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Abstract. This work explores the nonlinear coupling between
wall deformation and one-dimensional electrokinetic transport in a
nanochannel with negatively charged walls. Within the framework of
nonequilibrium thermodynamics, compact formulae are derived for the
electrokinetic transport parameters in terms of Onsager phenomenolog-
ical coefficients and, subsequently, for the energy conversion efficiency.
Results confirm that Onsager’s reciprocity principle holds for rigid
channels. However, the methodology used to reduce to 1D does not
maintain the symmetry of Onsager’s matrix when the channel is
deformed due to the introduction of a “fictitious” diffusion term of
counter-ions. Furthermore, the model predicts a reduced efficiency of
electrokinetic energy harvesting for channels with soft deformable walls.

1 Introduction

Electrokinetics is a complex field that is concerned predominantly with the coupled
transport processes of ions and fluids in porous media. Nanoscale artificial and bio-
logical membranes that contain surface charges within their pores, have emerged as
a major area in the study of fundamental transport mechanisms in electrokinetic
fluid flows. The classical theory developed by Smoluchowski and Helmholtz [1,2] still
remains the basis of continuum models [3–5] used to study electrokinetic systems.
It rests on the concept of a diffuse electric double layer (EDL) – the exclusion of
co-ions and the enrichment of counter-ions in a layer of fluid adjacent to the charged
surface [6,7]. A practical need for a clear, fundamental understanding of the transport
arises from the necessity to control and manipulate the flow rates for a wide array of
engineering systems such as micro/nanofluidic devices [8], ion separation [9,10] and
energy conversion devices [11,12].

In the framework of nonequilibrium thermodynamics, electrokinetic transport
phenomena are observed as ions and fluid flow in response to thermodynamic driving
forces. This approach to studying thermodynamically irreversible systems was for-
malized most prominently by Onsager in 1931 [13,14]. For electrochemical systems,
prevalent thermodynamic forces are those prompted by drops in pressure or electro-
static potential, or by concentration gradients of ions. Onsager postulated that, near
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equilibrium, fluxes are linear functions of conjugate thermodynamic forces. Hence, in
the absence of concentration gradients, the coupled volumetric fluid flux and ion flux
induced by pressure and electrostatic potential drops, are written in the following
form, 

fluid
flux

ion
flux

 =

L11 L12

L21 L22




pressure
drop

potential
drop

 , (1)

where the Lij ’s are called the Onsager phenomenological transport coefficients. Here,
L12 is proportional to the permeability of the porous medium, L11 corresponds to the
effective electric conductivity, and L12 and L21 are the coefficients for the streaming
current and the electroosmotic flow, respectively. Note that the above formulation
assumes a vanishing concentration of co-ions, which is the case that this contribution
focuses on.

Typically, an ion flux, driven by an electric field, generates a fluid flux and, con-
versely, a fluid flux, driven by a pressure drop, generates an ion flux. In equation (1),
this coupling is reflected by the Onsager reciprocity principle, viz. L12 = L21. This
points to the use of electrokinetic effects for energy conversion. The two most widely
studied effects can be described as follows: when an external electric field is imposed
on an ion-fluid system, the electric force acts upon ions and, hence, exerts a volumet-
ric force onto the entire fluid surrounding the ions, thereby dragging the fluid along
(electroosmosis) [15]; likewise, under an applied hydrostatic pressure difference and
in the absence of an external electric field, counter-ions that form the EDL are carried
downstream with the fluid, equivalent to an electric streaming current that can either
be counterbalanced or that will come to rest when a corresponding streaming poten-
tial is applied or has formed [16,17]. The first effect corresponds to an electrokinetic
pumping mode, characterized by the conversion of electrical energy into mechanical
energy. The second effect corresponds to a power generation mode, where electrical
energy is harvested from kinetic energy of the fluidic system (see Fig. 1). For practical
applications, one would like to maximize the efficiency of energy conversion processes
in either system.

In this contribution, a deformable nanochannel, characteristic of proton-
conducting cylindrical pores in polymer electrolyte membranes (PEMs), is considered.
The most commonly used PEM material is Nafion, which consists of a polymeric elas-
tic backbone, lined by grafted sidechains that are terminated with sulfonic acid head
groups. Under hydrated conditions in a PEM, the acidic groups dissociate and release
protons to the aqueous subphase [18,19]. Numerous studies have been undertaken
toward a better understanding of hydration dynamics and transport phenomena in
these membranes, motivated by the desire to understand deformation/swelling statics
and dynamics for water sorption/desorption [20–22], dimensional stability of PEM
[23,24], aging/crack formation [25,26], application in electroactuator devices [27–29]
and transport of ions and solvent [30,31].

Closed-form formulae representing phenomenological coefficients are derived for
the electrokinetic transport parameters and for the energy conversion efficiency. The
work is based on the 1-D continuum mean-field model proposed by Matse et al. [32],
which considers a water-filled deformable nanochannel with negatively charged and
linearly elastic walls, balanced by counter-ions (only) inside the fluid. The mass and
charge transport within this water-cation system is described by Poisson–Nernst–
Planck–Stokes (PNP-Stokes) equations.

In essence, the study in this contribution is a special case of the more gen-
eral analysis of co- and counter-ion flow inside charged nanochannels, conducted by
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Fig. 1. Schematic illustration of electrokinetic power generation.

Peters et al. [33]. The difference is that the presence of co-ions considered in that
work does not allow for the derivation of closed-form expressions and flow solutions
but instead requires numerical calculations. The limiting case of counter-ions-only, on
the other hand, neglects the crucial coupling of the channel to surrounding reservoirs
via electric double layers at the channel ends which, among other things, determines
the boundary conditions for the fluid flow in the channel interior.

The layout of the paper is as follows: Section 2 describes the model and presents
the mathematical framework. Section 3 contains derivations and a discussion of the
Onsager coefficients and the energy conversion efficiency of the electrokinetic system
explored herein. Finally, Section 4 concludes this article with a summary and an
outlook.

2 Model

2.1 Surface charges

Figure 1 shows a schematic diagram and the cross section of the deformable cylindri-
cal nanochannel considered in this study. The channel is connected to two reservoirs
and is characterized by an equilibrium radius R0, wall thickness h0 and length L0.
Inner walls of the cylindrical section are lined by negative charges with uniform surface
charge density σ0. Motivated by the PEM pore model [11], we take the polymeric pore
walls to be comprised of dissociated anionic moieties exposed to an aqueous phase.
The most commonly used material in PEMs is Nafion, which consists of a tetrafluo-
roethylene backbone and perfluoroalkyl ether side chains terminated in sulfonic acid
groups that leave behind fixed anionic charges on the walls upon proton dissocia-
tion [18]. We assume that only hydrated proton-complexes (cations) and water are
transported in the channels. Thermodynamic forces due to pressure and/or electro-
static potential gradients result in a dynamic displacement of water and protons,
and induce the deformation of channel walls, represented by the resultant channel
radius R(z). Deformations propagate along the channel, creating gradients in proton
concentration and electric field in axial direction.
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The surface charge density at the channel walls is described by an empirical scaling
law [21,22],

σs = σ0 ×
(
R0

R

)α
, (2)

where the channel geometry parameter α measures the extent of surface group reorga-
nization upon deformation, to mimic the physical properties of different nanoprotonic
systems. For channels that decrease in length during swelling, 0 < α ≤ 1 is satisfied.
Weak surface charge reorganization corresponds to α→ 0, whereas α→ 1 indicates
strong reorganization of surface charges. All along, it is assumed that the acid termi-
nated side chains remain fully dissociated and that the total charge along the channel
wall remains constant.

2.2 Fluid flow

The Stokes equations represent the conservation of fluid momentum in the channel
and are used to calculate the fluid velocity v = [ur(r, t), uz(r, t)]

T . These are given as

ν∇2v −∇p+ qcE = 0, (3)

along with the fluid continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (4)

Here, ρ is the fluid mass density, p the fluid pressure, ν the fluid dynamic viscosity,
q the elementary charge, c the proton concentration, and E = [Er(r, t), Ez(r, t)]

T

the electric field.
For high-aspect-ratio channels, R0 � L0, the rate of fluid flow is much slower

in radial direction than in axial direction. Under this so-called lubrication approx-
imation, flow is nearly one-dimensional. Using cross-sectional averaging and the
lubrication approximation, as developed in reference [32], the 1-D Stokes equation (3)
for the axial direction was found to be

8ν

R2
ūz +

∂p̄

∂z
− qc̄Ēz(1− ξu) = 0. (5)

In this convention, ūz, p̄, c̄, Ēz represent cross-sectionally averaged values of the axial
fluid velocity, fluid pressure, proton concentration and axial electric field, respectively.
The function ξu can be expressed as the expansion,

ξu =
∞∑
i=1

2Λi

(i+ 1)(i+ 2)
=

1

3
Λ +

1

6
Λ2 +

1

10
Λ3 +O(Λ4). (6)

Here, ξu is related to the flow solutions found by Berg et al. [4] for the case of an
infinite, straight channel with a circular cross-section.

The parameter Λ, dimensionless and satisfying 0 ≤ Λ < 1 (and 0 ≤ ξu < 1),
measures how strongly protons interact electrostatically and can be expressed in
terms of the radial Debye length `D =

√
εε0kBT/q2cr=0, i.e., the distance from the

charged wall over which electrostatic effects between wall charge and ions in the
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solution persist, and the Bjerrum length `B = q2/4εε0kBT , i.e., the distance at which
the interaction between two unit charges equals their thermal energy kBT :

Λ =
1

8

(
R

`D

)2

=
`BR

2c̄

`BR2c̄+ 2
. (7)

2.3 Proton flow

A channel with negatively charged walls is considered in this work. The channel
is coupled to large electrolyte reservoirs at both openings. For a sufficiently large,
negative surface charge density and narrow channels, it is warranted to neglect the
presence of co-ions in the channel. This case corresponds to highly charged channels
for which the Donnan relations point to a vanishing co-ion concentration [33]. For
large aspect ratios, the double layers at the pore openings occupy only a small fraction
of the entire channel length and the analysis can be restricted to the channel interior
outside of these boundary regions. However, it should be kept in mind that the
boundary conditions for fluid simulations of the channel interior are ultimately to be
coupled to the conditions of the reservoirs through the Donnan equilibrium.

The transport of protons is governed by the Nernst–Planck equation. The total
proton flux density, j, includes contributions from advection, concentration gradients,
and electrostatic potential gradients (i.e., the electric field),

j = cv −D∇c+ µqcE, (8)

which enters the continuity equation for protons,

∂c

∂t
+∇ · j = 0. (9)

In equation (8), D denotes the diffusion coefficient of protons, which is assumed inde-
pendent of r, and µ = D/kBT is the proton mobility. Using cross-sectional averaging,
the 1-D version of the Nernst–Planck equation (8) for the axial direction was found
to be [32]

j̄z = c̄ūz(1− ξu) +
R2qc̄2Ēz

4ν
(1− ξE)−D

(
∂c̄

∂z
− `BRc̄2

∂R

∂z

)
+ µqc̄Ēz, (10)

where ξE satisfies 0 ≤ ξE < 1 and is a function of Λ,

ξE =
1

3
Λ +

5

36
Λ2 +

4

45
Λ3 +O(Λ4). (11)

Again, ξE is related to the flow solutions found by Berg et al. [4] for the case of an
infinite, straight channel with a circular cross-section.

2.4 Dimensionless fluxes

For easier handling of the otherwise complex formulations that follow, equations (5)
and (10) are non-dimensionalized using properties of the initially equilibrated channel.
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The following non-dimensionalization scheme is used,

x =
z

L0
, R̃ =

R

R0
, ũ =

ūz(
|σ0|R0∆V0

4νL0

) , (12)

p̃ =
p̄(

2|σ0|∆V0

R0

) , c̃ =
c̄(

2|σ0|
qR0

) , Ẽ =
Ēz(
∆V0

L0

) . (13)

This gives the fluid and proton flux densities,

ũ = −R̃2

(
∂p̃

∂x
− c̃Ẽ[1− ξu]

)
, (14)

j̃z = c̃ũ[1− ξu(R̃)]−Kdiff

(
∂c̃

∂x
− 2κR̃c̃2

∂R̃

∂x

)
+
(
Kmigr + 2(R̃c̃)2(1− ξE)

)
Ẽ, (15)

where Kdiff = 4νD
|σ0|R0∆V0

and Kmigr = 4νqD
|σ0|R0kBT

measure the strengths of the diffusion

and migration fluxes, respectively, relative to the convection flux from electroosmotic
forces. ∆V0 is a reference axial voltage drop. Finally, κ = `B|σ0|R0/2q is a new dimen-

sionless parameter introduced so that Λ = κR̃2c̃
1+κR̃2c̃

. Note that the overhead bar on

symbols is used for cross-sectionally averaged variables, and the overhead tilde is used
for dimensionless versions of those variables after normalization via (12) and (13).

The Kelvin-Voigt model that considers the balance of normal pressure forces on
the walls due to the fluid pressure, electroosmotic pressure and linear elastic pressure,
gives [32]

p̃ = KY

(
R̃− 1

R̃

)
−Kosmc̃(1 + κR̃2c̃), (16)

where KY = Y h0

2|σ0|∆V0
and Kosm = kBT

q∆V0
measure the strength of elastic and osmotic

forces, respectively, relative to electroosmotic forces.

3 Results and discussion

3.1 Onsager transport coefficients

In the linear response regime, the Onsager coefficient matrix [µ] relates the volumetric
water flux Q = R2ūz and the axial proton current I = qR2j̄z to the pressure gradient
∇p̄ = ∂z p̄ and the axial electric field Ēz via(

Q

I

)
=

(
µhyd µstr

µosm µele

)−∇p̄
Ēz

. (17)

The µij ’s denote Onsager phenomenological transport coefficients: µ̃hyd characterizes
the hydraulic conductance (and permeability) in accordance with Darcy’s law, µ̃ele the
electric conductance in accordance with Ohm’s law, µ̃osm the electroosmotic effect,
and µ̃str the streaming potential effect.
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We assume that in the system under consideration the fixed charges located on
the walls are balanced by a proton concentration c̄ inside the channel and in each
cross-section so that global and local electroneutrality are both preserved. This con-
dition is met for long-aspect-ratio channels, for which (i) the rate of change of the
electric field in the axial direction is much slower than that in the radial direction and
(ii) the radius varies gradually along the pore. From equation (2), this condition yields

c̃ =
1

R̃1+α
. (18)

Essentially, these assumptions eliminate any free choice in concentration gradients,
leaving only two driving forces (due to gradients in pressure and electric potential)
for two fluxes, those of water and ions. This consistent description would need to be
extended to three driving forces, including concentration gradients, and three fluxes,
including co-ions, if local electroneutrality is not guaranteed [33].

Using equations (14), (15), (16) and (18), and setting ã = R̃2, one finds the
transport coefficients

µhyd =

(
R4

0

8ν

)
ã2, (19)

µele =
(R0σ0)2

2ν

{
ã(1−α)/2

[
Kmigr + 2˜̃a(1−α)/2[1− ξE(a)]

]
+ ã1−α[1− ξu(ã)]2

}
. (20)

µstr =
R3

0σ0

4ν

{
ã(3−α)/2 [1− ξu(ã)]

}
. (21)

µosm =



µstr, rigid channel.

µstr +
R3

0σ0

4ν

Kdiff

[
2κ
√
ã+ ãα/2(1 + α)

]
ã1−α

KY +Kosm

[
2
√
ã+ ãα/2(1 + α)

]
 , deformed channel.

(22)

From (22), Onsager’s reciprocal relation is upheld with µosm = µstr when the
channel has a uniform radius and is rigid (KY → ∞). However, when the channel
is deformed and has non-uniform radius, the symmetry of [µ] is broken. A channel
curvature, or more precisely a gradient in the channel radius ∂zR, introduces a diffu-
sional proton-driving force. This results in a violation of Onsager’s reciprocal relation.
Since p is related to R according to (16), we do not classify ∂zR or ∂zA, where A is
the cross-sectional area of the channel (∂zA = ∂z[πR

2]), as a thermodynamic force.
After all, they can be expressed in terms of ∂zp which is a true driving force. Instead,
we refer to ∂zA as a pseudo-force and it is associated with the curvature coefficient,

µcurv =
σ2

0∆V0

2ν

{
Kdiff

[
2(ã(1−α)/2κ+ 1)− (1− α)

]
ã(1−α)/2

2ã

}
. (23)

It stems from the reduction of a three-dimensional system to a one-dimensional prob-
lem, coupled with local electroneutrality. In contrast, in the original three-dimensional
formulation of the problem, Onsager’s reciprocal relations are not violated at any
point in the fluid.

In the deformed state, the system’s linear response can be formulated as

J̄ = [µ]X̄ + ξ̄, (24)
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Fig. 2. Transport coefficients against the pore area ã. Coefficients are normalized with
reference parameters, i.e., µ̃ele = µele/ (µele)ref, etc. The fixed parameters used as reference
are: L0 = 50µm, D = 7 × 10−6 cm2/s, ∆V0 = 0.1 V, R0 = 2 nm, Y = 0.05 GPa, T = 300 K,
h0 = 1 nm, ε = 45, ν = 3.35 × 10−4 Pa s, and α = 0.5.

where J̄ = [Q, I]T , X̄ = [−∇p, Ez]T and ξ̄ = [0, µcurv∂zA]T give the thermodynamic
fluxes, thermodynamic forces and the diffusional pseudo-force, respectively.

Figure 2 shows plots of the transport coefficients as a function of the chan-
nel cross-sectional area relative to its equilibrium area (note that ã = A/Aeq), for
different values of σ0. Coefficients are normalized with reference parameters, i.e.,
µ̃ele = µele/ (µele)ref, etc. Figure 2a illustrates the relative strength of electric and
hydraulic conductance at different values of ã. The model predicts that electric con-
ductance increases with σ0 in a concave fashion. On the other hand, the hydraulic
conductance, which is independent of σ0, increases in a convex manner and eventu-
ally dominates electric conductance as the radius grows much larger than the relaxed
state. Very large ã ramps up the fluid pressure within the channel, owing to the
enhanced elastic response of the channel walls. This directly leads to high pressure-
induced water flux, and hence large hydraulic conductance. Figure 2b shows the
expected linear increase of electroosmotic and streaming coupling coefficients with ã.
The curvature coefficient, which measures the extent to which the system’s Onsager
symmetry is broken as a result of curvature-induced proton diffusion, is plotted in



Dynamical Aspects of Mean Field Theories for Electrolytes and Applications 2567

Figure 2c. The symmetry breaking is more pronounced at small ã and large σ0,
equivalent to highly charged channels.

3.2 Electrokinetic energy conversion

In this part, we investigate the thermodynamic efficiency of (1) electrokinetic power
harvesting devices and (2) electrokinetic pumping devices. Energy conversion is real-
ized in an individual nanochannel by means of streaming currents, electric field, and
the pressure-driven transport of protons in the EDL. The schematic for the case of
power harvesting is illustrated in Figure 1. The resistance of the reservoirs is neglected
in our calculations. In order to calculate the conversion efficiency, transport properties
explored in Section 3.1 have to be determined.

The thermodynamic efficiency χ of energy conversion is defined as the ratio of
useful power output, Pout, to power consumption, Pin:

χ =


IĒz
Q∇p̄

, electrical power generation mode.

Q∇p̄
IĒz

, pumping mode.

(25)

Substituting Q and I with the expressions in (17), Pout and χ for each energy con-
version mode in (25) are established as functions of the output thermodynamic force
only, provided the input thermodynamic forces and all Onsager transport coefficients
are known. Therefore, the output thermodynamic force and the conversion efficiency
under maximization of either (1) the power output Pout or (2) the efficiency χ can
be obtained separately.

3.2.1 Maximizing power output

We start by working out the output thermodynamic forces (Ēmax for power generation
mode and ∇p̄max for pumping mode) and efficiency χmax at maximum power output
(IĒz for power generation mode and Q∇p̄ for pumping mode). This is done by
differentiating Pout with respect to the corresponding output thermodynamic force.
For the two conversion modes, one obtains the maximum output forces,

Ēmax =
µosm

2µele
∇p̄, (26)

∇p̄max =
µstr

2µhyd
Ēz. (27)

The efficiency at maximum power output, which is the same for both power generation
and pumping modes, can be shown to be

χmaxP =
χ0

2

β

(2− β)
, (28)

where β = (µosm/µele)× (µstr/µhyd) and χ0 = µosm/µstr. The dimensionless param-
eter β is a cross-correlation coefficient, usually called the ‘figure of merit’ [34,35],
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Fig. 3. Dependence of electrokinetic conversion efficiency on the cross-correlation coefficient
at maximum output power and maximum efficiency.

and can be described as the product of the streaming current effect and the electro-
osmotic effect. The coefficient χ0 measures the symmetry of the Onsager coefficient
matrix [µ], and it assumes a value of 1 for rigid channels.

3.2.2 Maximizing efficiency

Using a similar approach, we determine the output forces that maximize the conver-
sion efficiency. This is done by differentiating χ with respect to the corresponding
output thermodynamic force. The resulting optimum output forces obtained for
pumping and power generation modes, respectively, are

Ēmax =
µhyd

µstr

(
1−

√
1− β

)
∇p̄, (29)

∇p̄max =
µele

µosm

(
1−

√
1− β

)
Ēz. (30)

The corresponding efficiency, which is also the same for both power generation and
pumping modes, can be shown to be

χmaxE = χ0

(
1−
√

1− β
1 +
√

1− β

)
, (31)

and all equations are valid under the constraint 0 ≤ β < 1 to maintain non-
negative intrinsic entropy generation in electrokinetic flows. Variation of χmaxP/χ0

and χmaxE/χ0 with β is shown in Figure 3. In the low β limit (i.e., β → 0), both
χmaxP/χ0 and χmaxE/χ0 vary linearly with β (χmax/χ0 ≈ β/4). In the high β limit
(i.e., β → 1), χmaxP/χ0 and χmaxE/χ0 are monotonically increasing functions of β,
with χmaxP assuming half the value of χmaxE.
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Fig. 4. Electrokinetic energy conversion efficiency at maximum efficiency against surface
charge density at different (a) channel radii and (b) cation diffusion constants. The first
row corresponds to the case of a rigid channel and the second row is for a deformable
channel. Results are obtained via (31). Among the fixed parameters used as references
are: D = 7 × 10−6 cm2/s, R0 = R = 2 nm, Y = 0.05 GPa, T = 300 K, h0 = 1 nm, ε = 45,
ν = 3.35 × 10−4 Pa s, and α = 0.5.

Plots of maximum efficiency determined via (31) against σ0, which are almost the
same as those obtained from (28) for the case of β � 1 (i.e., χmax = χmaxP = χmaxE),
are shown in Figure 4. For a typical set of parameters, χmax is on the order of 5%,
and β is on the order of 0.2. The behaviour is similar to what has been reported from
experiments [36–40]: χmax increases with σ0 for small σ0 but reaches a maximum at
an absolute value of around 0.05 C/m2; a further increase in σ0 results in a decrease
in χmax. At very large σ0, corresponding to regions past the peak, the coupled fluid-
ion transport is reduced since a large fraction of protons occupy the EDL where
fluid flow is significantly hampered. This affects both electroosmotic flow and the
streaming current.

Furthermore, we explored the dependence of χmax on R0 and D for the case of
a rigid channel, and then for a deformable channel using results from (31). For a
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Fig. 5. Electrokinetic energy conversion efficiency at maximum efficiency against sur-
face charge density at different (a) elasticity constants and (b) values of surface geometry
parameter α. Results are obtained via (31). Among the fixed parameters used as references
are: D = 7 × 10−6 cm2/s, R0 = R = 2 nm, Y = 0.05 GPa, T = 300 K, h0 = 1 nm, ε = 45,
ν = 3.35 × 10−4 Pa s, and α = 0.5.

rigid channel, increasing R0 only shifts the peak of χmax towards smaller σ0; whereas
for a deformable channel, this effect further changes the value of χmax at the peak.
For large σ0, χmax achieves larger values when R0 is small. The opposite effect is
observed for small σ0. Conditions for which a smaller fraction of protons reside in
the EDL yield a higher χmax. In other words, χmax is optimized when the double
layers from opposite walls of the channel overlap. From Figure 4, we see that higher
proton diffusivity tends to lower the efficiency. This effect is even more significant for
the case of a deformable channel where the pore curvature induces a diffusional force
that opposes the migration of protons, thereby reducing the overall transport.

Finally, the dependence of χmax on elastic and geometric properties of the channel
is shown in Figure 5. In each plot, the black solid curve represents a rigid channel.
χmax increases with the elastic coefficient, Y . Optimum χmax is realized when the pore
is rigid. Hence, the model predicts that a softness of channel walls is not favourable for
energy harvesting. For soft channels, energy is lost due to elastic deformations taking
place along the walls, thereby changing the flow dynamics and reducing χmax as a
consequence. Figure 5b shows that χmax is also influenced by α. All curves converge
at one specific value of σ0, which is ∼0.1 C/m2 for the case shown in Figure 5b.
Below this value, smaller values of α optimize χmax. The opposite is seen for values
of σ0 above this convergence point. The convergence can be well understood from
the mathematical nature of the model used. Dependence on α, for the case of ã = 1
and a deformable channel, is only seen through µosm given in (22). This dependence
vanishes when 2κ = KY /Kosm + 2, and this gives the value of σ0 at which all curves
converge.

One universal feature of the results reported here is that the efficiency gets
amplified and peaks over a narrow regime at low σ0. The peak region is not much
affected by the channel’s elasticity. Figure 6 compares results with data obtained
from experiments and MD simulations. In Figure 6a, we compare with experimen-
tal results reported by Xi et al. [37], where the efficiency χ is plotted against the
sectionally-averaged counterion concentration (c̄ = 2|σ0|/qR0). Xi et al. studied sin-
gle track-etched nanopores by measuring the streaming currents and conductance.
Data reported is from two of their samples, corresponding to nanopores with inner
radii 32 nm and 31 nm. We use R0 = 32 nm and D = 20 × 10−6 cm2/s to calculate
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Fig. 6. Comparison of the 1-D model with (a) experimental results from reference [37]
and (b) MD simulations results from reference [40]. For experimental results shown in (a),
single track-etched nanopores with outer radius of 120 nm. Two samples are reported, with
inner pore radii of 32 nm (sample (iii)) and 31 nm (sample (iv)). For MD simulations
results shown in (b), pore radii of 0.3 nm and 0.9 nm were used and values of χ were
scaled by a factor of 1/10 to make qualitative comparison. D = 20 × 10−6 cm2/s was used
for the model results in (a), and D = 15 × 10−6 cm2/s was used in (b). Among the fixed
parameters used are Y = 0.5 GPa, T = 300 K, h0 = 1 nm, ε = 45, ν = 3.35 × 10−4 Pa s,
and α = 0.5.

χmax from the 1-D model and compare with the data. The peak region obtained in
our 1-D model matches that from the experimental data. However, the model gives
a larger decay of χ towards lower concentrations. This could arise from the track-
etched feature of pores considered in reference [37]. In Figure 6b, we compare our 1-D
model results with MD simulation results reported by Bakli and Chakraborty [40].
The numerical values they obtained for the efficiency are markedly higher than
obtained in our model. This could be due to specific simulation conditions that
are not well-captured by the model. Hence, we scaled their efficiency values by a
factor of 1/10 to match our results. With this modification, we obtain the same
qualitative behaviour as theirs. Data is from pores of radii 0.3 nm and 0.9 nm, and
D = 15 × 10−6 cm2/s was used for the model results. Our model gives an efficiency
peak at a region that matches that from their data. Note that a deformable nanochan-
nel (Y = 0.5 GPa and α = 0.5) was assumed to obtain the 1-D model results in
Figure 6.

4 Conclusions

This contribution employed continuum modelling to investigate the classical prob-
lem of electrokinetic transport in deformable nanochannels that are characterized by
negative charges residing on the inner walls, balanced exactly by counter-ions in the
fluid. Closed-form formulae for Onsager transport coefficients were derived first for
the case of rigid and subsequently for deformable channels. For the general case of
co- and counter-ions, the coefficients are only attainable numerically. For the limiting
case of low co-ion concentration inside the channel, closed-form solutions may still
be attainable via a perturbative analysis of the counter-ions-only case. Results reveal
that the Onsager reciprocity principle holds for rigid channels but is not fulfilled when
the channel is deformed. As demonstrated in this article, the symmetry violation is
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caused by a “fictitious” contribution to diffusion introduced by the reduction of the
model to 1D.

Furthermore, this work explored the energy conversion mechanism of elec-
trokinetic systems. The maximum efficiency was calculated as a function of the
phenomenological transport coefficients. We found that the efficiency of an electroki-
netic system is maximized under conditions of strong double layer overlap within
the channel. Moreover, the proposed model predicts that a softness of channel walls
diminishes the efficiency compared to the rigid case.
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