
Eur. Phys. J. Special Topics 229, 265–273 (2020)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2020
https://doi.org/10.1140/epjst/e2019-900127-x

THE EUROPEAN

PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Thin-film model of droplet durotaxis

“E pur si muove”

Hector Gomez1,a and Mirian Velay-Lizancos2

1 School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette,
IN 47907, USA

2 Lyles School of Civil Engineering, Purdue University, 550 W Stadium Ave, West Lafayette,
IN 47907, USA

Received 2 July 2019
Published online 11 February 2020

Abstract. The control of liquid droplets on solid surfaces is important
in many scientific and technological applications, including microfabri-
cation, microfluidics and heat transfer. It has been known for decades
that droplets sitting on a solid surface can be moved using thermal,
chemical or electrical gradients. Recent experiments have shown that
gradients of substrate deformability also produce spontaneous droplet
motion. This motion mechanism, which is called durotaxis, remains
poorly understood. This paper proposes a model for droplet durotaxis
based on a thin-film description of the fluid dynamics equation. The
substrate is modeled as a Kirchhoff plate with non-constant flexural
rigidity. We use high-fidelity simulations to show that the model nat-
urally predicts droplet durotaxis without any ad hoc assumption. The
model predictions for the dependence of droplet velocity on droplet size
are consistent with experiments. The simplicity of the model suggests
that durotaxis may be a pervasive and fundamental process at small
scales and opens new possibilities to study the interaction of droplets
with compliant solid surfaces.

1 Introduction

The controlled motion of liquid droplets on solid substrates plays a key role in, e.g.,
microfabrication [10,23,32,33], microfluidics [8,11,22,37] and surface coatings [6,28,36]
and is an ubiquitous example of mass transport by propagation of phase interfaces.
Classical mechanisms for producing droplet motion consist of generating, e.g., a tem-
perature gradient [2] or a wettability gradient induced by a chemical compound
[6,24]. Recent experiments found a different type of free-running droplets in which
the motion is produced by a gradient in the substrate strains [3] or stiffness [31].
The motion of droplets driven by stiffness gradients is referred to as durotaxis and
is relevant at small scales, where the gas-liquid surface tension and the overpressure
in the droplet (also known as Laplace pressure) are strong enough to significantly
deform the substrate. Standard scaling arguments can be used to show that this
occurs for droplets with radius comparable to the elastocapillary length scale, i.e.,
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Fig. 1. One-dimensional representation of the studied system. The plate deflection w is neg-
ative when the deformed configuration is below the undeformed one. The thin-film thickness
h is measured from the deformed configuration of the substrate. The angle θr represents the
receding apparent contact angle and VD is the droplet velocity.

lEC =
√
γ/E, where γ is the surface tension at the liquid-gas interface and E is the

substrate Young’s modulus [30].
Droplet durotaxis has drawn significant attention, leading to multiple experimen-

tal [19,31] and computational studies [4]. Droplet durotaxis is currently explained
using the concept of apparent contact angle, i.e., the angle of the liquid-gas interface
at the contact line relative to the undeformed solid surface. It was proposed that the
droplet moves in the direction of lower apparent contact angle similarly to the motion
driven by a wettability gradient. This mechanism was consistent with the full-scale
three-dimensional simulations presented in [4]. The computational results shown in
[4] resolve in a fully coupled manner the velocity and pressure fields in the gas and
the liquid as well as the solid displacements using a fully nonlinear formulation. The
simulations show that although the droplet always moves in the direction of lower
apparent contact angle, the motion can be inverted by changing the fluid’s wettabil-
ity – while wetting droplets move toward softer areas of the substrate, non-wetting
droplets advance in the direction in which stiffness increases.

Here, we propose a simplified model of droplet durotaxis based on the asymptotic
reduction of the fluid and solid dynamics equations. The model predicts durotaxis and
preserves all the key features of the process, including the dependence of the droplet
velocity on its size and the motion in the direction of the lower apparent contact
angle. The proposed model relies on a description of the fluid dynamics based on
the thin-film approximation and a linear Kirchhoff plate model. Our results suggest
that the process of durotaxis does not depend on the details of the three-dimensional
solid deformation, including the ridge at the contact line, but only on the global
deformation of the substrate. The proposed simplified model allows fast simulations
and systematic parametric studies which may shed light on the intriguing process of
droplet durotaxis.

2 Thin-film model of droplet durotaxis

The study of a liquid layer on a smooth solid surface has been traditionally studied
under the assumption of a rigid solid. A notable exception can in found in [38]. This
paper considers a deformable membrane but neglects surface tension effects, which
are crucial for droplet durotaxis. Under the so-called long wave approximation [21]
and under the assumption of small Bond numbers, the Navier–Stokes equations can
be simplified to an evolution equation for the thin-film thickness profile h; see a
one-dimensional representation in Figure 1. When the substrate is compliant and is
subjected to a vertical displacement w, we propose that the thin-film equation is
given by

∂h

∂t
+∇ ·

(
h3

3η
∇
(

Π(h) + γ∆(h+ w)
))

= 0 (1)

where η is the fluid dynamic viscosity, γ is the surface tension at the liquid-gas
interface and Π(h) is the so-called disjoining pressure that accounts for the wetting
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properties of the substrate [17]. Note that h represents the thickness of the fluid
measured from the deformed configuration of the substrate. By taking w = 0 in
equation (1), a classical thin-film model is retrieved. Energetic arguments may be
used to prove that the last term in equation (1) is the leading-order approximation
to the surface tension contribution when the substrate is deformable.

Although not widely used, the classical plate theory was developed for plates with
non-constant flexural rigidity. Given that the load produced by the droplet on the
plate is Π(h) + γ∆(h + w), the force balance equation on the plate may be written
as

∆(D∆w)− (1− ν)♦2(D,w) = Π(h) + γ∆(h+ w) (2)

where ♦2(D,w) = ∆D∆w − ∇∇D : ∇∇w, ν is the solid’s Poisson ratio and D(x)
is the flexural rigidity which can be written as D = Eε3/[12(1 − ν2)]. Here, E is
Young’s modulus and ε is the plate thickness.

To complete the model definition, we need an expression for the disjoining pres-
sure. We use the function [27]

Π(h) = 2Sad
2
0/h

3 + (Sp/`) exp[(d0 − h)/`] (3)

where d0 = 0.158 nm is the Born repulsion length and ` is the correlation length of a
polar fluid. For water, ` ≈ 0.6 nm [35]. The parameters Sa and Sp are, respectively,
the apolar and polar components of the total spreading coefficient S = Sa + Sp. We
take Sa > 0 and Sp < 0, which represents a destabilizing short-range polar interac-
tion combined with a stabilizing long-range apolar van der Waals force. Experimental
systems corresponding to this case are, e.g., water on graphite [34] and on most polar
substrates like Poly(methyl methacrylate) (PMMA), PVC or polystyrene [26]. For
this parameter regime, equation (1) admits solutions representing a static droplet
with an equilibrium contact angle θe = arccos(S/γ + 1) sitting on an ultrathin pre-
cursor film.

Because the flexural rigidity D is a function of space, let us introduce the notation
D(x) = D0R(x), where D0 is a flexural rigidity scale and R(x) is a dimensionless
function of space. By scaling space with ` and time with 3η`|Sp|−1e−d0/`, the gov-
erning equations can be written in dimensionless form as

∂h

∂t
+∇ ·

(
h3∇

(
Mi/h

3 − e−h + Sc∆(h+ w)
))

= 0 (4)

Σ−1∆(R∆w)− Σ−1(1− ν)♦2(R,w) = Mi/h
3 − e−h + Sc∆(h+ w) (5)

where we have introduced the following dimensionless numbers

Mi = 2
Sa

|Sp|

(
d0

`

)2

e−d0/`, Sc =
γ

|Sp|
e−d0/`, Σ =

|Sp|`2

D0
ed0/`. (6)

Note that although we have kept the original notation for h and w for simplicity, the
functions in equations (4)–(5) have been non-dimensionalized using the above-defined
length and time scales. From now on, we will always work with the dimensionless
form of the equations.

3 Computational method

Solving numerically equations (4)–(5) is challenging for multiple reasons, including
(a) the difficulty of discretizing fourth-order spatial derivatives, (b) the challenge of
solving in a coupled manner an evolution equation for h and an equation that operates
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at an infinitely fast time scale for w, (c) the singular behavior of the disjoining
pressure as h → 0, which requires an extremely accurate solution to equation (5)
each time step.

For the space discretization, we propose an algorithm based on isogeometric anal-
ysis, a recent generalization of the finite element method that uses as basis functions
splines of controllable continuity across the element boundaries [9,16]. The use of iso-
geometric analysis permits a straightforward discretization of the fourth-order deriva-
tives in equations (4)–(5). Our algorithm is based on the following weak form of the
equations, which may be derived multiplying them with smooth weight functions p
and q, integrating over the computational domain Ω and applying the divergence the-
orem multiple times. Assuming natural boundary conditions for the fluid dynamics
equation and considering a clamped plate, our weak form can be written as∫

Ω

p
∂h

∂t
dx−

∫
Ω

h3∇p · ∇
(
Mi/h

3 − e−h
)

dx+
∫

Ω

∇ ·
(
h3∇p

)
Sc∆(h+ w)dx = 0,

(7)∫
Ω

∆q
R

Σ
∆wdx−

∫
Ω

q

(
1− ν

Σ
♦2(R,w) +Mi/h

3 − e−h

)
dx

+
∫

Ω

Sc∇q · ∇(h+ w)dx = 0. (8)

These equations must be satisfied for all p and q in suitable functional spaces. The
discretization of the weak form can be accomplished by defining finite dimensional
spline spaces [12,16] that are used to construct approximations to the unknowns h
and w as well as to the weight functions [14,15].

The time discretization is performed using a staggering scheme. By choosing
a sufficiently small time step ∆t, we compute the approximate solution at time
tn+1 = tn + ∆t by (i) obtaining an approximate solution to h(·, tn+1) time discretiz-
ing equation (7) by the generalized-α method [7,18], (ii) using the approximation to
h(·, tn+1) in equation (8) to obtain an approximation to w(·, tn+1), and (iii) utilizing
the most current value of w(·, tn+1) to obtain an updated approximation to h(·, tn+1)
by solving again equation (7). We observed that additional iterations between equa-
tions (7) and (8) within a time step increased the compute time without showing
significant stability or accuracy improvements. We have found that the proposed
staggering scheme was more effective than solving monolithically equations (7)–(8).
The resulting algebraic equations were linearized using the Newton-Raphson algo-
rithm and the linear systems of equations were solved using diagonally preconditioned
GMRES [25].

As noted above the interstitial pressure Π(h) = Mi/h
3− e−h is singular at h = 0.

This implies that an inaccurate solution to equation (8), can produce a very large
load on the plate in the next time step. Although all the simulations presented in
this paper are overkilled solutions to equations (7)–(8) considering all terms, we have
observed that neglecting the term Mi/h

3−e−h in equation (8) produces qualitatively
similar solutions at a much smaller computational cost.

4 Results

We study the proposed model by performing one-dimensional simulations on the
computational domain Ω = [0, L] with L = 1000. In the simulations presented in
this paper, we used 512 uniform elements in space and a time step ∆t = 50. The
function R(x), which defines the spatial variation of the flexural rigidity, is given by
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Fig. 2. Time evolution of a droplet on a compliant Kirchhoff plate with non-constant
flexural rigidity. The values of the non-dimensional groups are Mi = 0.5, Sc = 1, Σ = 10−6,
G = 7× 10−3. The system size is L = 1000. The mesh is composed of 512 uniform elements
and the time step is ∆t = 50. Snapshots of the droplet evolution on the deformed plate.

R(x) = e−Gx, where G is a dimensionless parameter. We took G = 7× 10−3 in all of
our calculations. We begin our simulations by placing a droplet at the center of the
domain on top of an ultrathin film. Our initial condition is given by

h(x, 0) = hut + max

(
0, hmax

[
1−

(
x− L/2

R

)2
])

(9)

where hut = 1.1738 represents the thickness of the precursor film, 2R is the size of the
wetted area under the droplet and hut +hmax ≈ hmax is the maximum film thickness
achieved at the centerline of the droplet. For this initial condition, the volume (area in
our one-dimensional simulation) of the droplet is approximately V = 4hmaxR/3 and
the initial contact angle is θ0 = arctan(2hmax/R). In our simulations, we varied hmax

and R, but always kept constant the ratio hmax/R which resulted in θ0 ≈ 32.62◦.
Figure 2 shows the time evolution of a droplet with hmax = 420/13 and R = 100.

The thin blue stripes on the left and right hand sides of the droplet represent the
precursor film that sits right on top of the Kirchhoff plate (not shown for clarity). The
configuration at time t = 0 was obtained by solving equation (8) with the given initial
condition h(x, 0). The Laplace pressure under the droplet and the surface tension at
the contact line produce a deformation of the plate. It is apparent from the simulation
that the droplet moves spontaneously to the right-hand side, the softer area of the
substrate. The result is consistent with experiments [31] and with the full-scale three-
dimensional simulations of wetting droplets presented in [4]. It may be observed that
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Fig. 3. Time evolution of the receding and advancing apparent contact angles for the
simulation shown in Figure 2. We observe that the advancing contact angle is lower than
the receding contact angle.

the droplet accelerates throughout the process and sinks deeper into the substrate as
time evolves. It is remarkable that such a simple model can predict durotaxis because
the solid model is very elementary, and in particular, misses completely the ridge that
is usually formed under the contact line; see [1,4,5,20,29]. Figure 3 shows the time
evolution of the receding and advancing apparent contact angles. We observe that
the advancing angle is lower than the receding angle, which is compatible with the
mechanism for durotactic droplet motion proposed in [31].

Figure 4 shows the time evolution of the droplet centerline for three droplets of
different sizes. The droplet centerline was defined as the midpoint between the left
and right contact lines. The droplet size is defined by the parameter R; cf. with equa-
tion (9). The dimensionless parameters are identical to those used in the simulation
shown in Figure 2. Consistently with the experiments in [31], larger droplets move
faster, presumably because the stiffness difference between the left and right triple
points is larger.

To further study droplet durotaxis, we tested the relation VD = kSc∆θ, where
VD is the dimensionless droplet velocity and k is a fitting constant. This relation fol-
lows from dimensional analysis under the assumption that ∆θ is small. In particular,
the expression shows that data for droplets of different sizes should collapse on the
same curve. We used our simulations to test this relation. Direct numerical differ-
entiation of the data for the droplet position over time produced large oscillations
because the displacement data are not smooth; see inset in Figure 4. The roughness
of the displacement data may be attributed to inaccuracies in the identification of
the contact lines or stick-slip behavior. To bypass this obstacle, we interpolated the
displacement data with a cubic polynomial, which resulted in a very accurate approx-
imation. Then, we we computed the velocity differentiating the polynomial. Figure 5
shows the comparison of the theoretical relation VD = kSc∆θ and the numerical
results. The agreement is good, especially for small ∆θ.
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Fig. 4. Dependence of the droplet velocity on its size. The values of the non-dimensional
groups are Mi = 0.5, Sc = 1, Σ = 10−6, G = 7 × 10−3. The system size is L = 1000. The
mesh is composed of 512 uniform elements and the time step is ∆t = 50. Time evolution of
the droplet centerline for droplets of different sizes.
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Fig. 5. Comparison of the theoretical relation VD = kSc∆θ that follows from dimensional
analysis under the assumption of small ∆θ (dashed black line) with the results of our
numerical simulations for R = 50 (circles), R = 100 (triangles), and R = 150 (squares). The
data correspond to the simulations shown in Figure 4.
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5 Conclusions

The control of individual droplets on solid surfaces is at the core of many technological
applications, including digital microfluidics, heat transfer and self-cleaning surfaces.
The use of solid substrates with spatial gradients of stiffness is a recently proposed
mechanism for spontaneous droplet motion called durotaxis. Here, we have shown
that droplet durotaxis can be explained with a surprisingly simple model that couples
a thin-film description of the fluid dynamics equations and a Kirchhoff plate model
for the solid substrate. Direct numerical simulation of the proposed model shows
compatible results with experiments in terms of dependence of droplet velocity on
droplet size. The simulations also suggest that droplet motion can be explained by
a difference in apparent contact angle at each side of the droplet. Our simple model
opens new possibilities to interrogate interactions between droplets and compliant
substrates [5,13].
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