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Abstract. Memristors have shown great potential to yield novel fea-
tures in various domains. Therefore, memristor-based systems are be-
ing studied in widespread applications. In this paper, a newly proposed
hyperbolic-type memristor-based Hopfield neural network is studied,
as a single unit of a coupled network. Particularly, the effects of the cou-
pling between each state variable of the system on the network behav-
ior is investigated. It is observed that changing the coupling variable
leads to different patterns at each coupling strength, including partial
chimera state, chimera state, synchronization, imperfect synchroniza-
tion and oscillation death. When the memristor-based elements are
coupled with each other, increasing the coupling strength causes a reg-
ular transition from asynchronization to chimera state and then toward
synchronization.

1 Introduction

Memristor is the fourth fundamental circuit element besides the resistor, the capacitor
and the inductor, that was proposed by Leon Chua in 1971 [1]. Although many
valuable properties were introduced for this new element, there was no useful model
or example of memristor until 2008 [2,3]. In 2008, Hewlett-Packard laboratory found a
solid-state thin film two-terminal memristor and just after that memristor attracted
significant attentions [4–7]. Memristor is a passive two-terminal electronic device
which describes a nonlinear relation between the charge (q) and the flux (ϕ) [8,9]:

dϕ = M (q) dq. (1)

A memristor with a non-constant M is a resistor with a memory [9] and when
the applied voltage is turned off, it can remember the value of voltage [10]. Because
of this property, it has been shown that memristor has similar features as the neural

a e-mail: sajadjafari@aut.ac.ir

https://epjst.epj.org
https://doi.org/10.1140/epjst/e2019-800240-5
mailto:sajadjafari@aut.ac.ir


2024 The European Physical Journal Special Topics

synapse and can be used in artificial neural network [11,12]. The complex dynamics
of the neurons are widely investigated in neuronal networks for various applications
[13–15]. In biology, neurons communicate with each other in synapses and synaptic
plasticity is the ability of weakening or strengthening of synapses during the time,
in order to decrease or increase the activities. Therefore, synaptic plasticity is an
important neurochemical foundation of storing the information and learning. Similar
to biology, memristive-based neural networks can be used in machine learning and
pattern recognition [16,17]. Thus for realizing brain functions, studying dynamics of
a network of memristive neural network can be very effective and helpful.

In this paper, a network of hyperbolic-type memristor-based 3-neuron Hopfield
neural network is studied [18] and its different behaviors is investigated, especially
in search for chimera. Chimera state is a new phenomenon in nonlinear dynamics
and has achieved lots of interests [19–23]. Chimera state emerges in an ensemble
of identical coupled oscillators when both coherent and incoherent dynamics coexist
[24]. It has been shown that chimera state is strongly related to neuronal systems and
can be observed in various diseases including Parkinson’s disease, epileptic seizures
and brain tumors [25]. Chimera state is also associated with the real phenomena of
uni-hemispheric slow-wave sleep in some birds and dolphins, in which half part of
the brain is asleep and therefore the neurons are synchronized and the other half
part is awake and its neurons are asynchronized [26]. Chimera state has been studied
in various systems such as phased oscillators [27,28] and pendulum-like oscillators
[29,30]. Recently, it has also been observed in different neuronal networks of either
FitzHugh–Nagumo [31,32] model or Hindmarsh-Rose model [33–36].

Here we couple 100 memristor-based 3-neuron Hopfield neural networks non-
locally and investigate the effects of changing the coupling variable. It is observed that
the pattern is changed by varying the coupling variable at each coupling strength.
Various states such as synchronization, chimera states, partial chimera state and os-
cillation death appear in the network in different coupling strengths. Partial chimera
state is characterized by coexistence of incoherent and coherent regions when coherent
region has a small width [37]. Simultaneous appearance of chimera, synchronization
and oscillation death states in different coupling parameters and initial conditions,
has been investigated in reference [38].

The remaining part of this paper is organized as follows: in the following section,
the mathematical model of the memristor-based HNN and the coupled network is
described. Section 3 investigates the effects of each variable in coupling and presents
the resulting dynamics. Finally, conclusions are presented in Section 4.

2 Mathematical model of memristor-based HNN

A hyperbolic-type memristor-based Hopfield neural network is considered as a single
unit of the network which was originally proposed by Bao et al. [18]. The connection
topology for the system is shown in Figure 1.

According to Figure 1, the connection matrix can be as follows:

W =

w11 w21 w31

w12 w22 w32

w13 w23 w33

 =

−1.4 1.2 −7
1.1 0 2.8
kW −2 4

 . (2)

So the autonomous ordinary differential equations (ODEs) of the memristor-based
HNN are described as:
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Fig. 1. Connection topology of memristor-based HNN [18].

Fig. 2. Coexisting attractors of memristor-based HNN at a = 1: (a) coexistence of chaotic
attractor and limit cycle at b = 0.41 and k = 0.8 with initial conditions at (0, 0.1, 0,0)
and (−0.9, 0.1, 0.2, −0.7), (b) coexistence of two limit cycles at b = 0.43 and k = 0.8 with
initial conditions at (0, ±0.1, 0,0), (c) coexistence of two strange attractors at b = 0.01 and
k = 0.95 with initial conditions at (0, 0.1, 0,0) and (7.5, 0, −7.2, 0), and (d) coexistence of
limit cycle and fixed point at b = 0.46 and k = 0.8 with initial conditions at (0, ±0.1, 0,0).

ẋ1 = −x1 − 1.4 tanh(x1) + 1.2 tanh(x2)− 7 tanh(x3)
ẋ2 = −x2 + 1.1 tanh(x1) + 2.8 tanh(x3) (3)
ẋ3 = −x3 + kW tanh(x1)− 2 tanh(x2) + 4 tanh(x3)
ẋ4 = −x4 + tanh(x1)

where the synaptic weight w13 is defined as kW = k(a − b tanh(x4)) and k is the
coupling strength of three neurons. By choosing different values for parameters of
a, b and k, the system can exhibit different coexisting attractors of limit cycles and
strange attractors, some of which are shown in Figure 2.

For our research, the network of abovementioned HNN is investigated. The equa-
tions of the network with coupling between all variables are given as follows:
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Fig. 3. Spatiotemporal patterns (left panel) and attractors of network (right panel) when
coupling is between x1 variables (d2 = d3 = d4 = 0): (a) asynchronization for d1 = 0.01,
(b) asynchronization for d1 = 0.05, (c) partial chimera state for d1 = 0.1, and (d) partial
chimera state for d1 = 0.5.

Fig. 4. The time snapshots of the X variables of the network corresponding to the Figure 3.
(a) asynchronization for d1 = 0.01, (b) asynchronization for d1 = 0.05, (c) partial chimera
state for d1 = 0.1, and (d) partial chimera state for d1 = 0.5.
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Fig. 5. Spatiotemporal patterns (left panel) and attractors of network (right panel) when
coupling is between x2 variables (d1 = d3 = d4 = 0): (a) synchronization for d2 = 0.01, (b)
coexistence of coherent oscillation death and incoherent oscillations for d2 = 0.1, (c) partial
chimera state for d2 = 0.3, and (d) incoherent oscillation death for d2 = 0.8.

ẋ1i = −x1i − 1.4 tanh(x1i) + 1.2 tanh(x2i)− 7 tanh(x3i) +
d1

2P

i+P∑
j=i−P

[x1j − x1i]

ẋ2i = −x2i − 1.1 tanh(x1i) + 2.8 tanh(x3i) +
d2

2P

i+P∑
j=i−P

[x2j − x2i] (4)

ẋ3i = −x3i + kW tanh(x1i)− 2 tanh(x3i) + 4 tanh(x3i) +
d3

2P

i+P∑
j=i−P

[c3j − x3i]

ẋ4i = x4i + tanh (x1i) +
d4

2P

i+P∑
j=i−P

[c4j − x4i].
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Fig. 6. The time snapshots of the X variables of the network corresponding to the Figure 5.
(a) Synchronization for d2 = 0.01, (b) coexistence of coherent oscillation death and inco-
herent oscillations for d2 = 0.1, (c) partial chimera state for d2 = 0.3, and (d) incoherent
oscillation death for d2 = 0.8.

Network (4) consists of N units and [ẋ1i, ẋ2i, ẋ3i, ẋ4i] denote the state variables
of ith unit. Each memristor-based HNN is symmetrically coupled to its 2P nearest
neighbors and d1, . . . , d4 denote the coupling strength values.

3 Results

The parameters of the systems are fixed as a = 1, b = 0.41 and k = 0.8. Thus each
unit has coexistence of a limit cycle and a chaotic attractor as shown in Figure 2a.
For constructing the network, N = 100 HNN are coupled and the value of P is set
at P = 30. In all simulations, the initial conditions are chosen randomly from two
basins of attraction.

3.1 x1 state variable coupling

In the network of equation (4), the coupling is firstly set between x1 state variables
(d2 = d3 = d4 = 0). Numerical simulations of the network (4), by increasing cou-
pling strength d1, are presented in Figure 3. When the coupling strength is small,
the network dynamic is completely incoherent. However, some of initial conditions
have been chosen from basin of chaotic attractor, but the coupling changes all the
attractors to limit cycles. An example of this, is shown in Figure 3a for d1 = 0.01. As
the coupling strength becomes larger, a small number of oscillators become coherent
and create partial chimera state, which is seen in Figures 3c and 3d. Furthermore,
increasing the coupling strength changes the topology of the limit cycles. As can be
seen in Figure 3d when d1 = 0.5, all of the attractors become a unit limit cycle, but
the oscillators are mostly spatially incoherent and the width of coherent oscillators is
small. Figure 4 shows the corresponding time snapshots of the network in this case.

3.2 x2 state variable coupling

Now the coupling is changed in a way that the couplings become between x2 state
variables instead of x1 (d1 = d3 = d4 = 0). Figure 5 shows the results of simula-
tions for some coupling strength values d2. For small values of coupling strength, the
network is completely synchronous as shown in Figure 5a for d2 = 0.01. When the
coupling increases, some of the oscillators oscillate, whereas some others are attracted
by fixed points. Figure 5b, shows the network pattern for d2 = 0.1. In this case, a
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Fig. 7. Spatiotemporal patterns (left panel) and attractors of network (right panel) when
coupling is between x3 variables (d1 = d2 = d4 = 0): (a) asynchronization for d3 = 0.005,
(b) chimera state for d3 = 0.01, (c) chimera state for d3 = 0.1, (d) imperfect synchronization
for d3 = 0.2, and (e) synchronization for d3 = 0.3.
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Fig. 8. The time snapshots of the X variables of the network corresponding to the Figure 7.
(a) Asynchronization for d3 = 0.005, (b) chimera state for d3 = 0.01, (c) chimera state for
d3 = 0.1, (d) imperfect synchronization for d3 = 0.2, and (e) synchronization for d3 = 0.3.

large coherent oscillation death coexists with incoherent oscillators. If the coupling
strength increases to d2 = 0.3, partial chimera state appears, in which the coherent
clusters have small widths (Fig. 5c). If we raise the coupling strength, all the oscilla-
tors will be attracted by fixed points and the pattern is incoherent oscillation death.
Figure 5d shows this pattern for d2 = 0.8. The time snapshots of this case are shown
in Figure 6.

3.3 x3 state variable coupling

In the next step the coupling is set between x3 variables, which contains memristor
terms (d1 = d2 = d4 = 0). In this case, starting from very small coupling strength
as shown in Figure 7a, the network is asynchronous. But by increasing coupling
strength, chimera state emerges for a defined range of coupling which can be seen in
Figures 7b and 7c) for d3 = 0.01 and d3 = 0.1, respectively. By further increasing
of coupling strength, the network moves toward oscillating synchronously. At first
the network exhibits imperfect synchronization as shown in Figure 7d and then by
further increasing of d3, synchronous state appears. Figure 8 shows the corresponding
time snapshots of the patterns shown in Figure 7.

3.4 x4 state variable coupling

Finally investigating the network is done by setting the coupling between x4 variables
(d1 = d2 = d3 = 0). It was observed that the network is asynchronous for all the
values of coupling strength d4 and no synchronous or chimera state is emerged.
Figure 9 shows the behavior network for some different coupling strengths when x4

is the coupling variable. Figure 10 shows the corresponding time snapshots.

4 Conclusion

In this paper, synchronization patterns were studied in a network of hyperbolic-type
memristor-based Hopfield neural network with non-local coupling. Memristors have
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Fig. 9. Spatiotemporal patterns (left panel) and attractors of network (right panel) when
coupling is between x4 variables (d1 = d2 = d3 = 0) for (a) d4 = 0.1, (b) d4 = 0.3, (c)
d4 = 0.5, and (d) d4 = 0.8. The network is asynchronous for all values of d4.

Fig. 10. The time snapshots of the X variables of the network corresponding to the Figure 9.
(a) d4 = 0.1, (b) d4 = 0.3, (c) d4 = 0.5, and (d) d4 = 0.8. The network is asynchronous for
all values of d4.
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special characteristics that are relevant to neurons. Thus memristor-based neural
networks can be used for studying brain activities which have strong relations with
synchronization and chimera states. The parameters of the system were chosen in a
way that a single unit have coexistence of a limit cycle and a chaotic attractor. The
network was investigated by varying the coupling strength and then by changing the
coupling variable. The effects of the coupling range can be investigated in the future.
It was observed that the network dynamics is strongly related to the coupling variable.
Increasing the coupling strength leaded to different state transitions in each coupling
variable. When x1 variable was the coupling variable, asynchronization and partial
chimera states appeared by increasing the coupling strength. When the coupling
variable was changed to x2, the network was synchronous for small coupling strength
and by raising the coupling strength, the oscillators’ attractors converted from limit
cycles to fixed points. At first, coexistence of a coherent oscillation death region
and incoherent oscillations was observed. Then the incoherent oscillations became
coherent and finally at high coupling strengths, all the attractors were fixed points
and an oscillation death state was observed. When the coupling variable changed to
x3, which contains the memristors, increasing the coupling strength caused transi-
tion from asynchronization to chimera state, and then to imperfect synchronization
and finally complete synchronization. Subsequently, x4 was selected as the coupling
variable, but the network just exhibited asynchronous oscillations in this case.
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32. I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917
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