lines in Fig. 4).

To demonstrate another important effect that the dendrite tip velocity increases
as a tiny addition of impurity is added to the pure melt, we illustrate in Figure 4 the
growth of Ni–Zr dendrites with tiny inclusions of zirconium in the main solidifying
component – nickel. For instance, considering the growth of Ni-0.1at.% Zr dendrite
we see that its growth rate exceeds the growth rates of the pure nickel dendrite and of
the Ni-0.01at% Zr dendrite in the undercooling range 0 < ∆T < 35 K. This confirms
a quicker growth of the narrow chemical dendrites with small impurity additions in
comparison with thicker thermal dendrites. This effect can be explained by the fact
that the tiny amounts of impurity create the additional crystallization sites ahead
of the dendritic tip, which in turn adhere to its surface accelerate the growth of
dendritic tips.

To quantify the combined influence of the forced flow and the impurity on the pro-
cess of dendritic solidification, we apply the method of characteristic length scales [16].
For the present analysis these are defined by the thermal length scale lT , the solutal
length scale lC , and the hydrodynamic length scale lH as

`T =
2DT

V
, `C =

2DC

V
, `H =

ν

U
, (23)

where ν is the kinematic viscosity. DT and DC are already defined earlier and should
not be introduced again. Quantitative estimations can be made by a consideration
of ratios between length scales (22), which can be calculated for the Ni and Ni–Zr
melts using their material parameters listed in Table 1 as

Ni : and Ni−Zr :
`T
`H

= 15.8234
1
V
, (24)

concentration/hydrodynamics ratio becomes negligible

Ni−Zr :
`C
`H

= 2× 10−3 1
V
, (25)

Ni−Zr :
`T
`C

= 4.2857× 103. (26)

Figure 5 demonstrates these relative ratios as the functions of undercooling in
the range 10 < ∆T < 100 K at a fixed value of the forced convection, U = 0.35 m/s
(100 corresponds to the scales of equal lengths). For values close to unity, the effect
of convection on the kinetics of dendritic growth is greatest.

From the physical point of view, the thermal, solutal, and hydrodynamic processes
are capable to interact if their characteristic length scales are of the same order. In
the range of sufficiently small undercooling, 1 < ∆T (K) < 10 (range I in Fig. 5),
the thermal length `T is large enough (`T /`H ∼ 102−103) while the solutal length
is smaller, `C/`H ∼ 1−10. Therefore, the influence of convection is decisive in the
range 10 < ∆T < 20 K. At the undercooling 10 < ∆T (K) < 20 (range II in Fig. 5),
there is a transitive regime of growth in which influence of solute falls down but the
influence of the thermal transport begins to be essential together with the convective
transport. With the further increase in undercooling, 20 < ∆T (K) < 80 (range III in
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Fig. 5), concentration / hydrodynamics ratio becomes negligible `C/`H � 2× 10−3

but the role of thermal and hydrodynamic transport becomes predominant: `T /`H ∼
100−101. Due to the high dendrite velocity (V > 10 m/s) in comparison with the flow
velocity (U = 0.35 m/s) the convection does not influence on the growth kinetics in
the range ∆T (K) > 80. These changes in length scales govern the dendrite growth
and predominant influence of solutal, thermal and hydrodynamic transport shown in
Figures 1–4.

About the interplay between thermal and solutal length scales, one should men-
tion the following. From Figure 5 it is clearly seen that at the smallest undercooling
(∆T < 5 K) the solutal length is close to unity and the thermal length is much higher
than unity (in comparison with the hydrodynamic length scale). Figure 5 also shows
that with the increase in undercooling up to ∆T = 30 K, the solutal length essentially
decreases and the thermal length has a tendency coming to unity. Therefore, one can
expect to have an interplay between solutal and thermal contributions (namely at
∆T < 30 K) that is clearly shown in Figure 2.

In the present section, the length scale analysis has been used to estimate influ-
ence of the predominant effect (thermal, solutal or hydrodynamic influence) on the
dendrite growth in a wide range of undercooling. To provide data on microstructure
and secondary processes (such as coarsening, recrystallization, grain refinement) in
dendritic ensemble growing from the undercooled melts a detailed computational
modeling should be carried out [44–46].

6 Conclusions

The developed sharp-interface model of dendritic solidification has been used to
quantitatively estimate influence of tiny amounts of impurity and forced convec-
tion on the kinetics of dendritic growth. Using results of dendritic growth of a pure
Ni and the Ni–Zr alloys a complicated behavior in predomination effects of convec-
tion and tiny amounts of impurity at different undercooling ranges is shown. This
behavior, however, allows us to quantitatively estimate that (i) the tiny amount of
impurity enhances the dendrite growth velocity in the lowest range of undercooling
(∆T < 10 K for diluted Ni–Zr alloy) and (ii) the forced incoming flow enhances the
dendrite growth in the intermediate range of undercooling (20 < ∆T (K) < 80 for
diluted Ni–Zr alloy). Thus, at least in the example of dendritic solidification of Ni
and Ni–Zr alloys, the earlier idea that the solute effect shows a different temperature
characteristics than the transport effect by fluid flow, which makes it possible to dis-
criminate between both these effects by investigating the dendritic growth velocity
as a function of undercooling is confirmed.
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