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Abstract. Analytical solitary wave solution of the dust ion acoustic
waves is studied due to the damped forced modified Korteweg-de Vries
equation in an unmagnetized collisional dusty plasma consisting of
negatively charged dust grain, positively charged ions, q-nonextensive
electrons, and neutral particles in the presence of external periodic
force. Using reductive perturbation technique, the damped forced mod-
ified Korteweg-de Vries equation is obtained for the dust ion acoustic
waves. Momentum consevation law is used to obtain the dust ion acous-
tic solitary wave solutions in the framework of the damped forced
modified Korteweg-de Vries equation. The effects of different physi-
cal parameters such as entropic index, dust ion collisional frequency,
strength and frequency of the external periodic force, speed of the
traveling wave and the parameter which is the ratio between the unper-
turbed densities of the dust ions and electrons are investigated on
the analytical solution of the dust ion acoustic waves. It is observed
that those parameters have significant effects on the structures of the
damped forced dust ion acoustic solitary waves. The results of the
present paper may have applications in laboratory and space plasma
environments.

1 Introduction

Dusty plasma is a low temperature plasma consisting of electrons, ions, neutral par-
ticles and very massive micrometer-sized solid charged dust grains [1–6]. The interest
in studying dusty plasma are gradually increasing because of its tremendous applica-
tions in planetary rings, comet tails, asteroids zone, interstellar medium, lower part of
the Earth’s atmosphere, magnetosphere [7–13], radio frequency discharge [14], plasma
crystal [15,16], plasma processing reactors, fusion plasma device etc. The study of the
wave phenomena is important because it keeps a nice relation between the theory and
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the experiments. Waves in dusty plasma had been studied exclusively for last three
decades or so in different plasma mode like dust acoustic (DA) mode [6], dust ion-
acoustic (DIA) mode [17], dust drift mode [18], Shukla-Varma mode [19], dust lattice
mode [20], dust cyclotron mode [21], dust Berstain-Green-Krushkal mode [22] etc.
Dust ion acoustic waves (DIAWs) involve the motion of massive ions and form region
of compression and rarefaction just as in sound waves in the presence of dust grains.
Shukla and Silin [32] predicted theoretically DIAWs in dusty plasma consisting of
negatively charged static dust grains for the first time and Barken et al. [3] observed
the existence of DIAWs experimentally. Linear and nonlinear DIAWs had also been
experimentally investigated by Nakamura et al. [33] in a homogeneous unmagne-
tized dusty plasma. They observed that the phase velocity of the wave increases and
the wave endures heavy damping with increasing dust density in the linear regime.
Anowar and Mamun [34] investigated the basic features of obliquely propagating dust
ion acoustic solitary waves (DIASW) containing adiabatic inertia-less electrons, adi-
abatic inertial ions, and negatively charged static dust in a hot adiabatic magnetized
dusty plasma. Duba and Mamun [35] observed the DIA shock waves in dusty plasma
in presence of Boltzmann electrons, mobile ions and charged fluctuating stationary
dusts. Ghorui et al. [36] studied the head-on collision of DIAWs in a magnetized quan-
tum dusty plasma. They showed that the quantum parameters (quantum diffraction,
ion cyclotron frequency, ratio of densities of electrons to ion) effects the phase shift
significantly. Recently, Jharna et al. [37] studied the DIAWs in an unmagnetized
collisional nonextensive dusty plasma. They showed that characteristic of the wave
effected by the nonextensive parameter and dust ion collisional frequency.

However, in most of the cases, Maxwell distribution had been considered for elec-
trons but the Maxwell distribution is effected to the macroscopic ergodic equilibrium
state and it may be insufficient to depict the long range interactions in unmagne-
tized collisionless plasma having the non-equilibrium stationary state. So, in various
physical system this kind of state may exist such as, the presence of external force
in natural space plasma environment, turbulence and particle interactions when the
Maxwell distribution fails. Non-extensive statistics or Tsallis statistics have proposed
for those cases based on the derivation of Boltzmann–Gibbs–Shannon (BGS) entropic
measure. Renyi [38] first introduced the nonextensive generalization of BGS entropy
for statistical equilibrium. Tsallis [39], suitably extending the standard additivity of
the entropies to the nonlinear, nonextensive case where one particular parameter,
the entropic index q, characterizes the degree of nonextensivity of the system (q = 1
corresponds to the standard, extensive, BGS statistics). Evidence have shown that
many astrophysical scenario such as stellar polytopes, solar neutrino problem, and
peculiar velocity distribution of galaxy clusters was analyzed by q-entropy. Liyan and
Du [44] studied ion acoustic solitary wave (IASWs) in the plasma with power-law
q-distribution in non extensive statistics and they suggested that Tsallis [39] statistcs
is suitable for the system being the non equilibrium stationary state with inhomo-
geneous temperature and containing huge supply of the superthermal low velocity
particles.

The existence of arbitrary amplitude DIAWs in an unmagnetized plasma had
also been investigated by several authors [40–43]. However, all the studies done till
today, were based on KdV, Kadomtsev-Petviashvili (KP), Zakharov-Kuznetsov (ZK)
or similar type equations, but the effect of external applied force on these equa-
tions have not been studied. Very recently Saha et al. [45–47] studied the dynamical
behaviour of DIAWs. In the presence of external periodic force, they [45] investigated
the periodic and chaotic motion of modified equal width-Burgers (MEW-Burger)
equation. Das et al. [46] studied the effect of the dust ion collisional frequency on
DIAWs in a magnetized collisional dusty plasma in the frame work of KP equation
in the presence of external periodic force. They showed the transition of DIAWs from
quasiperiodic behavior to limit cycle oscillation. Considering the external periodic
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perturbation Saha et al. [47] observed the quasiperiodic, periodic and chaotic struc-
tures of DIAWs. We can find the study about nonlinear wave excitation caused by
orbiting charged debris object in Sen et al.’s [26] research work. They considered
that a charged debris, moving at a speed vd contributes S(x− vdt) as the source term
in the poisson equation. Ali et al. [27–29] also took the source term in the poisson
equation. In their paper, they obtained the analytical solution of KdV and DKdV
equation in the presence of external periodic force. These work have motivated us
to consider the source term in the Poisson equation. It has known that the value
of the parameter set at which the nonlinear term of the KdV equation vanishes is
called the critical point. To study solitary wave at critical point, one has to employ
modified KdV (MKdV) equation instead of KdV equation. In this paper, we have
studied the dust ion acoustic solitary waves (DIASWs) in the presence of externally
applied force at the critical point and obtained MKdV equation. Till today no work
has been reported to study the solitary wave in the frame work of MKdV equation
with an external force.

In the present work, our aim is to derive the analytical DIAWS of the damped force
MKdV (DFMKdV) equation in an unmagnetized collisional dusty plasma consisting
of negatively charged dust grain, positively charged ions, q-nonextensive electrons,
and neutral particles in the presence of external periodic force. Furthermore, the
effect of the entropic index (q), dust ion collisional frequency (νid0), the speed of the
traveling wave (M), strength (f0) and frequency (ω) of the periodic force and the
parameter (µ) which is the ratio between the unperturbed densities of the dust ions
and electrons are studied on the analytical solution of DIASWs. The rest of the paper
is organized as follows: The basic equations are provided in Section 2. In Section 3,
we have derived the damped forced modified Korteweg-de Vries (DFMKdV) equation
for nonlinear propagation of dust ion acoustic solitary waves. Section 4 presents the
effect of the different parameters on analytical solitary wave solution of DFMKdV.
Section 5 states the conclusions.

2 Basic equations

In this work, we consider an unmagnetized collisional dusty plasma that contains cold
inertial ions, stationary dusts with negative charge and q-nonextensive electrons. The
normalized ion fluid equations which include the equation of continuity, equation of
momentum balance and Poisson equation, governing the DIAWs, are given by

∂n

∂t
+
∂(nu)

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
− νidu, (2)

∂2φ

∂x2
= (1− µ)ne − n+ µ+ S(x, t), (3)

where n is the number density of ions normalized to its equilibrium value n0, u

is the ion fluid velocity normalized to ion acoustic speed Cs =

√(
kBTe

mi

)
, with Te

as electron temperature, kB as Boltzmann constant and mi as mass of ions. The
electrostatic wave potential φ is normalized to kBTe

e , with e as magnitude of electron

charge. The space variable x is normalized to the Debye length λD =
(

Te

4πne0e2

) 1
2

and the time t is normalized to ω−1pi =
(

mi
4πne0e2

) 1
2

, with ωpi as ion-plasma frequency.
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Here νid is the dust-ion collisional frequency, the term S(x, t) ([26–29]), is a charged
density source arising from experimental conditions for a single definite purpose and
µ = Zdnd0

n0
.

In order to describe q-nonextensive electron, we consider the following distribution
function [23]

fe(v) = Cq

{
1 + (q − 1)

[
mev

2

2kBTe
− eφ

kBTe

]} 1
q−1

,

where φ is the electrostatic potential and other variables or parameter have their
usual meaning. It is important to note that this particular distribution function fe(v)
maximizes the Tsallis entropy and, thus, complies the laws of thermodynamics. Then,
the constant of normalization is given by

Cq = ne0
Γ
(

1
1−q
)

Γ
(

1
1−q −

1
2

)√me(1− q)
2πkBTe

for − 1 < q < 1

and

Cq = ne0
1 + q

2

Γ
(

1
1−q + 1

2

)
Γ
(

1
1−q
) √

me(1− q)
2πkBTe

for q > 1.

Integrating the distribution function fe(v) after normalization over the velocity
space, one can obtain the q-nonextensive electron number density as

ne = ne0
{

1 + (q − 1)
eφ

kBTe

} q+1
2(q−1) .

Thus, the normalized q-nonextensive electron number density takes the form as [23]:

ne = ne0
{

1 + (q − 1)φ
} q+1

2(q−1) . (4)

3 Nonlinear evolution equation and its solution

The reductive perturbation technique (RPT) [24] is used to derive the damped forced
KdV (DFKdV) equation in unmagnetized collisional dusty plasma to study the
nonlinear wave propagation of DIAWs. The independent variables are stretched as
[25]

{
ξ = ε1/2(x− vt)
τ = ε3/2t

(5)

where ε is the strength of nonlinearity and v be the phase velocity of the DIAWs to
be determined from the lowest order of ε. The expansions of the dependent variables
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n, u, φ, ν, S(x, t) are as follows:

n = 1 + εn1 + ε2n2 + · · ·,
u = 0 + εu1 + ε2u2 + · · ·,
φ = 0 + εφ1 + ε2φ2 + · · ·,
νid ∼ ε3/2νid0
S ∼ ε2S2.

(6)

Substituting the above expansions (6) along with stretching coordinates (5) into
equations (1)–(3) and equating the coefficients of lowest order of ε (i.e. coefficient of
ε3/2 from Eq. (1), coefficient of ε3/2 from Eq. (2) and coefficient of ε from Eq. (3)),
the dispersion relation is obtained as

v =
1√

a(1− µ)
, (7)

with a = q+1
2 .

Taking the coefficients of next higher order of ε (i.e. coefficient of ε5/2 from Eq. (1),
coefficient of ε5/2 from Eq. (2) and coefficient of ε2 from Eq. (3)), we obtain the
DFKdV equation

∂φ1
∂τ

+Aφ1
∂φ1
∂ξ

+B
∂3φ1
∂ξ3

+ Cφ1 = B
∂S2

∂ξ
, (8)

where A =

(
3
2v −

bv
a

)
, B = v3

2 and C = νid0
2 , with b = (q+1)(3−q)

8 .

Now at the certain values, for example q = 0.6 and µ = 0.5, there is a critical
point at which A = 0, which imply the infinite growth of the amplitude of the DIASW
solution as nonlinearity goes to zero . Therefore, at the critical point at which A = 0
the stretching (5) is not valid. For describing the evolution of the nonlinear system
at or near the critical point we introduce the new stretched coordinate as

{
ξ = ε1(x− vt)
τ = ε3t

(9)

and expand the dependent variables as

n = 1 + εn1 + ε2n2 + ε3n3 + · · · ,
u = 0 + εu1 + ε2u2 + ε3u3 + · · · ,
φ = 0 + εφ1 + ε2φ2 + ε2φ2 + · · · ,
νid ∼ ε3νid0
S ∼ ε3S2.

(10)

Now substituting equations (9) and (10) into the basic equations (1)–(3) and
equating the coefficients of lowest order of ε (i.e. coefficient of ε2 from Eq. (1), coef-
ficient of ε2 from Eq. (2) and coefficient of ε from Eq. (3)), we obtain the following
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relations: 
n1 = 1

vu1
u1 = 1

vφ1
n1 = a(1− µ)φ1.

(11)

Equating the coefficients of next higher order of ε (i.e. coefficient of ε3 from Eq. (1),
coefficient of ε3 from Eq. (2) and coefficient of ε2 from Eq. (3)), we have

n2 = 1
v (u2 + n1u1)

∂u2

∂ξ = 1
v

(
u1

∂u1

∂ξ + ∂φ2

∂ξ

)
n2 = (1− µ)(aφ2 + bφ21).

(12)

Equating the coefficients of next higher order of ε (i.e. coefficient of ε4 from Eq. (1),
coefficient of ε4 from Eq. (2) and coefficient of ε3 from Eq. (3)), we have

∂n1

∂τ − v
∂n3

∂ξ + ∂u3

∂ξ + ∂(n1u2)
∂ξ + ∂(n2u1)

∂ξ = 0
∂u1

∂τ − v
∂u3

∂ξ + ∂φ3

∂ξ + ∂(u1u2)
∂ξ + νid0u1 = 0

∂2φ1

∂ξ2 = (1− µ)
(
aφ3 + 2bφ1φ2 + cφ31

)
− n3 + S2,

(13)

where a = (1+q)
2 , b = (1+q)(3−q)

8 and c = (1+q)(3−q)(5−3q)
48 .

From equation (11), one can obtain the dispersion relation as v2 = 1
a(1−µ) and

from equations (11)–(13), one can obtain the following nonlinear evaluation equation
as:

∂φ1
∂τ

+A1φ
2
1

∂φ1
∂ξ

+B1
∂3φ1
∂ξ3

+ C1φ1 = B1
∂S2

∂ξ
, (14)

where A1 = 15
4v3 −

3v3c(1−µ)
2 , B1 = v3

2 and C1 = νid0
2 .

It has been noticed that the behavior of nonlinear waves changes significantly in
the presence of external periodic force and result supports the investigation of [29–31].
It is paramount to note that the source term or forcing term due to the presence
of space debris in plasmas may be of different kind, for example, Gaussian forcing
term [26], hyperbolic forcing term [26] (in the form of sech2(ξ, τ) and sech4(ξ, τ)
functions) and trigonometric forcing term [48] (in the form of sin(ξ, τ) and cos(ξ, τ)
functions). Motivated by these work we assume that S2 is a linear function of ξ such
as S2 = f0ξcos(ωτ) + P , where P is some constant and f0, ω denote the strength
and the frequency of the source respectively. Put the expression of S2 in the equation
(14) we get,

∂φ1
∂τ

+A1φ
2
1

∂φ1
∂ξ

+B1
∂3φ1
∂ξ3

+ C1φ1 = B1f0cos(ωτ). (15)

Such a form of this source function is observed in experimental situations or
conditions for a particular device. Equation (15) is termed as damped force modified
Korteweg-de Vries (DFMKdV) equation. Till today no study of waves have been
reported in the framework of DFMKdV equation. In absence of C1 and f0 i.e., for
C1 = 0 and f0 = 0 equation (15) takes the form of well known MKdV equation with
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the solitary wave solution

φ1 = φmsech

(
ξ −Mτ

W

)
, (16)

where amplitude of the solitary waves φm =
√

6M
A1

and width of the solitary waves

W =
√

B1

M , with M is the speed of the ion-acoustic solitary waves.

It is well established for the MKdV equation that,

I =

∫ ∞
−∞

φ21 dξ, (17)

is a conserved quantity.
For small values of C1 and f0, let us assume that amplitude, width and velocity of

the ion acoustic waves are dependent on τ and the approximate solution of equation
(15) is of the form

φ1 = φm(τ)sech

(
ξ −M(τ)τ

W (τ)

)
, (18)

where the amplitude φm(τ) =
√

6M(τ)
A1

, width W (τ) =
√
B1/M(τ) and velocity M(τ)

have to be determined.
Differentiating equation (17) with respect to τ and using equation (15), one can

obtain

dI

dτ
+ 2C1I = 2B1f0cos(ωτ)

∫ ∞
−∞

φ1 dξ, (19)

⇒ dI

dτ
+ 2C1I = πf0

√
6B3

1

A1
cos(ωτ). (20)

Again,

I =

∫ ∞
−∞

φ21 dξ, (21)

I =

∫ ∞
−∞

φm
2(τ)sech2

(
ξ −M(τ)τ

W (τ)

)
dξ. (22)

Integrating equation (22), we obtain

I =
12
√
B1M(τ)

A1
. (23)

Substituting equation (23) into equation (20) with M(0) = M , we obtain

M(τ) =

[
πf0
√
A1/6

2
e−νid0τ

( ω

ω2 + 4C2
1

){
sin(ωτ) +

2C1

ω
cos(ωτ)

}
(24)

+
{√

M − πf0B1

√
A1/24

( 2C1

ω2 + 4C2
1

)}]2
.
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Therefore, the slow time dependence form of the ion acoustic waves solution of
the DFMKdV equation (15) is given by,

φ1 = φm(τ)sech

(
ξ −M(τ)τ

W (τ)

)
, (25)

where M(τ) is given by equation (24), and the amplitude and width are as follows:

φm(τ)

=

√
6

[
πf0

√
A1/6

2
e−νid0τ

(
ω

ω2+4C2
1

){
sin(ωτ) +

2C1
ω

cos(ωτ)
}
+
{√

M − πf0B1

√
A1/24

(
2C1

ω2+4C2
1

)}]
√
A

W (τ)

=

√
B1[

πf0
√
A1/6

2
e−νid0τ

(
ω

ω2+4C2
1

){
sin(ωτ) + 2C1

ω
cos(ωτ)

}
+
{√

M − πf0B1

√
A1/24

(
2C1

ω2+4C2
1

)}] .

4 Effects of parameters

The effects of the parameters f0, ω, νid0, q and M on the DIAW solution of the
DFMKdV equation (15) have been studied in this section. When A = 0, we have
the relation between µ, the ratio between the unperturbed densities of the dust ions
and electrons and the entropic index q as q = 3µ

4−3µ or µ = 4q
3(1+q) which gives the

critical points. Figures 1a–1c represent the variation of µ with respect to q for the
ranges −1 < q < 0 in Figure 1a, 0 ≤ q < 1 in Figure 1b and q > 1 in Figure 1c.
From Figure 1a, it is clear that when q → −1, µ→ −∞. Since, we have not observed
any rarefactive solitary wave solution of the DFMKdV equation (15), this range of
q i.e. −1 < q < 0 is not important for the present work. In Figure 1b, it is shown
that as q ∈ (0, 1), µ ∈ (0, 0.67) and this range of q is highly important to study the
effect of the different physical parameters on the DFMKdV solution of equation (15)
because it is seen from Figure 1c that when q > 1, µ ∈ (0.67, 1.33) and if we take any
value of µ between 0.75 and 1.33 with corresponding q, the variation of effects of the
different parameters on the DIAW solution of DFMKdV equation (15) can not be
distinguished properly and thus the effects of the parameters become insignificant.

Figure 2 shows the variation of the dust ion acoustic solitary wave solution φ1
against ξ of the DFMKdV equation (15) for different values of strength f0 of the
externally applied force with other parameters M = 0.1, q = 0.9, µ = 0.63, νid0 =
0.01, ω = 0.4 and τ = 2. f0 is taken from the interval (0, 0.09) and to discuss the
changes, the figures are drawn for the particular values of f0 = 0, 0.03, 0.06 and 0.09.
It is observed that as the strength f0 of the external periodic force increases the
amplitude of the dust ion acoustic wave increases.

In Figure 3, we present the variation of the dust ion acoustic solitary wave solution
φ1 against ξ of the DFMKdV equation (15) for different values of frequency ω of
the externally applied force with all other parameters M = 0.1, q = 0.9, µ = 0.63,
νid0 = 0.01, f0 = 0.06 and τ = 2. We have taken ω from the interval (0.1, 1.3) and
the results are plotted for the fixed values of ω = 0.1, 0.5, 0.9 and 1.3. It is interesting
to note that the reverse effect happened as in Figure 1 and it is observed that the
amplitude of the dust ion acoustic wave decreases as the frequency ω of the external
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Fig. 1. Variation of µ, the ratio between the unperturbed densities of the dust ions and
electrons in the different ranges of the entropic index q.

periodic force increases. It is also seen that when ω ∈ (0.1, 0.5) the peaks of the
amplitude of the dust ion acoustic wave are almost same.

The variation of the dust ion acoustic solitary wave solution φ1 against ξ of the
DFMKdV equation (15) is depicted for different values of νid0 with special values of
the other parameters M = 0.1, q = 0.9, µ = 0.63, f0 = 0.06 and τ = 2 in Figure 4.
νid0 is taken from the interval (0.01, 0.13) and to observe the differences the figures
are presented for the fixed values of νid0 = 0.01, 0.05, 0.09 and 0.13. It is noticed that
the amplitude of the dust ion acoustic wave decreases as νid0 increases but the width
of the amplitude remain almost unaltered.

Figure 5 reflects the variation of the dust ion acoustic solitary wave solution
φ1 against ξ of the DFMKdV equation (15) for different values of entropic index q
with respective values of µ coming from the relation µ = 4q

3(1+q) and other special

parameters M = 0.1, ω = 0.4, νid0 = 0.01, f0 = 0.06 and τ = 2. Here, q in(0.6, 0.9)
and corresponding µ in(0.5, 0.63). The figures are plotted for pair of values of (q = 0.6,
µ = 0.5), (q = 0.7, µ = 0.55), (q = 0.8, µ = 0.59) and (q = 0.9, µ = 0.63). It is
observed that as entropic index (q) and µ increases both the amplitude and width of
the ion acoustic solitary wave decreases.

Figure 6 presents the variation of the dust ion acoustic solitary wave solution
φ1 against ξ of the DFMKdV equation (15) for different values of the speed of the
traveling wave (M) with special parameters q = 0.9, ω = 0.4, µ = 0.63, νid0 = 0.01,
f0 = 0.03 and τ = 2. It is found that as the speed of the traveling wave (M) increases,
the peak of the amplitude of the ion acoustic solitary wave increases and the width of
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Fig. 2. Variation of the solitary wave solution of the damped forced modified KdV equation
(15) for the different values of strength of the periodic force f0 with other physical parameters
M = 0.1, q = 0.9, µ = 0.63, νid0 = 0.01, ω = 0.4 and τ = 2.

Fig. 3. Variation of the solitary wave solution of the damped forced modified KdV equation
(15) for the different values of frequency of the periodic force ω with other special parameters
M = 0.1, q = 0.9, µ = 0.63, νid0 = 0.01, f0 = 0.06 and τ = 2.
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Fig. 4. Variation of the solitary wave solution of the damped forced modified KDV equation
(15) for the different values of dust ion collisional frequency νid0 with M = 0.1, q = 0.9,
ω = 0.4, µ = 0.63, f0 = 0.06 and τ = 2.

Fig. 5. Variation of the solitary wave solution of the damped forced modified KdV equation
(15) for the different values of entropic index q with respective values of µ, the ratio between
the unperturbed densities of the dust ions and electrons with M = 0.1, ω = 0.4, νid0 = 0.01,
f0 = 0.06, τ = 2.
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Fig. 6. Variation of the solitary wave solution of the damped forced modified KdV equation
(15) for the different values of the speed of the travelling wave M with other physical
parameters q = 0.9, ω = 0.4, µ = 0.63, νid0 = 0.01, f0 = 0.03 and τ = 2.

the amplitude decreases. A right hand shifting of the dust ion acoustic solitary wave
solution is also observed as M increases.

The dependence of the amplitude of the dust ion acoustic solitary wave solution
of DFMKdV (15) on the strength (f0) is presented in Figure 7 for different values of
frequency (ω), and all other parameters are same as in Figure 1. The amplitude of the
solitary wave increases as the strength of the external periodic force increases. Also
at the same time, it is observed that the rate of change of amplitude of the solitary
wave decreases when the frequency of the external force increases.

Figure 8 represents the dependence of the amplitude of the dust ion acoustic
solitary wave solution of DFMKdV (15) with respect to the strength (f0) of the
external periodic force for different values of entropic index q. It is seen that the
amplitude of the solitary wave decreases as the entropic index q increases with the
strength (f0) of the external periodic force.

In Figures 9a and 9b, three dimensional plots of the dust ion acoustic solitary
wave solution φ1 are depicted in the plane (ξ, τ) of the damped forced modified KdV
equation (15). In Figure 9a special values of the parameters are taken as M = 0.1,
q = 0.9, µ = 0.63, νid0 = 0.01, ω = 0.4, f0 = 0.03 and τ = 2 and in Figure 9b q =
2.1, µ = 0.9 with all other parameters are same as in Figure 9a. Both the figures,
ξ ∈ (−15, 15) and τ ∈ (−15, 15). In Figure 9a, the maximum amplitude of the dust
ion acoustic solitary wave lies between 0.19 and 0.21 and between 0.044 and 0.055 in
Figure 9b. Thus, it is observed that as the values of q and corresponding µ increases,
the amplitude and width of the dust ion acoustic solitary wave significantly decreases.
Also, it is seen that the solitary waves become much sharper in Figure 9b than in
Figure 9a.

In Figures 10a and 10b, contour plots of the dust ion acoustic solitary wave solu-
tion φ1 are depicted in the plane (ξ, τ) of the DFMKdV equation (15) with other
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Fig. 7. Variation of the solitary wave amplitude (φm(τ)) with respect to strength of the
periodic force f0 of the damped forced modified KdV equation (15) for the different values
frequency ω with all other parameters are same as in Figure 1.

Fig. 8. Variation of solitary wave amplitude (φm(τ)) with respect to strength of the periodic
force f0 of the damped forced modified KdV equation (15) for the different values of entropic
index q with all other parameters are same as in Figure 5.
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Fig. 9. Three dimensional plots of the solitary wave solution φ1 in the plane (ξ, τ) of the
DFMKdV equation (15) with M = 0.1, q = 0.9, µ = 0.63, νid0 = 0.01, ω = 0.4, f0 = 0.03
and τ = 2 in Figures 9a and 9b, q = 2.1 and µ = 0.9 with all other parameters are same as
in Figure 9a.

Fig. 10. Contour plot of the solitary wave solution φ1 in the plane (ξ, τ) of the damped
forced modified KdV equation (15) with other parameters same as in Figures 9a and 9b.

physical parameters same as in Figures 9a and 9b. Figures represent the equiampli-
tude solution space of the dust ion acoustic solitary wave solution φ1 and follows a
specific pattern in the (ξ, τ) plane with the values of φ1 at the outer most contours
0.02 and 0.005 in Figures 10a and 10b, respectively. From Figures 10a and 10b, it
is noticed that the outermost contour has the the same value of φ1 and it increases
with the values of the outermost contour towards the centre of the solution space
from both sides. This is because we are representing a solitary wave solution. It is
found from the contours that the value of the maximum amplitude in Figure 10a is
0.2 and that of in Figure 10b is 0.045.

5 Conclusions

We have studied dust ion acoustic solitary waves in a dusty plasma with negatively
charged ions, non-extensive electron and stationary dust particles. The reductive
perturbation technique is employed to derive the DFMKdV equation. An analytical
solitary wave solution has been derived for DFMKdV equation in the presence of
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small damped and external applied periodic force. No work have been reported till
today on the analytical solution of DFMKdV equations. The effect of the parameters
q, f0, M , νid0 and ω on the dust ion acoustic solitary wave solution with fixed values
of other physical parameters µ, τ has been presented. The parameters q, f0, M , νid0
and ω have played an important role on the nonlinear structure of the DIASW in an
collisional dusty plasma.
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