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Abstract. In this paper, nonlinear frequency-amplitude characteris-
tics of periodic motions in a periodically forced van der Pol oscil-
lator are studied systematically. The periodic motions of the van
der Pol oscillator are determined by the semi-analytical method,
and the corresponding stability and bifurcation analysis is completed
through the eigenvalue analysis. From the finite Fourier series anal-
ysis, the nonlinear frequency-amplitude characteristics of periodic
motions are analyzed. From the frequency-amplitude analysis, the
limit cycle of the van der Pol oscillator can be obtained analyti-
cally as excitation amplitude approach to zero, rather than numer-
ically. For the van der Pol oscillator, most of periodic motions in
the van der pol oscillator are symmetric. However, an asymmetric
period-1 motion in the van der Pol oscillator is discovered. Thus a
bifurcation tree of period-1 motion to chaos can be found.

1 Introduction

Dynamical systems experiencing the fast-slow motions extensively exist in engineer-
ing and science. The fast-slow periodic motions in such dynamical systems cannot
be easily solved by the traditional analysis because such fast-slow periodic motions
need many harmonic terms to get appropriate approximate solutions. The fast move-
ment is like an impulsive motion, and the slow movement is like almost zero velocity
movement. The semi-analytical method can achieve very higher order harmonics in
periodic motions. Further, the fast-slow movements of periodic motions in such non-
linear systems can be caught. Therefore, in this paper, the semi-analytical method
will be used to obtain periodic motions with such fast-slow varying movements in
such nonlinear dynamical systems. The van der Pol oscillator is a typical oscilla-
tor possessing the fast-slow motions. Through studies on the van der Pol oscillator,
the fast-slow movements of periodic motions in nonlinear dynamical systems will be
better understood.

In 1920, van der Pol [1] determined periodic motions of self-excited circuit systems
through the method of averaging. In 1923, Greaves [2] studied the analytical solu-
tions of the van der Pol oscillator and found a family of periodic solutions. In 1927,
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van der Pol and van der Mark [3] discovered the van der Pol system was capable of
oscillating with the discrete frequencies and there was irregular noise in the process
when one frequency jumps to the next low value. In 1934, van der Pol [4] studied the
resonant curves in the forced van der Pol oscillators. He found the resonant curves
had usual shapes for a strong signal, while for a relatively weak signal, the curves
could be warped. In 1945, Cartwright and Littlewood [5] proved the existence of
periodic solutions of the van der Pol equation. In 1947, Cartwright and Littlewood
[6] studied the periodic solutions of a generalized nonlinear equation based on the
van der Pol and Duffing equations. The periodic solutions of the Duffing equation
were discussed. However, the solutions of the van der Pol equation were discussed in
Littlewood [7]. In 1948, Levinson [8] used three piecewise linear differential equations
to model the van der Pol equation and proved the existence of periodic solutions. In
1949, Levinson [9] further used the piecewise linear model of the van der Pol equation
and discovered the countable infinite periodic sequences in such a second order differ-
ential equation. In 1982, Andersen and Geer [10] computed the frequency and period
of the limit cycle of the van der Pol equation through perturbation analysis. In 1984,
Dadfar, Geer and Andersen [11] used the perturbation analysis to further investigate
periodic motions in a van der Pol equation. In 1998, Buonomo [12] also used the per-
turbation analysis to determine the limit cycle of the van der Pol equation. Buonomo
[13] studied the periodic solutions of the van der Pol equation through the combi-
nation of the perturbation method and harmonic balance method. In 2002, Mickens
[14] studied a van der Pol equation through the backward Euler method. Mickens [15]
applied the modified harmonic balance method to the van der Pol system. In 2006,
Waluya and van Horssen [16] used the variables of energy and phase angle to present
asymptotical solutions of periodic motions. Andrianov and van Horssen [17] applied
the same method to a generalized van der Pol equation, and the approximate periodic
solutions of the van der Pol equations were based on the the perturbed linear system
with small parameters. In addition, one used the perturbation methods to investi-
gate periodic motions and chaos in nonlinear systems recently. In 2016, Maaita [18]
studied the bifurcation of the slow invariant manifold of two linear oscillators coupled
to a k-order nonlinear oscillator. In 2017, Yamgoue et al. [19] studied the approxi-
mate analytical solutions of a constrained nonlinear mechanical system. Shayak and
Vyas [20] studied the Mathieu equation by using the Krylov-Bogoliubov method.
Rajamani and Rajasekar [21] used the perturbation method for the response ampli-
tude of the parametric Duffing oscillator. The aforementioned methods include the
perturbation methods and the classic harmonic balance method. From the existing
studies, the perturbation methods require the corresponding linear solutions for the
approximate periodic solutions of the original nonlinear systems, and the perturba-
tion expansion with small parameters was adopted, which is not adequate.

To resolve the abovementioned puzzles in nonlinear dynamical systems, in 2012,
Luo [22] developed a generalized harmonic balance method based on the finite Fourier
series. The generalized harmonic balance method gives analytical solutions of periodic
motions, and the corresponding bifurcations and stability of periodic motions can be
determined. In 2012, Luo and Huang [23] applied the generalized harmonic balance
method for the stable and unstable period-m motions of a Duffing oscillator with a
nonlinear damping. The analytical routes of period-1 motion to chaos in a Duffing
oscillator were studied in Luo and Huang [24] through the generalized harmonic bal-
ance method. In 2013, Luo and Lakeh [25] applied the generalized harmonic balance
method to a periodically forced van der Pol oscillator, and the analytical solutions of
period-1, period-3 and period-5 motions were obtained. In 2014, Luo and Lakeh [26]
studied a van der Pol-Duffing oscillator through the generalized harmonic balance
method, and the corresponding bifurcation trees of periodic motions to chaos were
obtained.
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The generalized harmonic balance method is very good for the polynomial nonlin-
ear systems, However, it is very difficult to apply such a method to non-polynomial
nonlinear systems. Thus, in 2015, Luo [27,28] developed the semi-analytical method
through implicit mappings. The implicit mappings were obtained from the discretiza-
tion of nonlinear dynamic systems. In 2015, Luo and Guo [29] investigated a Duffing
oscillator by the semi-analytical method, and the bifurcation trees of periodic motions
were predicted analytically. Guo and Luo [30] used such a method to obtain the route
of periodic motions to chaos in a periodically forced pendulum dynamic system. In
2016, Luo and Xing [31] studied the period-1 motions to chaos in a periodically
forced, time-delayed, hardening Duffing oscillator. In 2017, Luo and Xing [32] stud-
ied the bifurcation trees of period-3 motions to chaos in a time-delayed hardening
Duffing oscillator. In 2018, Xu and Luo [33] presented the periodic motions in van
der Pol-Duffing oscillator through the semi-analytical method. In Xu and Luo [34],
found was the van der Pol oscillator possessed a sequential period-(2m−1) motions
to chaos as

P1 / P3 / · · · / P2m−1 / P2m+1 · · · / Chaos.

In such a sequence, the period-(2m−1) motions exist in specific frequency ranges.
Such a property of periodic motions can be used for control different periodic
motions in specific frequency ranges. However, it is also important that the frequency-
amplitude characteristics of periodic motions vary with excitation amplitudes. Thus,
the semi-analytical method will be used herein to study frequency-amplitude char-
acteristics of periodic motions in the von der Pol oscillator.

In this paper, periodic motions of a periodically forced van der Pol oscillator
will be studied through the semi-analytical method, and the harmonic frequency-
amplitude characteristics of periodic motion will be presented through the discrete
Fourier analysis for prescribed excitation amplitudes. The stability and bifurcation of
periodic motions will be determined through eigenvalue analysis. As excitation ampli-
tude approaches zero, the stable or unstable limit cycle will be determined. Numer-
ical simulation will be completed for the comparison of numerical and analytical
results.

2 Discretization

Consider a van der Pol oscillator as

ẍ+ (−α1 + α2x
2)ẋ+ βx = Q0 cos Ωt (1)

where α1 and α2 represent linear and nonlinear damping coefficients, respectively.
β represents the linear stiffness coefficient. Q0 and Ω are excitation amplitude and
frequency, respectively. In phase space, equation (1) becomes

ẋ = y,
ẏ = −(−α1 + α2x

2)ẋ− βx+Q0 cos Ωt. (2)

As in Luo [24,27,28], for t ∈ [tk−1, tk], the van der Pol oscillator can be discretized
by a midpoint scheme and forms a mapping Pk (k ∈ {1, 2, 3, . . .})

Pk : xk−1 → xk ⇒ xk = Pkxk−1 (3)

where xk = (xk, yk)T is a discrete node of motion in phase space. The mapping Pk
(k ∈ {1, 2, . . .}) is
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xk = xk−1 + 1
2h(yk + yk−1),

yk = yk−1 + h{ 1
8 [4α1 − α2(xk + xk−1)2](yk + yk−1)− 1

2β(xk + xk−1)

+Q0 cos Ω(tk−1 + 1
2h)}. (4)

where h = tk − tk−1 is time step.
For a periodic motion, there is a mapping structure with (N + 1) nodes as

P = PN ◦ PN−1 ◦ · · · ◦ P1 : x0 → xN . (5)

Thus

xN = Px0 = PN ◦ PN−1 ◦ · · · ◦ P1x0. (6)

That is,

xN = PNxN−1, xN−1 = PN−1xN−2, . . . , x1 = P1x0. (7)

The corresponding algebraic equations for mapping Pk (k = 1, 2, . . . , N) is given
by g(xk−1,xk) = 0 with gk = (g1,k, g2,k)T, i.e.,

g1,k = xk − xk−1 − 1
2h(yk + yk−1) = 0,

g2,k = yk − yk−1 + h{ 1
8 [−4α1 + α2(xk + xk−1)2](yk + yk−1)

+ 1
2β(xk + xk−1)−Q0 cos Ω(tk−1 + 1

2h)}
= 0, (8)

and the periodicity condition requires

(xN , yN )T = (x0, y0)T. (9)

Equations (8) and (9) possess 2(N + 1) equations for 2(N + 1) unknowns. Once
the discrete nodes are obtained, the stability and bifurcations of periodic motions in
the van der Pol oscillator can be determined through eigenvalue analysis. Consider a
small variation ∆xk in the vicinity of x∗k (i.e., xk = x∗k + ∆xk, k = 1, 2, . . . , N), the
linearized equation of the implicit mapping structure is

∂gk
∂xk−1

|(x∗k−1,x
∗
k)∆xk−1 +

∂gk
∂xk
|(x∗k−1,x

∗
k)∆xk = 0. (10)

Deformation of equation (10) gives

∆xk = DPk∆xk−1 = −
[
∂gk
∂xk

]−1 [
∂gk
∂xk−1

]
(x∗k−1,x

∗
k)

∆xk−1 (11)

where

DPk =
[
∂xk
∂xk−1

]
(x∗k,x

∗
k−1)

=

 ∂xk

∂xk−1

∂xk

∂yk−1

∂yk

∂xk−1

∂yk

∂yk−1


(x∗k−1,x

∗
k)

(12)
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with

∂xk
∂xk−1

=
8− h2(α2∆1 − 2β + 4hβ) + ∆2

8 + h2α2∆1 + 2h2β + ∆2
,

∂xk
∂yk−1

=

[
(16 + ∆2)− (2β −∆2)h2

]
h

2(8 + h2α2∆1 + 2h2β + ∆2)
,

∂yk
∂xk−1

= − 4h(α2∆1 + 2hβ)
8 + h2α2∆1 + 2h2β + ∆2

, (13)

∂yk
∂yk−1

=
8− h2 (α2∆1 + 4β −∆2)
8 + h2α2∆1 + 2h2β + ∆2

,

∆1 = (xk + xk−1) (yk + yk−1),

∆2 = −4α1 + α2 (xk + xk−1)2 .

From the mapping structure, the perturbed variation of ∆xN is

∆xN = DP∆x0 = DPN ·DPN−1 · . . . ·DP2 ·DP1︸ ︷︷ ︸
N−multiplication

∆x0. (14)

The resultant Jacobian matrix of the periodic motion is

DP =
[
∂xN

∂x0

]
(x∗N ,x

∗
N−1,...,x

∗
0 ,)

= DPN ·DPN−1 · . . . ·DP2 ·DP1

=
∏1
k=N

[
∂xk

∂xk−1

]
(x∗k,x

∗
k−1)

.
(15)

The stability and bifurcation of period-1 motion is determined by

|DP − λI2×2| = 0. (16)

From Luo [27,28], the stability of such a periodic motion is determined as follows.
i. If the magnitudes of all eigenvalues of DP are less than one (i.e. |λi| < 1, i = 1, 2),

the periodic solution is stable.
ii. If the magnitude of at least one eigenvalue of DP is greater than one (i.e. |λi| > 1,

i ∈ {1, 2}), the periodic solution is unstable.
iii. The boundaries between stable and unstable periodic motion with higher order

singularity can generate bifurcation and stability conditions with higher order
singularity.

The bifurcation conditions are given as follows.
i. If λi = 1 with |λj | < 1 (i, j ∈ {1, 2}, i 6= j), the saddle-node bifurcation (SN)

occurs.
ii. If λi = −1 with |λj | < 1 (i, j ∈ {1, 2}, i 6= j), the period-doubling bifurcation

(PD) occurs.
iii. If |λi| = |λj | = 1 (i, j ∈ {1, 2}, λi = λ̄j , i 6= j), the Neimark bifurcation (NB)

occurs.

3 Semi-analytical solutions

The discrete implicit mapping in equation (3) has a computational accuracy of ε =
O(h3). If ε = 10−9, the time step should be h ≤ 10−3. Because h = ∆t = T/N , we
have N = T/h = 2π/Ωh. Consider a set of parameters as

α1 = 16, α2 = 1, β = 5. (17)
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Period-1 motions varying with excitation frequency (Ω ∈ (0, 3.0)). Global view: (a)
displacement xN , (b) velocity yN . Zoomed view-I (Ω ∈ (0.06, 0.3)): (c) displacement xN ,
(d) velocity yN . Zoomed view-II: (e) displacement xN (Ω ∈ (0.54, 1.34)), (f) velocity yN

(Ω ∈ (0.84, 1.147)). (α1 = 16, α2 = 1, β = 5).

The discrete nodes (xN , yN ) of period-1 motions varying with excitation fre-
quency are presented in Figure 1. Solid and dashed curves represent stable and unsta-
ble solutions of period-1 motions, respectively. The acronym “SN” is for saddle-node
bifurcation. In Figures 1a and 1b, periodic node displacement xN and velocity yN of
the period-1 motions are presented, respectively. For low frequency, the first zoomed
views of displacement xN and velocity yN are presented in Figures 1c and 1d for
Q0 = 30, 50, 100. The second zoomed views of displacement xN and velocity yN are
presented in Figures 1e and 1f for Q0 = 0.1, 1, 5, 10, 20. If Q0 = 0, the limit cycle for
the van der Pol oscillator is obtained.

The period-1 motion for Q0 = 100 is stable for Ω ∈ (0, 2.645) and unstable for
Ω ∈ (2.193, 2.645) and (2.193,∞). A saddle-node bifurcation occurs at Ωcr ≈ 2.645
for jumping. For Q0 = 50, the period-1 motion is stable for Ω ∈ (0, 1.823) and
unstable for Ω ∈ (1.105, 1.823) and (1.105,∞). A saddle-node bifurcation occurs at
Ωcr ≈ 1.823. For Q0 = 30, 50, 100, the period-1 motions exist for Ω ∈ (0,∞). With
excitation amplitude becoming smaller, period-1 motions exist in vicinity of the limit
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Table 1. Frequency ranges of stable periodic motions for different excitation amplitudes
(α1 = 16, α2 = 1, β = 5,Ω ∈ (0, 3).

Q0 Ω SN(L) SN(R)
100 (0, 2.645) – 2.645

50 (0, 1.823) – 1.823

30.0 (0.0721, 0.0722) 0.0721 0.0722
(0.110, 0.114) 0.110 0.114
(0.201, 0.276) 0.201 0.276
(0.219, 0.260) 0.219(PD) 0.260
(0.260, 0.276) 0.260 0.276

(–,1.480) – 1.480

20.0 (0.573, 1.306) 0.573 1.306
(0.232, 0.261) 0.232 0.261

10.0 (0.768, 1.130) 0.768 1.130
5.0 (0.860, 1.041) 0.860 1.041
1.0 (0.933, 0.969) 0.933 0.969
0.1 (0.949, 0.953) 0.949 0.953

cycle. For Q0 = 20, the corresponding period-1 motion exists in Ω ∈ (0.573, 1.306).
The two saddle-node bifurcations are at Ωcr ≈ 0.573, 1.306. The period-1 motion is
a closed loop of stable and unstable. For Q0 = 10, the stable and unstable period-1
motions exist in the range of Ω ∈ (0.768, 1.130). Two saddle-node bifurcations are at
Ωcr ≈ 0.768, 1.130. The closed loop of stable and unstable period-1 motion becomes
smaller. For Q0 = 5, the closed loop of stable and unstable period-1 motions is in Ω ∈
(0.860, 1.040) with two saddle-node bifurcations of Ωcr = 0.860, 1.040. For Q0 = 1, a
closed loop of unstable and stable period-1 motions occur in Ω ∈ (0.933, 0.969) with
the saddle-node bifurcations of Ωcr = 0.933, 0.969. For Q0 = 0.1, the period-1 motions
occur in Ω ∈ (0.949, 0.953) with two saddle-node bifurcations of Ωcr ≈ 0.949, 0.952.
With decreasing the excitation amplitude, the frequency range of period-1 motions
in the van der Pol oscillator will shrink to the frequency of the limit cycle. Thus,
at Q0 = 0, the limit cycle possesses a frequency Ω ∈ (0.949, 0.953). In Table 1, the
frequency ranges of stable period-1 motions with different excitation amplitudes are
tabulated.

4 Amplitude-frequency characteristics

Based on the semi-analytical results of discrete nodes, the corresponding periodic
motions can be approximately expressed by a finite Fourier series as

x(t) ≈ a0 +
M∑
j=1

bj cos(jΩt) + cj sin(jΩt) (18)

where a0, bj and cj (j = 1, 2, . . . ,M) are unknown coefficients. Consider M = N/2,
the analytical prediction xk (k = 1, 2, . . . , N) for the period-1 motion is expressed
with t ∈ [0, T ] as
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x(tk) = xk ≈ a0 +
N/2∑
j=1

bj cos (jΩtk) + cj sin (jΩtk)

≈ a0 +
N/2∑
j=1

bj cos
(

2πkj
N

)
+ cj sin

(
2πkj
N

)
(19)

where ∆t = T/N = 2π/(ΩN), tk = t0 + k∆t = 2πk/(ΩN) for (t0 = 0, k =
0, 1, . . . , N). The coefficients of a0, bj and cj are determined by

a0 = 1
N

∑N−1
k=0 xk, bj = 2

N

∑N−1
k=0 xk cos

(
2πkj
N

)
, cj = 2

N

∑N−1
k=0 xk sin

(
2πkj
N

)
,

(j = 1, 2, . . . , N/2).
(20)

Since xk = (xk, yk)T (k = 1, 2, . . . , N), for the coefficients, they have:

a0 = (a1,0, a1,0)T,bj = (b1,j , b2,j)T, cj = (c1,j , c2,j)T. (21)

Thus equation (18) becomes{
x(t)
y(t)

}
≈
{
a1,0

a2,0

}
+
N/2∑
j=1

{
A1,j cos(jΩt− ϕ1,j)
A2,j cos(jΩt− ϕ2,j)

}
. (22)

The harmonic amplitudes and phases can be expressed as

A1,j =
√

(b1,j)2 + (c1,j)2, ϕ1,j = arctan c1,j

b1,j
,

A2,j =
√

(b2,j)2 + (c2,j)2, ϕ2,j = arctan c2,j

b2,j
· (23)

For simplicity, displacement x(t) for period-1 motions is

x(t) ≈ a0 +
N/2∑
j=1

bj cos(jΩt) + cj sin(jΩt). (24)

Thus,

x(t) ≈ a0 +
N/2∑
j=1

Aj cos(jΩt− ϕj) (25)

where
Aj =

√
(bj)2 + (cj)2, ϕj = arctan

cj
bj
· (26)

From the discrete nodes of period-1 motions, the corresponding frequency-
amplitude characteristics of periodic motions of the van der Pol oscillator can be
obtained. For frequency-amplitude curves, the acronym “SN” still represents the
saddle node bifurcation. The solid and dashed curves are also used for the stable and
unstable periodic motions, respectively.

In Figure 2, global views of harmonic amplitudes varying with excitation fre-
quency for periodic motions in the van der Pol oscillator are presented for Q0 =
100, 50, 30, 20, 10, 5, 1 and 0.1. Most of period-1 motions in the van der Pol oscilla-
tor is symmetric. For symmetric period-1 motions, a0 = 0, A2l = 0 but A(2l−1) 6= 0
(l = 1, 2, . . .). The harmonic amplitudes A1 varying with excitation frequency is pre-
sented in Figure 2a for aforementioned different excitation amplitudes. For Q0 = 100,
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Frequency-amplitude characteristics of periodic motions (Ω ∈ (0, 3)). (a)–(f) A2k−1

(k = 1, 2, . . . , 6) (α1 = 16, α2 = 1, β = 5) with Q0 = 100, 50, 30, 20, 10, 5, 1, 0.1.

the periodic motion is stable in Ω ∈ (0, 2.645) and unstable in Ω ∈ (2.193, 2.645) and
(2.193,∞). When the stable period-1 motion becomes unstable, a saddle-node bifur-
cation occurs, and the jumping phenomenon of such a period-1 motion is caused
by such a saddle-node bifurcation. The period-1 motion for Q0 = 50 is stable for
Ω ∈ (0, 1.823) and unstable for Ω ∈ (1.105, 1.823) and (1.105,∞) with a saddle-
node bifurcation of Ω = 1.823. For Q0 = 30, the asymmetric and symmetric
period-1 motions exist. For Q0 = 20, the periodic motion exists in the range of
Ω ∈ (0.573, 1.306). For Q0 = 10, 5, 1 and 0.1, the period-1 motions are in the finite
ranges of frequency. As Q0 → 0, the frequency ranges of the periodic motion approach
to a point, which is for limit cycle. For Q0 = 10, the frequency range is in Ω ∈
(0.768, 1.123). The frequency ranges of period-1 motions for Q0 = 5.0, 1.0, and 0.1
are Ω ∈ (0.860, 1.040), Ω ∈ (0.933, 0.969) and Ω ∈ (0.949, 0.953), respectively. The
two ends of the frequency ranges are saddle-node bifurcations, and the quantity
level of A1 is A1 ∼ 101. The harmonic amplitude A3 varying with excitation fre-
quency is presented in Figure 2b and the third order harmonic amplitude A3 has the
quantity level of 100 ∼ 101. Similarly, the harmonic amplitudes of A5, A7, A9 and A11

are presented in Figures 2c–2f, and the corresponding quantity levels of 100 ∼ 101.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Frequency-amplitude characteristics of periodic motions (Ω ∈ (0.54, 1.34)).
(a)–(f) A2k−1(k = 1, 2, . . . , 6) (α1 = 16, α2 = 1, β = 5) with Q0 = 20, 10, 5, 1, 0.1.

For Q0 ≤ 20, the harmonic amplitudes of period-1 motions are clopped loops. With
harmonic order increase, the closed loops are much closer to the harmonic amplitudes
for Q0 > 30. Thus, the first zoomed views of A2k−1 (k = 1, 2, . . . , 6) for Q0 ≤ 20 are
presented in Figures 3a–3f. The frequency-amplitude characteristics are very clearly
presented, and the quantity levels for all of the harmonic amplitude are very close.
The second zoomed views of harmonic amplitudes of A2k−1 (k = 1, 2, . . . , 6) for
Q0 = 30, 50, 100 are presented in Figures 4a–4f. The frequency-amplitude character-
istics of symmetric and asymmetric period-1 motions are clearly presented. To further
look into the frequency-amplitude characteristics, the harmonic amplitudes of A10k−1

(k = 2, 3, . . . , 7) are presented in Figures 5 and 6. The corresponding quantity levels
of the harmonic amplitudes drop very slowly. Especially, the harmonic amplitudes
of A10k−1 (k = 2, 3, . . . , 7) for Q0 = 0.1, 1.0, 5.0, 10, 20 are with quantity levels of
A19 < 0.3, A29 < 0.155, A39 < 0.09, A49 < 0.05, A59 < 0.036, A69 < 0.024. Similarly,
other higher order harmonic amplitudes can be presented. Because of the slow-fast
varying system, the decay rates of harmonic amplitude are very slow with harmonic
order. For low excitation frequency, the periodic motions need over hundreds of har-
monic terms to be described with a certain accuracy.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Frequency-amplitude characteristics of periodic motions Ω ∈ (0.06, 0.30).
(a)–(f) A2k−1 (k = 1, 2, . . . , 6) (α1 = 16, α2 = 1, β = 5) with Q0 = 100, 50, 30.

5 Numerical simulations

To observe the complex period-1 motions, numerical solutions of the periodic motions
are computed by the midpoint integration method. The initial conditions for numer-
ical simulations are selected from the semi-analytical solutions. The displacements,
trajectories, harmonic amplitudes and phases will be presented. The circular sym-
bols and solid curves represent analytical and numerical results. The acronym “I.C.”
represents initial conditions marked by larger circular symbols.

The numerical simulation for a stable periodic motion is presented in Figure 7
for Q0 = 0.1 and Ω = 0.952. The rest parameters are the same as in equa-
tion (17). The initial condition for such illustration is x0 ≈ (−5.1354, 2.2129)T.
In Figure 7a the time-history of displacement is presented, and two slowly vary-
ing motions plus two spikes form a periodic motion. The phase trajectory (x, y) of
the stable periodic motion is plotted in Figure 7b. The slowly varying zone and fast
spike motions are clearly observed, and the motion symmetry is also observed. The
harmonic amplitudes of displacement in such a stable periodic motion are presented
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Frequency-amplitude characteristics of periodic motions (Ω ∈ (0, 3)).
(a)–(f) A10k−1(k= 2, 3, . . . , 7) (α1 = 16, α2 = 1, β= 5) with Q0 = 100, 50, 30, 20, 10, 5, 1, 0.1.

in Figure 7c. For the symmetric periodic motion, the constant term is zero. The
main harmonic amplitudes are A1 ≈ 8.4913, A3 ≈ 2.4828, A5 ≈ 1.3754,A7 ≈ 0.9134,
A9 ≈ 0.6612,A11 ≈ 0.5031, A13 ≈ 0.3953, A15 ≈ 0.3176, A17 ≈ 0.2594, A19 ≈ 0.2144,
A21 ≈ 0.1789, A23 ≈ 0.1504, A25 ≈ 0.1272, A27 ≈ 0.1081. The other harmonic terms
are Ak ∈ (10−14,10−1) (j = 29, 31, . . . , 499) with A499 ≈ 1.91e-14. The harmonic
phases are presented in Figure 7d. Such a periodic motion is very close to the limit
cycle. Such a period-1 motion needs 255 odd harmonic terms to be described with
accuracy of ε = 10−14.

In Figure 8, a symmetric periodic motion for Ω = 0.256 and Q0 = 30 is pre-
sented with the initial condition of x0 ≈ (6.1967,−0.0445)T. The displacement
response of the period-1 motion is presented in Figure 8a. Four pieces of slowly vary-
ing motions plus two big spikes and two small spike motions are to form a period-1
motion. The phase trajectory of such a period-1 motion is presented in Figure 8b
and two small cycles on the left and right sides exist, which from the small spike
motions. The corresponding harmonic amplitude spectrum is presented in Figure 8c.
The main harmonic amplitudes areA1≈ 6.3674,A3≈ 3.4819, A5≈ 1.5813,A7≈ 1.2193,
A9≈ 0.9184,A11≈ 0.6813, A13≈ 0.6494, A15≈ 0.4424, A17≈ 0.5008, A19≈ 0.3092,
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Frequency-amplitude characteristics of periodic motions (Ω ∈ (0.54, 1.34)).
(a)–(f) A10k−1(k = 2, 3, . . . , 7) (α1 = 16, α2 = 1, β = 5) with Q0 = 20, 10, 5, 1, 0.1.

A21≈ 0.4045, A23≈ 0.2261, A25≈ 0.3359, A27≈ 0.1710, A29≈ 0.2837, A31≈ 0.1335,
A33≈ 0.2423, A35≈ 0.1077, A37≈ 0.2085, A39≈ 0.0901, A41≈ 0.1803, A43≈ 0.0780,
A45≈ 0.1564, A47≈ 0.0698, A49≈ 0.1361, A51≈ 0.0639, A53≈ 0.1186, A55≈ 0.0595,
A57≈ 0.1035. The other harmonic terms are Ak ∈ (10−12,10−1) (j = 59, 61, . . . , 1229)
withA1229≈ 4.06e-12. The harmonic phases are presented in Figure 8d. Such a period-1
motion needs 615 odd harmonic terms to be described with accuracy of ε = 10−12.

For the van der pol oscillator, it is very difficult to get the asymmetric peri-
odic motion. Herein, a asymmetric periodic motions are illustrated. In Figure 9, an
asymmetric periodic motion for Ω = 0.24 and Q0 = 30 is presented with the initial
conditions of x0 ≈ (5.5534,0.1549)T (left) and x0 ≈ (7.7281,−0.1978)T (right). The
displacement responses of the two asymmetric period-1 motions are presented in Fig-
ures 9a and 9b. Four pieces of slowly varying motions plus two big spikes and two small
spike motions are to form an asymmetric period-1 motion. The phase trajectories of two
asymmetric period-1 motion are presented in Figures 9c and 9d. The harmonic ampli-
tudes and phases are presented in Figures 9e and 9f. For the two asymmetric period-1
motions, the two sets of harmonic amplitudes are same except for aL0 = −aR0 6= 0 and
two sets of harmonic phases satisfy ϕLk = mod(ϕR0 + (k + 1)π, 2π). For asymmetric
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(a) (b)

(c) (d)

Fig. 7. Symmetric period-1 motion in the van der Pol oscillator at Ω = 0.952 and Q0 = 0.1.
(a) Displacement x, (b) velocity y, (c) phase trajectory (x, y), (d) harmonic amplitude Ak,
(e) harmonic phase ϕk. Initial conditions x0≈ (−5.1354, 2.2129)T. (α1 = 16, α2 = 1, β= 5).

(a) (b)

(c) (d)

Fig. 8. Symmetric periodic motion in the van der Pol oscillator at Ω = 0.256 and Q0 = 30.
(a) Displacement x, (b) phase trajectory (x, y), (c) harmonic amplitude Ak, (d) harmonic
phase ϕk. Initial condition: x0 ≈ (6.1967,−0.0445)T. (α1 = 16, α2 = 1, β = 5).
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Asymmetric period-1 motion in the van der Pol oscillator at Ω = 0.24 and Q0 =
30. (a) Displacement x (right), (b) displacement x (left), (c) trajectory (x, y) (right), (d)
trajectory (x, y) (left), (e) harmonic amplitude Ak, (f) harmonic phase ϕk. Initial conditions
x0 ≈ (5.5532,0.1549)T (left) and x0 ≈ (7.7281,−0.1978)T (right). (α1 = 16, α2 = 1, β = 5).

periodicmotions,A2k−1 6= 0andA2k 6= 0.aR0 = −aL0 ≈ 3.02038e-5.Themainharmonic
amplitudes are A1 ≈ 6.4723, A2 ≈ 2.6252, A3 ≈ 2.6350, A4 ≈ 2.7940, A5 ≈ 2.8185,
A6 ≈ 0.9610, A7 ≈ 1.2164, A8 ≈ 0.8915, A9 ≈ 0.4359, A10 ≈ 1.1856. The other
harmonic terms are Ak ∈ (10−12,100) (j = 11, 12, . . . , 1560) with A1560≈ 7.30e-12.
The two asymmetric period-1 motion needs 1560 harmonic terms to be described with
accuracy of ε = 10−12.

6 Conclusion

In this paper, nonlinear frequency-amplitude characteristics of periodic motions in a
periodically forced van der Pol oscillator were discussed, and the asymmetric period-1
motions were discovered through the semi-analytical method. The period-1 motions of
the van der Pol oscillator were determined and the corresponding stability and bifur-
cation analysis were completed. The nonlinear frequency-amplitude characteristics
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of periodic motions were presented from the finite Fourier series analysis. From the
frequency-amplitude characteristics, slow-fast motions of periodic motions in the van
der Pol oscillator require many harmonic terms to achieve period-1 motions with the
certain accuracy, which cannot be determined by the traditional methods (e.g., per-
turbation methods and series methods). Symmetric and asymmetric period-1 motions
were also illustrated numerically and analytically. From the asymmetric period-1
motions, it is possible that the bifurcation trees of period-1 motions to chaos can be
obtained in the van der Pol oscillator.
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