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Abstract. The brain consists of many interconnected systems and sub-
systems that have unidirectional or bidirectional connectivities. In this
paper, we consider a two-layer neuronal network with unidirectional in-
terlayer connections to investigate the effects of one layer on the other
one. Two one-dimensional ring networks with non-local couplings con-
struct the two-layer network. The couplings are considered to be lin-
ear to describe the electrical synapses. At first, the independent layer,
which is not affected by the other layer, is analysed. Different patterns
such as synchronizations, non-stationary chimera state and imperfect
synchronization are observed in such solo network. Then the two-layer
network is investigated by varying three coupling strengths of intra-
layer and inter-layer links. The results show that the first layer can
change the behaviour of neurons in the second layer according to the
values of coupling strengths. The interaction of the interlayer and in-
tralayer couplings can also induce the emergence of imperfect chimera
state, which was not observed in the monolayer network. These self-
organized phenomena can have strong relations with brain functions
and malfunctions.

1 Introduction

The nervous system is a complex network, composed of billions of neurons. The neu-
rons interact with each other and transfer the information from the brain to organs
and vice versa. The communications between the neurons occur mainly through two
different synapses: chemical and electrical synapse. At the synapses, the information
from one neuron is transferred to another one. If the information transmission hap-
pens through release of neurotransmitters, it is called a chemical synapse and if the
cytoplasms of adjacent cells are directly connected, it is called an electrical synapse
or gap junction [1]. The electrical synapses have been observed in the retina, inferior
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olive, olfactory bulb, and several regions in the mammalian central nervous system [1].
Depending on the characteristics of the channel connexins, the gap junctions can be
either unidirectional or bidirectional [2].

Different self-organizing phenomena, such as synchronization, have been observed
in neuronal networks [3–6]. Neuronal synchronization, which is considered as a col-
lective behaviour of many neurons, has been a challenging issue in neuroscience for
decades [7]. Synchronization can be related to efficient processing, information trans-
mission and signal coding, in the brain [8]. Moreover, many brain disorders are asso-
ciated an enhancement or a decrement in synchronization. For example, epilepsy is
known as a functional brain disorder, which has strong relations with synchronization.
In fact, before or at the early stages of the epilepsy, desynchronization is observed,
while high levels of synchronization appear at the end of the seizures [9]. Another
brain disorder concerning synchronization is Alzheimer’s disease (AD). Comparing
the electroencephalogram (EEG) signals of a group of AD patient with those from
the control group revealed a considerable reduction in the synchronization of the
AD group [10]. Attention deficit hyperactivity disorder (ADHD) is a common child-
hood behavioural disorder. The experimental EEG recordings of ADHD patients have
demonstrated high synchronization in the alpha and beta bands [11].

Chimera patterns are another self-organized phenomenon having strong corre-
spondences with neuronal functions [12]. These patterns are characterized by the
coexistence of synchronized and de-synchronized domains in a network [13–17]. The
unihemispheric sleep in some animals has the most association with the chimera
state [18]. During this sleep, one hemisphere of the brain is slept and its neurons
oscillate almost synchronously, while the other hemisphere is awake and its neurons
oscillate asynchronously. It has also been reported that some brain disorders, such
as Parkinson’s disease, Alzheimer’s disease, Epileptic seizures, etc., can be related
to chimera states [18]. Therefore, chimera states are being widely investigated in
neuronal networks [19–22].

Recently, the concept of multilayer networks has attracted much attention [23–26].
Multilayer networks are able to describe the interconnected systems through multiple
connections [27]. The nervous system consists of multiple subsystems and layers of
connectivity. Thus employing a multilayer network can have the benefits of consid-
ering the effects of subsystems on each other. In this paper we consider a two-layer
neuronal network, consisting of two rings of non-locally coupled Hindmarsh–Rose
neurons. All the communications between the neurons are through gap junctions.
We aim to investigate the effects of one layer on the emerging patterns of the second
layer. Thus, the two layers are connected with unidirectional links.

The paper is organized as follows. In the next section the mathematical equations
of the network are described. Section 3 analyses the main results of the numerical
simulations. The conclusions are given in Section 4.

2 The network model

Each neuron of the network is described by the Hindmarsh–Rose neuron model, given
by:

ẋ = y + bx2 − ax3 − z + I

ẏ = c− dx2 − y

ż = r[s(x + 1.6)− z] (1)

where the variables x, y, z, represent the membrane potential of the neuron, fast
recovery variable and slow adaption variable respectively. I is the external forcing
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Fig. 1. (a) The membrane voltage of the neuron of model (1), when I = 1.5. (b) the
attractor of the neuron of model (1) in (x–y) plane. The neuron shows spiking behaviour at
defined parameters.

Fig. 2. The schematic of the two-layer network. The black lines show intra-layer non-local
links and the red lines show unidirectional inter-layer links.

current. We fix the parameters at a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4 and
I = 1.5. Therefore, a single neuron shows periodic spiking as shown in Figure 1.

We construct a two-layer network of the above-mentioned neuron models. Each
layer of the network is a one-dimensional ring, consisting of non-locally coupled neu-
rons via electrical synapses. Two layers are coupled with unidirectional coupling
connections in a way that only the second layer is influenced by the first layer.
Figure 2 shows a schematic of this network. Thus the equations of the first layer are
described by:

ẋ1i = y1i + bx2
1i − ax3

1i − z1i + I + d1

i+P∑
j=i−P

[x1j − x1i] (2)

ẏ1i = c− dx2
1i − y1i

ż1i = r [s (x1i + 1.6)− z1i]
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and the equations of the second layer are described by:

ẋ2i = y2i + bx2
2i − ax3

2i − z2i + I + d2

i+P∑
j=i−P

[x2j − x2i] + d3(x1i − x2i)

ẏ2i = c− dx2
2i − y2i

ż2i = r [s (x2i + 1.6)− z2i] (3)

where i is the index of neuron, i = 1, . . . , N , N is the number of neurons in each layer,
P is the number of neurons at each side of the non-local coupling. The parameters are
fixed at N = 100, P = 20. The strengths of the first intra-layer, second intra-layer
and the inter-layer couplings are represented by d1, d2 and d3 respectively.

3 Numerical results

In this section, the main results of the numerical solutions of the network are pre-
sented. As discussed before, both of the layers are considered to be the same and the
first layer is not influenced by the second one. Therefore, for the first step we inves-
tigate the patterns of the first layer ring network by varying its coupling strength.
Then the two-layer network is considered and the effect of the first layer on the second
layer behaviour is investigated via unidirectional electrical couplings.

3.1 A single layer network

Firstly, we consider the network given in equation (2), and vary the coupling strength
d1. Figure 3 shows the different spatiotemporal patterns observed from the network,
by increasing the coupling strength. When the coupling strength is between 0.001
and 0.004, all the neuron’s of the network spike synchronously as shown in Figure 3a.
For d > 0.004, the neurons behaviour is changed to bursts. In this case the pattern
of the network seems to be the chimera state, but the synchronous and asynchronous
neurons are not stationary at times. This state is called non-stationary chimera.
Figure 3b shows the non-stationary chimera for d = 0.005. The non-stationary states
are almost observed until d = 0.009. By increasing the coupling strength to d = 0.01,
depending on the initial conditions, two cases of imperfect synchronization or burst
synchronization can be observed. Figure 3c shows the imperfect synchronization for
d = 0.01. In this case, although most of the neurons are spiking synchronously, a few
of them exhibit chaotic bursting. Figure 3d shows the burst synchronization state
in which the neurons start to burst synchronously, for d = 0.01 and with different
initial conditions with Figure 3c. Finally, when the coupling strength gets higher
values, all the neurons become synchronous, exhibiting synchronous spikes as shown
in Figure 3e.

3.2 Two-layer network

If the inter-layer coupling strength is equal to zero, then the second layer will have
the same behaviours as the first layer, as described in the previous subsection. By
increasing the interlayer coupling strength, we consider the effects of the first layer on
the second one. To this aim, the values of the intra-layers coupling strengths are set
at 0.001, 0.005, 0.01, 0.02, their dynamics were described in the previous subsection,
and then the inter-layer coupling strength is varied.



Diffusion Dynamics and Information Spreading in Multilayer Networks 2423

Fig. 3. Different spatiotemporal patterns of the network of equation (2) by increasing the
coupling strength. (a) d1 = 0.003: synchronization, (b) d1 = 0.005: non-stationary chimera
state, (c) d1 = 0.01: imperfect synchronization, (d) d1 = 0.01: burst synchronization with
different initial conditions, (e) d1 = 0.02: synchronization. Increasing the coupling strength
causes transitions from synchronization to chimera state and again to synchronization. It
also can change the spiking patterns of neurons to bursts.

The obtained results show that when d3 < 0.01, there is no considerable change
in the second-layer patterns, in comparison to the absence of inter-layer coupling.
As the inter-layer coupling raises from d3 = 0.01, the pattern of the second layer is
affected by the first layer.

At first, we consider d2 = 0.001. By setting this, the second layer neurons spike
synchronously in the case of no inter-layer coupling. However when d3 = 0.05 and
d1 = 0.005, the second layer state changes to non-stationary chimera as shown in
Figure 4a. If d2 is increased to d2 = 0.005, by setting d1 = 0.02 and d3 = 0.05, the
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Fig. 4. The spatiotemporal patterns of layer II, (a) d1 = 0.005, d2 = 0.001, d3 = 0.05: non-
stationary chimera state. (b) d1 = 0.02, d2 = 0.005, d3 = 0.05: synchronization. The pattern
of the second layer changes according to the first-layer behaviour due to the unidirectional
links.

Fig. 5. The spatiotemporal patterns of layer II, (a) d1 = 0.005, d2 = 0.001, d3 = 0.1: non-
stationary chimera state. (b) d1 = 0.005, d2 = 0.004, d3 = 0.1: non-stationary chimera state.
(c) d1 = 0.01, d2 = 0.004, d3 = 0.1: imperfect chimera state. The pattern of the second-layer
changes according to the first-layer behaviour due to the unidirectional links.

second layer neurons spike synchronously instead of showing non-stationary chimera
(Fig. 4b).

If the value of d3 increases, the first layer can cause more different patterns in layer
II. Figure 5 shows some of the results of d3 = 0.1 on the second layer pattern. If d2 =
0.001, in the case of no inter-layer coupling, the neurons should spike synchronously,
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Fig. 6. The snapshots of the membrane potentials of neurons in layer II, corresponding to
the states of Figure 5. (a) d1 = 0.005, d2 = 0.001, d3 = 0.1: non-stationary chimera state.
(b) d1 = 0.005, d2 = 0.004, d3 = 0.1: non-stationary chimera state. (c) d1 = 0.01, d2 =
0.004, d3 = 0.1: imperfect chimera state.

but with setting d1 = 0.005 and d3 = 0.1, although the neurons are still spiking,
the layer pattern changes to non-stationary chimera, as shown in Figure 5a. Even by
increasing d2, the first layer still affects the second one. Figure 5b shows the pattern
of layer II for d2 = 0.004, in which the neuron’s behaviour is changed to bursting and
the layer exhibits non-stationary chimera. Increasing the d1 value makes the second
layer to be more similar to the first layer. For example, if d1 is set at 0.01, the second-
layer pattern shows imperfect chimera. In this case there are some bursting neurons
within the synchronous spiking group (Fig. 5c). The imperfect chimera is the result
of inter-layer coupling and was not observed in the first layer. Figure 6 shows the
snapshot of the membrane potentials of the second-layer neurons, corresponding to
the states shown in Figure 5.

In order to have a comprehensive comparison between the observed states in
different coupling strengths, some obtained results are presented in Tables 1–3.

4 Conclusion

In this paper, a two-layer neuronal network was studied. Each layer of the network
was composed of one-dimensional ring of non-locally coupled Hindmarsh–Rose neu-
rons. The brain consists of many interconnected subsystems that can affect each
other unidirectionally or bidirectionally. Here, the two layers were connected via uni-
directional links to study the effect of one subsystem on the other one. All of the
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Table 1. The observed states in the second layer for d3 = 0.01. (S S: spike synchronization,
B S: burst synchronization, NS Ch: non-stationary chimera, Imp S: imperfect synchroniza-
tion, As: asynchronization).

d1

d2 0.01 0.05 0.001 0.002
0.001 S S S S S S S S
0.005 NS Ch NS Ch NS Ch NS Ch
0.01 S S S S Imp S Imp S
0.02 S S S S S S S S

Table 2. The observed states in the second layer for d3 = 0.05. (Abbreviations as in Tab. 1).

d1

d2 0.001 0.005 0.01 0.02
0.001 S S NS Ch As S S
0.005 NS Ch NS Ch NS Ch S S
0.01 S S B S B S S S
0.02 S S B S S S S S

Table 3. The observed states in the second layer for d3 = 0.1. (Abbreviations as in Tab. 1).

d1

d2 0.001 0.005 0.01 0.02
0.001 S S NS Ch S S S S
0.005 NS Ch NS Ch NS Ch NS Ch
0.01 NS Ch B S B S S S
0.02 S S B S B S S S

couplings were defined by a linear function, to describe the electrical synapses. At
first, we analysed the ring network of the first layer, which was not influenced by the
second layer. The strength of the coupling was varied and different emerging pat-
terns, such as synchronization, non-stationary chimera, imperfect synchronization
and burst synchronization, were observed. Since the two layer structures were the
same, if there were no interlayer connections, the second layer would behave similar
to the first one. It was observed that the interlayer coupling changes the pattern
of the second layer, according to the first layer behaviour. Actually, the emerging
pattern in layer II, was the result of interaction of all three coupling strengths. Even
this interaction caused an emergence of imperfect chimera, which was not observed in
the one-dimensional ring network. These emerging patterns can have strong relations
with the brain disorders. For example, the increasing or decreasing in the strength of
synapses can act as some disturbances and cause stronger or weaker effects between
the subsystems. As a result, the synchronization in special parts may be enhanced
or weakened and initiate a disorder.
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I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)
25. S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes, C.J. Perez-Vicente, Y. Moreno, A.

Arenas, Phys. Rev. Lett. 110, 028701 (2013)
26. X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015)
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