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Abstract. Synchronization phenomenon is one of the most fundamen-
tal properties in the field of neurosciences, and it plays a key role in
several neuronal processes. In this paper, we report a neural synchrony
in a multiplex neuronal network by simultaneously taking electrical
and chemical synaptic interactions. Most of the previous studies on
the neuronal synchrony have been focused on a mono-layer network
by solely considering one type of neuronal communication, either elec-
trical or chemical synaptic coupling. Here we consider the multiplex
network where the connection within the layer (intralayer connection)
and the layer–layer interaction (interlayer connection) links are as-
sociated with the electrical and chemical synapses respectively. The
network topology in each layer is represented by the small-world net-
work. We mainly explore intralayer synchronization in the multiplex
network under the simultaneous effect of both synaptic interactions.
Intralayer synchronization is a distinctive process that refered to co-
herence among the nodes within the layer irrespective of the coherence
between the replica nodes. Through the master stability approach, we
derive the necessary condition for the intralayer synchronization state
and then we numerically confirm our analytical findings.

1 Introduction

Complex network theory [1–4] is one of the most cultivated subject due to its immense
necessity and applicability in several fields of science and technology. This theory
helps a lot in modelling the various types of systems, ranging from microscopic level
to a large complex system. The main advantage of this theory is that it provides a
prolific ground for understanding the several universal properties of the large number
of interacting complex dynamical units. In the real-world situation, naturally arising
systems are typically connected to each other in various ways depending on their
nature of interaction processes. The combined effect of the coupling mechanism and
associated underlying interacting topology among the agents plays a vital role in
their normal functioning. Some dynamical processes which are often associated with
networks and the investigation into emergent unfolding collective phenomena have
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gained considerable attention in the last few decades [5–7]. Among them synchro-
nization phenomenon is one of the most interesting research topic from the nonlinear
science perspective [8–13]. A detailed study of this property has been done by con-
sidering various types of complex networks such as random network [14], scale-free
network [15], small-world network [16] and also different types of regular networks.
Yet, there are many synchronization processes where the network does not involve
a single network, rather they rely on this property by the collection of various net-
works. Such scenarios are observed in the power grid networks, ecological network
and neuronal systems.

Network architecture is the main backbone of the various complex systems.
Recently, several extensions of the complex network have been developed to care-
fully capture the structural properties of the networks which include hypernetwork
[17–19], modular network [20], multilayered network [21–23], etc. Among them mul-
tilayer network formation is a rapidly evolving research field in recent times. This
network architecture describes various real-world networks [24] in a beautiful way.
Such networks consist of diverse layers, which either simultaneously exist or alternate
with respect to time [21,22]. For illustration, consider an online social networking sys-
tem where each individual is connected through Facebook, twitter or Instagram or
some combination of these three social systems. If we consider each social system
represents a layer then each layer has its own interacting pattern, yet the individ-
uals typically influence each other across layers [25]. A similar type of connectivity
pattern is observed in inter-neuronal communication [26]. In the neuronal network,
neurons interact through two types of synapses. One is electrical coupling via the gap-
junctional channels and another one is chemical synaptic interaction [26]. A study on
multilayer network offers to better understand the several interaction processes, rang-
ing from brain network to social communication; in particular, social network [27]
where the people from one community are connected to other communities via differ-
ent types of relations, mobility network [28,29] where each individual is served with
various types of transportations. Also air transportation network [30], subway net-
work [31,32], epidemic spreading process [33], neuronal network [34] all have the best
representation in the multilayer network formations. Moreover, such architectures
uncover some interesting emerging collective phenomena such as percolation [35–37]
and diffusion processes [38], epidemic spreading [39–41], evolutionary game dynam-
ics [42], controllability theory [43] and chimera states [44,45]. This phenomenology
of multilayer network is quite different from the results on single layer or monolayer
network.

Multilayer network mainly consists of two types of interactions, one is intralayer
interaction which defines the interaction among the nodes within layer and another
is interlayer interaction which refers to the connection between the nodes which are
located in different layers. The intralayer interaction types within the layers may differ
from the other layer as well as from the interlayer interactions. When the different
layers are composed with an equal number of nodes and the interlayer connections
between the same nodes are preserved in such a way that a node from one layer is only
linked with its replica node in the remaining layers, then such a multilayer structure
is called a multiplex network. In this network formation various types of synchrony
phenomena were investigated such as intra- and inter-layer synchronizations [46–50],
explosive synchronization [51], coexistence of synchrony and desynchrony [53–56], and
cluster synchronization [57]. In addition solitary states for a multiplex architecture
was also observed in reference [52] in the presence of both positive and negative
couplings.

Brain functions are mainly dependent on the interneuronal communications
between neurons, in which each neuron relies or exchanges the information to other
neurons via synaptic communications. Originally, two types of synapses are observed,
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one is electrical coupling and the other one is chemical synapse. The first type of inter-
action takes place between two adjacent nodes by making a gap-junctional channel
between them and the latter one happens chemically from pre- to post-synaptic
neurons. The simultaneous presence of these two types of synaptic interactions was
noticed in most of the nervous systems, and they are performed independently [26].
Such a type of neuronal synaptic communication arrangement is perfectly perceived
by designing a multiplex neuronal network. Synchronization phenomenon is one of
the most essential properties in the field of neurosciences [58], since the different types
of the abnormal patterns of synchrony [59–61] in the brain are closely related to sev-
eral brain disorder [62] diseases, which include, Alzheimer’s, epilepsy, schizophrenia
and Parkinson’s diseases. The different types of neuronal synchronization patterns
were observed experimentally [63–65] by performing the experiment on the series of
neuronal systems, such as human thalamocortical area, and human cardiorespiratory
system [66], mammalian visual cortex, ganglion of the spiny lobster and stomatogas-
tric, etc. Most of the previous results on the neuronal synchrony were concentrated
on taking either electrical or chemical synaptic interactions as the underlying inter-
acting topology is a single network formation or monolayer architecture. But from
the neurobiological perspective, the study of neuronal synchrony in the multiplex
structure has immense importance and deserves special attention.

Inspired by the above facts, we investigate the neuronal synchrony in the mul-
tiplex neuronal network. Each layer of the network is represented by a small-world
network architecture. The emergence of small-world connectivity in the brain net-
work is discussed by Bassett et al. [67,68] in their pioneering review article. In our
study, the local dynamics of the each node of the neuronal network are cast with the
Hindmarsh–Rose neuron which is a well established neuronal oscillator and is known
for different types of bursting and spiking behaviors. Motivated from the neuroscience
point of view, in our work, we consider the intralayer interaction type is electrical
communication, whereas the interlayer link is realized through chemical synaptic
interaction. Here we explore the complete intralayer synchronization property of the
multiplex neuronal network under the combined effect of these two synaptic inter-
actions. Through the linear stability approach, we analytically derive necessary and
sufficient conditions for the existence of the intralayer synchronization state and we
characterize the state by master stability function framework. The analytical findings
are testified by the numerical results.

2 Mathematical model of neuronal multiplex network

For the multiplex neuronal network, we consider two layers where each layer is com-
posed of N Hindmarsh–Rose (HR) neurons connected through electrical synapses
and the layers are connected among themselves through chemical synapses. Since
our main goal was to study complete intralayer synchronization, we keep each HR
neuron identical. The mathematical description of the entire neuronal network model
can be described as

Layer− 1 :

ẋ1i = (a− x1i)x2
1i − y1i − z1i + ε

N∑
j=1

A
[1]
ij (x1j − x1i) + gc(vs − x1i) Γ(x2i),

ẏ1i = (a+ α)x2
1i − y1i,

ż1i = µ(bx1i + c− z1i),
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Layer− 2 : (1)

ẋ2i = (a− x2i)x2
2i − y2i − z2i + ε

N∑
j=1

A
[2]
ij (x2j − x2i) + gc(vs − x2i) Γ(x1i),

ẏ2i = (a+ α)x2
2i − y2i,

ż2i = µ(bx2i + c− z2i),

where i = 1, 2, . . . , N is the neuron index and N is the total number of neurons in
each layer. Here (xli, yli, zli) denotes the state variable of the ith-node in layer-l, in
which xli denotes the membrane potential of the ith-neuron, yli corresponds to the
transport of ions across the membrane through fast currents associated with Na+ or
K+, zli be the slow Ca2+ current and µ modulate the slow dynamics of the system.
Let the control parameter ε be the intralayer interaction strength corresponding to
electrical synapses, which determine how much information will be distributed among
the neurons. The overall strength of interaction between the two layers is tuned by the
chemical synaptic strength gc. We fixed the parameter a = 2.8, b = 9.0, c = 5.0, α =
2.8, and µ = 0.005 for which the membrane potential of an isolated neuron displays
multi-time scale chaotic spiking-bursting disposition. The nonlinear sigmoidal input–
output function Γ(x) = 1

1+exp[−λ(x−Θs)] delineates the mechanism of the activation
and deactivation for the chemical synapses. Here vs is the synaptic reversal potential.
For vs > xli(t) the synaptic current has a depolarizing effect making the synapse
excitatory, and the synaptic current exhibits hyper-polarizing effect for vs < xli(t)
which makes the synapse inhibitory. For our system parameters, |xli(t)| is always less
than 2, thus (xli(t)− vs) becomes negative for vs = 2.0, hence the chemical synapse
is excitatory forever. So spiking of the pre-synaptic neuron induces the post-synaptic
neuron to spike. Parameter Θs controls the synaptic firing threshold and the slope
of the sigmoidal function is determined by λ, hereafter Θs = −0.25 and λ = 10.

Here one neuron in a layer is connected to its replica on the other layer by
the chemical ion transportation through chemical synapses and the intralayer cou-
plings are considered through bidirectional electrical gap junctional couplings. The
connectivity of the intralayer electrical synapses are deliberated as bidirectional
small-world networks, described by the adjacency matrix A [l]

ij (where in layer-l,

A
[l]
ij = 1 if ith-node is connected to jth-node and 0 otherwise), for l = 1, 2. The

corresponding zero-row sum Laplacian matrices are given by L [l]
ij = −A [l]

ij for

i 6= j, and L [l]
ii =

∑N
j=1A

[l]
ij . Let the eigenvalues of L [l] be the diagonal matrix

Λ[l] = diag{0 = γ
[l]
1 , γ

[l]
2 , . . . , γ

[l]
N } and V [l] be the orthogonal matrix, whose columns

are the orthogonal eigenvectors of L [l](l = 1, 2).
Following the procedure proposed by Watts and Strogatz (WS)[16], the small-

world networks are formed. For that we begin by considering a regular ring network
of N nodes, each of which is connected to its 2k nearest neighbors (k on each side).
Then we reconnect all the initial edges to the vertices chosen uniformly at random
from distant nodes with probability p, where dual edges are not to be taken. Hence
2k be the average degree of intralayer electrical synaptic networks. Here we consider
the complete multiplex network. For incomplete multiplex network (i.e., few replicas
are connected and few are not) intralayer synchronization manifold will not be an
invariant manifold, so it doesn’t yield complete intralayer synchronization. Hence for
the intralayer synchronization to exist, complete multiplex network is necessary.

Since the intralayer coupling function is of diffusive nature and the nonlinear
interlayer coupling function is associated with each replica, and if all oscillators in
each individual layers start with the same initial condition, then the velocity profiles
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of all subsystems in each individual layer become the same. This ensures that the
complete intralayer synchronization state (xi,yi) = (x0,y0), i = 1, 2, . . . , N is an
invariant state for all coupling strengths ε and gc. We call the subset

S = {(x0,y0) ⊂ Rd : (xi,yi) = (x0,y0), i = 1, 2, . . . , N} (2)

as synchronization manifold. The local stability of S can be determined by the intra-
and interlayer coupling strengths and the spectral properties of the intralayer Lapla-
cian matrices.

3 Numerical results

Now the two intralayer networks corresponding to the electrical synapses are statis-
tically equivalent to each other due to the choice of identical WS network parameters
k, and psw for both the layers. In this section, our main aim was to explore the effect
of network parameters k, psw, inter- and intralayer coupling strengths gc and ε on the
emergence of intralayer synchronization state. We integrate equation (1) using fifth
order Runge–Kutta–Felhberg method with integration time step dt = 0.01 and ran-
dom initial conditions from the phase space volume [−2.5, 2.0]× [0, 30]× [−4.3,−1.2].
To draw the following parameter regions, we have taken 20 network realizations at
each point. For a multiplex network merely two distinctive forms of synchroniza-
tion states can emerge, namely, intralayer and interlayer synchronizations. Interlayer
synchronization occurs when each unit in a given layer evolves synchronously with
its replicas, regardless of whether or not it is synchronized with the other units of
the same layer. Contrariwise, intralayer synchronization is defined as the state of
synchrony in each of the individual layer, irrespective of the synchrony between the
replica nodes. If each layer evolves synchronously then the synchronization error for
layer-l (l = 1, 2) is defined as

El = lim
T→∞

1
T

∫ T

0

N∑
j=2

√
(xl1 − xlj)2 + (yl1 − ylj)2 + (zl1 − zlj)2

N − 1
dt, (3)

where T is the long-time interval. Then the intralayer synchronization error of the
multiplex network is defined as

E =
E1 + E2

2
· (4)

To calculate the intralayer synchronization error, we simulate the entire dynamical
network for 3×105 time steps with an integration time step of 0.01, and the transient
is considered up to time steps 2× 105.

In the presence of both the synaptic couplings, the neuronal multiplex network
achieves intralayer synchronization with different firing patterns, results are shown
in Figure 1 with fixed average degree k = 2 and small-world probability psw = 0.15.
Each layer oscillates in complete synchronous motion with chaotic square wave burst-
ing for the lower values of synaptic strengths ε = 8.0 and gc = 0.3. The chaotic square
wave bursting time series are shown in Figure 1a, the corresponding attractors are
shown in (x, y, z) plane in Figure 1b. The dynamics of layer-1 and layer-2 are repre-
sented by blue and red lines respectively. These figures show that both the layers are
in synchronized square-wave bursting state, although their synchronization manifolds
are different. Here the intralayer synchronization occurs. Increasing the values of the
two coupling strengths to ε = 12.0 and gc = 1.2, each layer exhibits triangular firing
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Fig. 1. (a,b) Intralayer synchronization and (c,d) global synchrony in the multiplex network.
The first column represents the time series where each layer is in complete synchronization
state various synaptic coupling strengths, while second column show the phase space of
the synchronized manifolds. The first row (a,b) and second row (c,d) are plotted for ε =
8.0, gc = 0.3 and ε = 12.0, gc = 1.2 respectively. Other parameters are fixed at k = 2 and
psw = 0.15.
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Fig. 2. Variation of the synchronization error by varying (a) ε for different values of gc,
where psw = 0.15 and k = 2; (b) psw for various values of k, with ε = 8.0 and gc = 0.5.

pattern in Figure 1c, and the corresponding plateau bursting state is manifested by
the attractor in Figure 1d. Interestingly, we get the intralayer synchronization state
where each replica is also completely synchronized. Here each replica also achieves
the complete synchrony, hence the phase space. Figure 1d delineates global synchro-
nization manifold. The higher coupling strength promotes two synchronized layers
to evolve in unison. The blue trajectory in Figure 1d stands for the global synchro-
nization manifold (simultaneous existence of intra- and interlayer synchrony) of the
entire multiplex network.
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Next we investigate the role of synaptic interaction strengths and the network
parameters (gc, psw) to emerge this intralayer synchronization state in the multiplex
neuronal network. The results are presented in Figure 2. Figure 2a shows the average
synchronization error with respect to the intralayer coupling strength ε by taking
several exemplifying values of the chemical synaptic interaction strength gc. Blue,
red, green and magenta curves recount respective values of gc = 0.0, 0.1, 0.2 and 0.5
for fixed k = 2 and psw = 0.15. Here slide enhancement of the synchrony is observed
with respect to the interlayer strength gc. When both the layers are uncoupled, then
complete synchrony of these two layers occurs at ε = 8.33. In the presence of interlayer
interaction strength gc = 0.1, the critical threshold value for intralayer synchrony
occurs at ε = 8.0. With a further increase in the interlayer chemical synaptic strength
at gc = 0.2, intralayer synchrony is observed for ε ≥ 7.667. In this way with increasing
value of gc = 0.5, the critical value of intralayer coupling strength ε ≥ 7.33 decreases.
Recently similar results are observed in multilayer network [69,70].

Now we investigate the effect of small-world probability psw by changing the aver-
age degree k. The variations of the synchronization errors with respect to psw are shown
in Figure 2b for various values of the average degree k of the small-world network (blue:
k = 2, red: k = 3, green: k = 4, magenta: k = 5). Here we observe a significant enhance-
ment of the intralayer synchronization with respect to k. For lower average degree k = 2,
the synchrony occurs at psw = 0.1259. When we increase the average degree by setting
k = 3, the synchronization appears at psw = 0.0631 which is much lower than that of
the critical threshold for k = 2 case. The tendency of such an enhancement of intralayer
synchrony is still preserved for more higher values of the average degree. For illustrated
values of k = 4 and k = 5, the synchrony occurs for more lower values at psw = 0.03162
and psw = 0.02 respectively. So, from this scenario one can conclude, with a fixed char-
acter of network property (as fixed values of k and psw), interlayer interaction strength
has not much of a significant effect on the intralayer synchronization property, while the
variation of the network properties has a great impact on the enhancement of intralayer
neural synchrony for fixed synaptic strengths.

4 Linear stability analysis

Using master stability function (MSF) approach in this section, we analyze the sta-
bility of the intralayer synchronization state in the multiplex network given by equa-
tion (1). We rewrite equation (1) as

ẋ1i = f(x1i, y1i, z1i)− ε
N∑
j=1

L
[1]
ij x1j + gc(vs − x1i) Γ(x2i),

ẏ1i = g(x1i, y1i, z1i),
ż1i = h(x1i, y1i, z1i),

ẋ2i = f(x2i, y2i, z2i)− ε
N∑
j=1

L
[2]
ij x2j + gc(vs − x2i) Γ(x1i),

ẏ2i = g(x2i, y2i, z2i),
ż2i = h(x2i, y2i, z2i), (5)

for i = 1, 2, . . . , N , where f(x, y, z) = (a − x)x2 − y − z, g(x, y, z) = (a + α)x2 −
y, h(x, y, z) = µ(bx + c − z). Here each oscillator is identical and coupled by bidi-
rectional small-world electrical network. The individual dynamics and the coupling
term are all continuously differentiable. So through the MSF approach, we obtain
the necessary and sufficient condition for the existence of the synchronized state.
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When the intralayer synchronization occurs, let layer-1 evolves synchronously
with synchronization state variable

(
x1(t), y1(t), z1(t)

)
and layer-2 with

(
x2(t), y2(t),

z2(t)
)
. This synchronization manifold satisfies the evolution equation

ẋ1 = f(x1, y1, z1) + gc(vs − x1) Γ(x2),
ẏ1 = g(x1, y1, z1),
ż1 = h(x1, y1, z1),
ẋ2 = f(x2, y2, z2) + gc(vs − x2) Γ(x1),
ẏ2 = g(x2, y2, z2),
ż2 = h(x2, y2, z2). (6)

Consider the small perturbations of the ith node in each layer from its synchronization
manifold, its present state variable becomes

(
x1i, y1i, z1i

)
=
(
x1 +δx1i, y1 +δy1i, z1 +

δz1i

)
and

(
x2i, y2i, z2i

)
=
(
x2 + δx2i, y2 + δy2i, z2 + δz2i

)
. For the small perturbations

and expanding around the intralayer synchronous manifold up to first order, we
obtain the linearized equations of the error systems as

δẋ1i = fx(x1, y1, z1)δx1i + fy(x1, y1, z1)δy1i + fz(x1, y1, z1)δz1i

− ε
N∑
j=1

L
[1]
ij δx1j − gcΓ(x2)δx1i + gc(vs − x1) Γx(x2)δx2i,

δẏ1i = gx(x1, y1, z1)δx1i + gy(x1, y1, z1)δy1i + gz(x1, y1, z1)δz1i,

δż1i = hx(x1, y1, z1)δx1i + hy(x1, y1, z1)δy1i + hz(x1, y1, z1)δz1i, (7)
δẋ2i = fx(x2, y2, z2)δx2i + fy(x2, y2, z2)δy2i + fz(x2, y2, z2)δz2i

− ε
N∑
j=1

L
[2]
ij δx2j − gcΓ(x1)δx2i + gc(vs − x2) Γx(x1)δx1i,

δẏ2i = gx(x2, y2, z2)δx2i + gy(x2, y2, z2)δy2i + gz(x2, y2, z2)δz2i,

δż2i = hx(x2, y2, z2)δx2i + hy(x2, y2, z2)δy2i + hz(x2, y2, z2)δz2i,

where i = 1, 2, . . . , N and fx, fy and fz respectively denote the partial derivative of
f with respect to x, y and z.

The above system has 6N Lyapunov exponents, among them six are parallel
to the intralayer synchronization manifold, remaining 6N − 6 are in the transverse
direction to the synchronization manifold. The intralayer synchronization manifold
will be stable if all the transverse Lyapunov exponents are negative. So among 6N
Lyapunov exponents, we have to separate out the parallel and transverse components.
For that, we spectrally decompose the perturbation vectors

(
δx1i, δy1i, δz1i

)
and(

δx2i, δy2i, δz2i

)
onto the eigenspace of the Laplacian matrix corresponding to one

of the layers. To enact this projection the choice of the layer is completely arbitrary.
Since the eigenvectors of the Laplacian matrices for each layer form two equivalent
bases of RN , we have chosen the eigenspace of L [1], whose orthonormal eigenvectors
form matrix V [1]. Then the vector coefficient of the eigen decomposition of the error
vectors of the two layers metamorphoses to

(
ξ

(x)
1i , ξ

(y)
1i , ξ

(z)
1i

)
=
( N∑
j=1

V
[1]
ij δx1j ,

N∑
j=1

V
[1]
ij δy1j ,

N∑
j=1

V
[1]
ij δz1j

)

and
(
ξ

(x)
2i , ξ

(y)
2i , ξ

(z)
2i

)
=
(

N∑
j=1

V
[1]
ij δx2j ,

N∑
j=1

V
[1]
ij δy2j ,

N∑
j=1

V
[1]
ij δz2j

)
respectively.
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Therefore the dynamics of ξ(x)
1i for layer-1 is

ξ̇
(x)
1i = fx(x1, y1, z1)ξ(x)

1i + fy(x1, y1, z1)ξ(y)
1i

+ fz(x1, y1, z1)ξ(z)
1i − ε

N∑
j=1

V
[1]
ij

N∑
k=1

L
[1]
jk δxlk

− gcΓ(x2)ξ(x)
1i + gc(vs − x1) Γx(x2)ξ(x)

2i . (8)

Here let
[
V

[1]
ij

]N
j=1

be the eigenvectors of L [1] corresponding to eigenvalue γ[1]
i , there-

fore
N∑
j=1

V
[1]
ij

N∑
k=1

L
[1]
jk δx1k =

N∑
k=1

γ
[1]
i V

[1]
ik δx1k = γ

[1]
i ξ

(x)
1i .

Putting the above expression in equation (8), it becomes

ξ̇
(x)
1i = fx(x1, y1, z1)ξ(x)

1i + fy(x1, y1, z1)ξ(y)
1i + fz(x1, y1, z1)ξ(z)

1i − εγ
[1]
i ξ

(x)
1i

− gcΓ(x2)ξ(x)
1i + gc(vs − x1) Γx(x2)ξ(x)

2i . (9)

The dynamics of ξ(x)
2i for layer-2 is

ξ̇
(x)
2i = fx(x2, y2, z2)ξ(x)

2i + fy(x2, y2, z2)ξ(y)
2i + fz(x2, y2, z2)ξ(z)

2i

− ε
N∑
j=1

V
[1]
ij

N∑
k=1

L
[2]
jk δx2k − gcΓ(x1)ξ(x)

2i + gc(vs − x2) Γx(x1)ξ(x)
1i . (10)

Now, let V [2] be the matrix of eigenvectors of the Laplacian matrix L [2] for layer-2.

Hence L [2]
ij =

N∑
r=1

V
[2]
rj γ

[2]
r V

[2]
rj . From ξ

(x)
2i =

N∑
j=1

V
[1]
ij δx2j , we get δx2i =

N∑
k=1

V
[1]
ki ξ

(x)
2k .

Thus, we have,

N∑
j=1

V
[1]
ij

N∑
k=1

L
[2]
jk δx2k =

N∑
r=1

N∑
l=1

[ N∑
j=1

V
[1]
ij V

[2]
rj

]
γ[2]
r

[ N∑
k=1

V
[2]
rk V

[1]
lk

]
ξ

(x)
2l . (11)

Therefore equation (10) becomes

ξ̇
(x)
2i = fx(x2, y2, z2)ξ(x)

2i + fy(x2, y2, z2)ξ(y)
2i + fz(x2, y2, z2)ξ(z)

2i

− ε
N∑
r=1

N∑
l=1

[ N∑
j=1

V
[1]
ij V

[2]
rj

]
γ[2]
r

[ N∑
k=1

V
[2]
rk V

[1]
lk

]
ξ

(x)
2l

− gcΓ(x1)ξ(x)
2i + gc(vs − x2) Γx(x1)ξ(x)

1i .

For i = 1, γ[1]
i = 0 and r = 1, γ[2]

r = 0, hence the transformed equation reduces
to the linearized equation of the synchronization manifold (Eq. (6)). So it evolves
parallel to the synchronization dynamics. For i ≥ 2, the linearized equation evolves
transverse to the synchronization manifold.

For l = 1, let
[
V

[1]
lk

]N
k=1

be the eigenvector corresponding to eigenvalue 0. Now the
eigenvectors are orthogonal to each other, so it is orthogonal to all other Laplacian
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eigenvectors. Hence
N∑
k=1

V
[2]
rk V

[1]
lk is equal to 1 if r = 1 and 0 otherwise (l = 1, 2).

So,
N∑
j=1

N∑
k=1

V
[1]
ij L

[2]
jk δx2k =

N∑
r=2

N∑
l=2

[ N∑
j=1

V
[1]
ij V

[2]
rj

]
γ

[2]
r

[ N∑
k=1

V
[2]
rk V

[1]
lk

]
ξ

(x)
2l .

Therefore according to this isomorphic transformation, the corresponding error
dynamics (7) transformed as

ξ̇
(x)
1i = fx(x1, y1, z1)ξ(x)

1i + fy(x1, y1, z1)ξ(y)
1i + fz(x1, y1, z1)ξ(z)

1i − εγ
[1]
i ξ

(x)
1i

− gcΓ(x2)ξ(x)
1i + gc(vs − x1) Γx(x2)ξ(x)

2i ,

ξ̇
(y)
1i = gx(x1, y1, z1)ξ(x)

1i + gy(x1, y1, z1)ξ(y)
1i + gz(x1, y1, z1)ξ(z)

1i ,

ξ̇
(z)
1i = hx(x1, y1, z1)ξ(x)

1i + hy(x1, y1, z1)ξ(y)
1i + hz(x1, y1, z1)ξ(z)

1i ,

ξ̇
(x)
2i = fx(x2, y2, z2)ξ(x)

2i + fy(x2, y2, z2)ξ(y)
2i + fz(x2, y2, z2)ξ(z)

2i

− ε
N∑
r=2

N∑
l=2

[ N∑
j=1

V
[1]
ij V

[2]
rj

]
γ[2]
r

[ N∑
k=1

V
[2]
rk V

[1]
lk

]
ξ

(x)
2l − gcΓ(x1)ξ(x)

2i

+ gc(vs − x2) Γx(x1)ξ(x)
1i ,

ξ̇
(y)
2i = gx(x2, y2, z2)ξ(x)

2i + gy(x2, y2, z2)ξ(y)
2i + gz(x2, y2, z2)ξ(z)

2i ,

ξ̇
(z)
2i = hx(x2, y2, z2)ξ(x)

2i + hy(x2, y2, z2)ξ(y)
2i + hz(x2, y2, z2)ξ(z)

2i . (12)

where i = 1, 2, . . . , N . For our case, the two small-world networks in the two layers are
topologically equivalent, since for both the layers, the network parameters are taken
identical, though the two networks may not be identical because of random rewiring
of the edges. In that case, the two Laplacian matrices may not be commutative.

The eigenvector corresponding to the zero eigenvalue yields the parallel direc-
tion, and other eigenvectors for transverse directions. The partial derivatives are
appraised as fx(x, y, z) = (2a−3x)x, fy(x, y, z) = −1, fz(x, y, z) = −1; gx(x, y, z) =
2(a + α)x, gy(x, y, z) = −1, gz(x, y, z) = 0; hx(x, y, z) = µb, hy(x, y, z) =
0, hz(x, y, z) = −µ and Γx(x) = λ exp [−λ(x−Θs)][

1+exp [−λ(x−Θs)]
]2 . Putting this partial derivatives

into equation (12), our required transverse error systems become

ξ̇
(x)
1i = (2a− 3x1)x1ξ

(x)
1i − ξ

(y)
1i − ξ

(z)
1i − εγ

[1]
i ξ

(x)
1i −

gc

1+exp [−λ(x2−Θs)]ξ
(x)
1i

+gc(vs − x1) λ exp [−λ(x2−Θs)][
1+exp [−λ(x2−Θs)]

]2 ξ(x)
2i ,

ξ̇
(y)
1i = 2(a+ α)x1ξ

(x)
1i − ξ

(y)
1i ,

ξ̇
(z)
1i = µ

(
bξ

(x)
1i − ξ

(z)
1i

)
,

ξ̇
(x)
2i = (2a− 3x2)x2ξ

(x)
2i − ξ

(y)
2i − ξ

(z)
2i − ε

N∑
r=2

N∑
l=2

[ N∑
j=1

V
[1]
ij V

[2]
rj

]
γ

[2]
r

[ N∑
k=1

V
[2]
rk V

[1]
lk

]
ξ

(x)
2l

− gc

1+exp [−λ(x1−Θs)]ξ
(x)
2i + gc(vs − x2) λ exp [−λ(x1−Θs)][

1+exp [−λ(x1−Θs)]
]2 ξ(x)

1i ,

ξ̇
(y)
2i = 2(a+ α)x2ξ

(x)
2i − ξ

(y)
2i ,

ξ̇
(z)
2i = µ

(
bξ

(x)
2i − ξ

(z)
2i

)
, i = 2, 3, . . . , N.

(13)
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Fig. 3. Variation of (a) the synchronization error and (b) the maximum transverse Lyapunov
exponent in the parameter space of the interaction strengths ε and gc with fixed values of
k = 2 and psw = 0.15.

The synchronization state variables (x1, y1, z1) and (x2, y2, z2) obey the equations of
motion,

ẋ1 = (a− x1)x2
1 − y1 − z1 + gc(vs − x1) Γ(x2),

ẏ1 = (a+ α)x2
1 − y1,

ż1 = µ(bx1 + c− z1),

ẋ2 = (a− x2)x2
2 − y2 − z2 + gc(vs − x2) Γ(x1),

ẏ2 = (a+ α)x2
2 − y2,

ż2 = µ(bx2 + c− z2). (14)

To reveal the complete transition scenarios of intralayer neuronal synchrony in
the multiplex network, we draw the synchrony and desynchrony regions in the (ε, gc)
plane in Figure 3 for the fixed values of k = 2 and psw = 0.15. Here the neuronal
synchrony is measured by quantity E and the existence is characterized through the
master stability function approach. In the color coded Figure 3a, the deep blue and
red regions correspond to synchronization and desynchronization states respectively,
whereas the color bar denotes the variation of the intralayer synchronization error E.
The transition from desynchrony to synchrony is almost vertical in the (ε, gc) plane
but in a very narrow region in this space there is a roughened type of transition
(i.e., synchrony to desynchrony to synchrony). The stability of such a transition is
characterized by the MSF theory and the corresponding result is drawn in Figure 3b.
The color bar of Figure 3b represents the variation of the maximum Lyapunov expo-
nent (MLE). Negative values of the MLE signify the appearance of the synchronized
motions. Here in the deep blue region, the color bar takes negative values which indi-
cates the occurrence of the intralayer neuronal synchrony and it verifies the transition
scenarios of Figure 3a.

Next we investigate the simultaneous effect of small world probability psw and
intralayer coupling strength ε on the transition scenarios of intralayer neuronal syn-
chrony in the entire multiplex network for fixed interlayer interaction gc = 0.3 and
network average degree k = 2. The transition scenarios are delineated in Figure 4 in
the (ε, psw) plane. By calculating the intralayer synchronization error E, the tran-
sition from desynchrony to synchrony states are described in Figure 4a where the
color bar shows the variation of E. The deep red and blue areas represent the desyn-
chronization and synchronization states respectively. Here it is observed that the
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Fig. 4. (a) Synchronization error and (b) transverse maximum Lyapunov exponents in
(ε, psw) parameter space, for gc = 0.3 and k = 2.

critical transition point of intralayer coupling values for the synchrony is monoton-
ically decreasing with the increased values of the small-world probability psw. The
stability of such transitions is characterized by the MSF framework in Figure 4b. The
color bar of Figure 4b denotes the variation of MSF and this figure clearly verifies the
transition scenarios as in Figure 4a. So, from the results as in Figures 3 and 4, one can
conclude that the combined effect of the intra and interlayer coupling strengths has
not much of a significant effect on the enhancement of intralayer neuronal synchrony
in the multiplex neuronal network whereas the combined effect of the intralayer cou-
pling strength and the small world probability induced significant changes on the
enhancement of the intralayer neuronal synchrony in the entire multiplex neuronal
network.

5 Conclusion

In this paper, we have investigated neuronal synchrony in the multiplex neuronal net-
work. Mainly, we explored the intralayer neuronal synchronization under the simul-
taneous effect of the synaptic interactions. In our study, we have considered that each
layer is associated with the small-world architecture. The intention behind the con-
sideration of such a network formation is the small-world characteristic of the brain
network [67,68]. As enormous amounts of neurons are involved in the inter neuronal
communications, neurons normally perform in the lumped or highly clotted basis. In
that case multilayer or modular organization is the best representation of the neu-
ronal network. Each node of the multiplex network is cast by the Hindmarsh–Rose
neuronal oscillator. Here we have considered that the interaction among the neurons
within each layer happens through the electric synapses by making a gap junction
between the adjacent neurons while the interlayer connections are taken as chemical
synaptic interactions. It is observed that the combined effect of both types of synap-
tic couplings does not have any indicative change on the enhancement of intralayer
neuronal synchrony property whereas the simultaneous effect of small-world proba-
bility and intralayer coupling plays a crucial role on the enhancement of intralayer
neuronal synchrony in the multiplex neuronal network. Through the master stabil-
ity approach, we analytically derived the necessary condition for intralayer neuronal
synchrony and the analytical findings are confirmed by numerical results.

D.G. was supported by SERB-DST (Department of Science and Technology), Government
of India (Project no. EMR/2016/001039).



Diffusion Dynamics and Information Spreading in Multilayer Networks 2453

References

1. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175
(2006)

2. S.H. Strogatz, Nature 410, 268 (2001)
3. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
4. M.E.J. Newman, SIAM Rev. 45, 167 (2003)
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22. M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J.

Complex Networks 2, 203 (2014)
23. G. Bianconi, Multilayer Networks: Structure and Function (Oxford University Press,

Oxford, 2018)
24. S. Pilosof, M.A. Porter, M. Pascual, S. Kéfi, Nat. Ecol. Evol. 1, 0101 (2017)
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33. C. Granell, S. Gómez, A. Arenas, Phys. Rev. Lett. 111, 128701 (2013)
34. B. Bentley, R. Branicky, C.L. Barnes, Y.L. Chew, E. Yemini, E.T. Bullmore, P.E.
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