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Abstract. Electro-thermodynamics provides a consistent framework to
derive continuum models for electrochemical systems. For the appli-
cation to a specific experimental system, the general model must be
equipped with two additional ingredients: a free energy model to cal-
culate the chemical potentials and a kinetic model for the kinetic
coefficients. Suitable free energy models for liquid electrolytes incor-
porating ion–solvent interaction, finite ion sizes and solvation already
exist and have been validated against experimental measurements. In
this work, we focus on the modeling of the mobility coefficients based on
Maxwell–Stefan setting and incorporate them into the general electro-
thermodynamic framework. Moreover, we discuss the impact of model
parameter on conductivity, transference numbers and salt diffusion
coefficient. In particular, the focus is set on the solvation of ions and
incomplete dissociation of a non-dilute electrolyte.

1 Introduction

Continuum models are an indispensable tool to study electrochemical phenomena
on the device level. Recently, a general modeling framework was derived in the con-
text of electro-thermodynamics for electrochemical systems [9,12]. The ingredients of
the models are chemical potentials, derived from a free energy density, and kinetic
parameters like mobilities for ion diffusion. A suitable free energy model for liq-
uid electrolytes, which is capable to handle solvent–ion interaction, finite ion size
and solvation, is developed in [6,9]. The model is validated against experimental
measurements of differential capacitance of single crystal surfaces and electrocap-
illarity curves for aqueous electrolytes [7,15]. The main scope of this paper is
the modeling of the kinetic parameters, i.e. the mobility coefficients, and an eval-
uation of the resulting transport properties of the electrolyte. In particular, we
study the dependence of the transport parameters on ion solvation and dissociation
reaction.

We apply Maxwell–Stefan setting for multicomponent transport diffusion laws for
the derivation of the mobility coefficients, cf. [1,24,25,27]. However, instead of the
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mobility coefficients, often other transport parameters are more useful for the inter-
pretation of measurements. In the context of energy conversion systems, the electric
conductivity of electrolytes has naturally attracted most interest. Further relevant
parameters are the transference numbers and diffusion coefficients. In contrast to
the equilibrium properties, some of these mentioned transport properties depend on
a combination of chemical potentials and kinetic coefficients, while others depend
solely on the kinetic coefficients.

In the literature, two distinct transport theories are commonly used, one for dilute
solutions and one for concentrated solutions, see e.g. [18,20]. The dilute solution the-
ory is based on Nernst–Planck theory, whereas in the concentrated solution case
Maxwell–Stefan theory is applied. However, there was some controversy about dis-
crepancies between these two theories, cf. [22]. As pointed out in [3] this discrepancy
is only apparent and can be attributed to the use of different potentials in the two
settings. In this paper, we present one general framework to cover concentrated and
strongly diluted solutions in the same setting.

We perform a numerical assessment of the obtained continuum model. The applied
electrolyte model for liquid electrolytes contains solvated ions, i.e. complexes build
from a center ion and a solvation shell containing a certain number solvent molecules.
We study the impact of the solvation on the transport parameters. In a non-dilute
solution, the neutral salt in general will dissociate only partially into anions and
cations. Therefore, we also investigate transport coefficients for electrolytic mixtures
that contain the undissociated salt as an additional constituent.

Outline. We start by summarizing a general continuum model for electrolytes in
Section 2. Section 3 contains the constitutive modeling of a liquid electrolyte. We
summarize a bulk free energy model and derive a framework for the mobility coef-
ficients. In Section 4, we discuss the dilute solution limit and electroneutral bulk
transport. The numerical evaluation of the model is done in Section 5. We start with
a numerical study for a binary electrolyte with a completely dissociated salt, where
explicit expressions for the transport parameters can be derived. Next, we extend the
model to study the transport parameters of an electrolyte with partially dissociated
salt. The work closes with conclusions and outlook in Section 6.

2 Electro-thermodynamics

The following model is derived from a general continuum model for magnetizable,
polarizable, elastic, viscous, heat conducting and reactive mixtures [12]. To simplify
the model, we are only interested in electrostatic and isothermal processes. In conse-
quence, the magnetic field can be ignored whereas the temperature T still appears in
the equations, but only as a constant parameter. The applied notation is summarized
in Table 1.

Constituents and chemical reactions. The electrolyte is modeled as a mixture
of N + 1 constituents Aα indexed by α ∈ {0, 1, 2, . . .,N}. Each of constituent Aα is
characterized by the (atomic) mass mα and its atomic charge zαe0, where the positive
constant e0 is the elementary charge and zα is the charge number of the constituent.

There may be M ≥ 0 chemical reactions in the mixture, where the reactions may
be written in the general form

N∑
α=0

akαAα

Rkf−−⇀↽−−
Rkb

N∑
α=0

bkαAα for k ∈ {1, . . .,M}. (1)
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Table 1. Summary of notations.

kB (J/K) – Boltzmann constant e0 (C) – Elementary charge
ε0 (C/V m) – Electric constant χ – Susceptibility
mα (kg) – Atomic masses zα – Charge number
νkα – Stoichiometric coefficients
ϕ (V) – Electrostatic potential T (K) – Bulk temperature
ρα (kg/m3) – Partial mass density ρ (kg/m3) – (Total) mass density
nα (1/m3) – Number density n (1/m3) – Total number density
υα (m/s) – Partial velocity u (m/s) – Relative velocity
υ (m/s) – Barycentric velocity ρψ (J/m3) – Free energy density
µα (J) – Chemical potential µeα (J) – Electrochemical potential
Jα (1/sm2) – Mass flux density Rk (1/sm3) – Reaction rates
Σ (Nm) – Total stress tensor p (Nm) – Pressure

Mαβ (s/kg m3) – Mobility Dαβ (m2/s) – Maxwell–Stefan diffusivities
fαβ – Friction coefficients D (m2/s) – Salt diffusion coefficient
tα – Transference numbers σ (S/m) – Conductivity

The constants akα, bkα are non-negative integers and νkα := bkα−akα denote the stoichio-
metric coefficients of the reactions. The reaction from left to right is called forward
reaction with reaction rate Rkf > 0 and Rkb > 0 is the reaction rate of the backward

reaction. The net reaction rate Rk is defined as Rk = Rkf −Rkb .
Since both charge and mass are conserved in each single reaction, we have

N∑
α=0

zαν
k
α = 0 and

N∑
α=0

mαν
k
α = 0 for k ∈ {1, . . .,M}. (2)

Thermodynamic state. In the isothermal electrostatic setting the electro-
thermodynamic state of the mixture, occupying a region Ω ⊂ R3 at any time t is
described by the number densities nα, the barycentric velocity υ and the electrostatic
potential ϕ.

Multiplication of the number densities nα by mα gives the partial mass densities

ρα = mαnα. (3)

The total number density, the (total) mass density and the free charge density are
defined by

n =
N∑
α=0

nα, ρ =
N∑
α=0

mαnα, nF = e0

N∑
α=0

zαnα. (4)

The partial velocities of the species Aα are denoted by υα and uα = υα−υ is the
diffusion velocity with respect to the barycentric velocity. The barycentric velocity
and the diffusion fluxes of constituents Aα are related to the partial and relative
velocities by

υ =
1

ρ

N∑
α=0

ραυα, Jα = ραuα. (5)
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These definitions imply the important constraint

N∑
α=0

Jα = 0. (6)

2.1 Balance equations of mass, momentum and Poisson equation

In the electrostatic approximation of Maxwell’s equations, the magnetic contribu-
tions vanish and only the electric field E = −∇ϕ remains. In this case, Maxwell’s
equations reduce to the Poisson equation for the electrostatic potential ϕ. Moreover,
the continuum model for ρα and υ relies on the balance equations of partial masses
and on the balance of momentum,

−div((1 + χ)ε0∇ϕ) = nF. (7a)

∂tρα + div(ραυ + Jα) =
M∑
k=1

νkαmαR
k, for α = 0, . . . , N, (7b)

∂tρυ + div(ρυ ⊗ υ −Σ) = ρb. (7c)

Here, Σ is the total stress tensor.1 The dielectric constant is ε0 and the dielectric
susceptibility is χ. The force density, ρb, due to gravitation will be ignored.

Conservation of mass. The sum of partial mass balances implies the conservation
of the total mass. By (2) and (6) we obtain

∂tρ+ div(ρυ) = 0. (8)

Conservation of electric charge. The balance equations of partial masses yield
the conservation of free electric charge

∂tn
F + div(nFυ + JF) = 0, (9)

where the free electric current density JF is defined by

JF =
N∑
α=0

zαe0

mα
Jα. (10)

2.2 General constitutive equations

The balance equations are complemented by constitutive equations for the diffu-
sion fluxes Jα, the reaction rates Rk and the total stress tensor Σ. The constitutive
equations are restricted by the second law of thermodynamics and some symmetry
principles [1,12,19]. In [12], general constitutive equation for magnetizable, polariz-
able, elastic, viscous, heat conducting and reactive mixtures, which are compatible to

1 The total stress tensor consists of the Cauchy and the Maxwell stress tensor. We refer to [9,12]
for more details.



Dynamical Aspects of Mean Field Theories for Electrolytes and Applications 2519

the second law of thermodynamics, and the Galilean symmetry principle, are derived.
In the isothermal and electrostatic setting, these constitutive equations reduce to2

Jα = −
N∑
β=1

Mαβ

(
∇
(µβ
T
− µ0

T

)
+

1

T

(zβe0

mβ
− z0e0

m0

)
∇ϕ
)
, for α = 1, . . . , N,

(11a)

Σ = −p1 + (1 + χ)ε0

(
− 1

2 |∇ϕ|
21 + (∇ϕ⊗∇ϕ)

)
+ ηb div(υ)1 + ηs

(
∇υ + (∇υ)T

)
,

(11b)

Rk = Rk0

(
exp

(
− βk

kBT

N∑
α=0

νkαmαµα

)
− exp

(
(1−βk)
kBT

N∑
α=0

νkαmαµα

))
. (11c)

Here, µα are the chemical potentials3 and p is the material pressure. Both are defined

in terms of a free energy function ρψ = ρψ̃(T, ρ0, . . . , ρN ) + 1
2χε0|E|2,

µα =
∂ρψ

∂ρα
, p = −ρψ̃ +

N∑
α=0

ραµα. (12)

For simplicity we assume that the dielectric susceptibility χ is constant. The kinetic
coefficients, i.e. mobilities Mαβ , bulk viscosity ηb, shear viscosity ηs and rate Rk0 , are
restricted by the second law of thermodynamics such that the entropy production is
non-negative,

Mαβ pos. def., ηs > 0, ηb + 2
3ηs > 0, Rk0 > 0. (13)

Thus, the second law of thermodynamics restricts only the sign of the kinetic
coefficients, they still may be functions of the thermodynamic fields and their
derivatives.

Our approach (11c) for the reaction rates is widely used in electrochemistry for
surface reactions [11]. The constants βk are called symmetry factor, which fosters
either the forward or the backward reaction. From a thermodynamic point of view
there is no restriction on βk, usually β ∈ (0, 1) is chosen. We will not focus on the
viscosity in this paper, therefore we assume that ηb, ηs are constants.

2.3 Transference numbers and ionic conductivity

Insertion of the constitutive equations (11a) for the diffusion fluxes into the relation
(10) of the electric current density yields the representation

JF = −σ∇ϕ−
N∑
β=1

σ tβ
mβ

zβe0
∇
(
µβ − µ0

)
, (14)

2 Note, only N diffusion fluxes are specified by constitutive relations. The flux J0 is determined
by the constraint (6).

3 The chemical potentials are defined with respect to the mass densities, therefore their physical
unit is J/kg. In electrochemistry, it is common to define the chemical potentials with respect to the
number densities and to use the physical unit J/mol.
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where the conductivity σ and the transference numbers tβ are defined by

σ =
N∑
α=1

N∑
β=1

zαe0
mα

Mαβ

T
zβe0
mβ

, tβ =
1

σ

N∑
α=1

zαe0
mα

Mαβ

T
zβe0
mβ

. (15)

Since the mobility matrix Mαβ is positive definite, the conductivity is non-negative,

i.e. σ ≥ 0 and the definition of the transference numbers implies
∑N
β=1 tβ = 1. The

relation (14) can be used to replace the electric potential by the electric current
density within the diffusion fluxes (11a),4

Jα = −
N∑
β=1

(
Mαβ

T − σ mα
zαe0

mβ
zβe0

tαtβ

)
∇
(
µβ − µ0

)
+ mα

zαe0
tαJ

F α = 1, . . . , N.

(16)

In the absence of chemical potential gradients, the transference number tα describes
the fraction of the current due to the diffusion flux Jα of species Aα. Recall that
the diffusion fluxes Jα are defined with respect to the barycentric velocity υ. Thus,
the above defined transference numbers are related to the barycentric velocity. Other
definitions of different transference numbers are possible, e.g. the use of transference
numbers t0α with respect to the solvent velocity υ0 is quite common, cf. (Sect. 12.3
of [20]).

3 Specific constitutive modeling for liquid electrolytes

Two additional ingredients must be added to the model of the preceding section
in order to obtain a complete model. These are: (i) a free energy model and (ii) a
constitutive model for the kinetic coefficients.

3.1 Bulk free energy model

A suitable free energy model for liquid electrolytes in the bulk is derived and analyzed
in [6,7,9,15]. Here, we give only a brief summary of its characteristic features.

The free energy density consists of three contributions: reference energies, entropy
of mixing and elasticity

ρψ̃ = ρψref + ρψmix + ρψmech. (17)

We consider an ideal mixture, i.e.

ρψref(T, ρ0, . . . , ρN ) =
N∑
α=0

ρα
mα

ψref
α , (18a)

ρψmix(T, ρ0, . . . , ρN ) = kBT
N∑
α=0

nα ln
(nα
n

)
. (18b)

4 This representation can also formally be used if some zα = 0.
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The mechanical part of the free energy is represented by an isotropic elastic response
of a volume change,

ρψmech(T, ρ0, . . . , ρN ) = (pref −K)(nH − 1)

+K nH ln(nH) with nH =
N∑
α=0

υref
α nα. (19)

The reference energy is composed of the reference free energies ψref
α of each individual

constituent of the mixture. In general these reference values depend on temperature,
but in the isothermal setting they are assumed to be constants. The entropy of mixing
accounts for the number of possible arrangements of the constituents that give rise
to the same macroscopic state. In statistical thermodynamics, it is determined by
means of the Boltzmann formula. The mechanical part of the free energy density is
chosen such that from (12) a simple linear constitutive relation for the pressure p
results, viz.

p = pref +K(nH − 1). (20)

The function H is the mean specific volume of the mixture and accounts for volume
changes due to a local variation of the mixtures composition.

In the incompressible limit, i.e. K � pref , the pressure p is an independent variable
of the system and from (20) we obtain the constraint,

K/pref →∞ :

N∑
α=0

υref
α nα = 1, (21)

where υref
α denotes the partial specific volume of the constituent Aα under the refer-

ence pressure pref and reference temperature T ref . For more details on the limiting
procedure, we refer to [6,9,15].

From the free energy density we obtain the chemical potentials of the constituents
of the mixture,

K/pref →∞ : µα = 1
mα

ψref
α +

υref
α

mα
p+ kBT

mα
ln
(nα
n

)
. (22)

3.2 Diffusion coefficients

The second law of thermodynamics requires the matrix of the mobility coefficients
Mαβ to be positive definite, but it does not provide any dependency on partial mass
densities or other thermodynamic fields. Moreover, it is not obvious how to model the
mobilities with a theory on a finer scale. In the literature, diffusion of multi-component
systems is often alternatively described by constitutive equations of Maxwell–Stefan
type, cf. e.g. [13,18,20,24,26,27]. Relying on kinetic theory it has been observed that
the dependence on the partial mass densities is much simpler for the Maxwell–Stefan
diffusivities than for the mobilities. For this reason we consider in this section the
Maxwell–Stefan approach to derive the mobilities Mαβ .

Alternative constitutive equations. The formulation of constitutive equations
is based on a specific representation of the entropy production and the require-
ment of non-negative entropy production in each diffusive mechanism, cf. [12].
Based on the balance equations of the previous section and an appropriate choice
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of the entropy density function, the entropy production due to diffusion can be
represented as

0 ≤ ξdiff = −
N∑
α=0

Jα · ∇(
µeα
T )

(5)
= −

N∑
α=0

ρα∇(
µeα
T ) · uα, (23)

where the electrochemical potentials are defined as

µeα = µα + zαe0
mα

ϕ. (24)

Next we define

Aα = ρα
(
∇µeα

T + Λ
)

with ρΛ =
N∑
α=0

ρα∇(
µeα
T ). (25)

This definition implies the constraint
∑N
α=0Aα = 0 and, together with the constraint

(6), the entropy production due to diffusion can be rewritten as

0 ≤ ξdiff = −
N∑
α=1

Aα · (uα − u0). (26)

We choose linear relations between the corresponding binary factors of the entropy
production, cf. [1,8,12]. and obtain the constitutive equations5

Aα = −
N∑
β=1

ταβ (uβ − u0), α = 1, . . . , N. (27)

The entropy production is non-negative if the kinetic coefficients ταβ define a positive
definite N ×N matrix.

Relations between kinetic coefficients. Because the Fick mobility matrix with
the coefficients Mαβ is positive definite, there is in particular a unique inverse matrix
that is also positive definite. We denote the coefficients of this inverse matrix by Bαβ .
Thus, we can rewrite (11a) as

N∑
β=1

BαβJβ = −∇ (
µeα
T −

µe0
T ), α = 1, . . . , N. (28)

Next we determine the coefficients Bαβ as function of ταβ , for this purpose we define
for α, β = 1, . . . , N

τ̃αβ := ταβ , τ̃α0 := −
N∑
β=1

ταβ , τ̃0β := −
N∑
α=1

ταβ , τ̃00 :=
N∑

α,β=1

ταβ . (29)

5 The form (11a) of the diffusive fluxes Jα was analogously obtained from the first expression
for ξdiff in (23) by applying the constraint (6) and linear relations between the binary factors.



Dynamical Aspects of Mean Field Theories for Electrolytes and Applications 2523

The definition directly implies the constraint

N∑
β=0

τ̃αβ = 0, (30)

and we can rewrite the constitutive equation (27) as

Aα
(29)
= −

N∑
β=0

τ̃αβ uβ = −
N∑
β=0

τ̃αβ
ρβ

Jβ , α = 0, . . . , N. (31)

Subtracting the equation for α = 0 from the remaining equations, we obtain

∇
(µeα
T −

µe0
T

) (25)
=

Aα

ρα
− A0

ρ0
= −

N∑
β=0

( τ̃αβ
ραρβ

− τ̃0β
ρ0ρβ

)
Jβ

(29)
= −

N∑
β=1

( τ̃αβ
ραρβ

− τ̃0β
ρ0ρβ

− τ̃α0

ραρ0
+

τ̃00

ρ0ρ0

)
Jβ . (32)

By comparison with (28) we identify

Bαβ =
τ̃αβ
ραρβ

− τ̃0β
ρ0ρβ

− τ̃α0

ραρ0
+

τ̃00

ρ0ρ0
. (33)

Maxwell–Stefan setting. Maxwell–Stefan diffusion laws are most commonly
written in the form6

ρα (∇µeα
T −Λ) =

N∑
β=0

τ̃αβ (uα − uβ), (34)

which follows from (31) by applying (25) and (29). The constitutive modeling
now consists in specifying how the coefficients τ̃αβ for α 6= β depend on ρα for
α = 0, . . . , N . In the Maxwell–Stefan theory, it is assumed that τ̃αβ is approximately
proportional to the mass densities ρα and ρβ . We introduce so called friction factors
fαβ and the Maxwell–Stefan diffusivities Dαβ as follows,

τ̃αβ = −fαβ ραρβ = −kB
n

nαnβ
Dαβ

for α 6= β. (35)

In the following, we assume constant Maxwell–Stefan diffusivities Dαβ . The friction
factors and the Maxwell–Stefan diffusivities are related by

fαβ =
kB
n

1

mβmα

1

Dαβ
for α 6= β. (36)

6 Considering only the quasi-equilibrium of the momentum balance (7c), i.e. ∇p = −nF∇ϕ,

implies for an isothermal process ρΛ =
∑N
α=0 ρα∇

µeα
T

= 0. Then, (34) coincides with the textbook
literature, cf. e.g. [Eq. (12.1) of [20]].
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The specific dependency on the number densities of τ̃αβ implies that τ̃αβ is symmetric,
see [1,28]. The symmetry of the mobility matrix Mαβ and its inverse matrix Bαβ
then follows by (33). Starting from (26) and (27) and applying (29) multiple times,
we obtain for the entropy production due to diffusion, cf. [1,28],

0 < ξdiff =
N∑
α=1

N∑
β=1

ταβ (uβ − u0) · (uα − u0) =
N∑
β=1

(uβ − u0) ·
N∑
α=0

τ̃αβ uα

=
N∑
α=0

uα ·
N∑
β=0

τ̃αβ uβ = −1

2

N∑
α=0

N∑
β=0

τ̃αβ(uα − uβ)2. (37)

Positivity of ξdiff for all possible uα and uβ thus requires τ̃αβ < 0 for α, β = 0, . . . , N
with α 6= β. This, together with the symmetry of τ̃αβ , implies for the friction factors
fαβ and the Maxwell–Stefan diffusivities Dαβ

fαβ = fβα > 0 for α 6= β or equivalently Dαβ = Dβα > 0 for α 6= β. (38)

Mobility coefficients. Applying the definition (29) and the Maxwell–Stefan form
(35) of the coefficients τ̃αβ , we obtain for α = 1, . . . , N

Bαα =
τ̃αα
ραρα

− τ̃0α
ρ0ρα

− τ̃α0

ραρ0
+

τ̃00

ρ0ρ0
= −

∑
γ 6=α

τγα
ραρα

− 2
τ0α
ρ0ρα

−
∑
γ 6=0

τ0γ
ρ0ρ0

=
kB
n

(∑
γ 6=α

ργ
ρα

1

mγmαDγα
+ 2

1

m0mαD0α
+
∑
γ 6=0

ργ
ρ0

1

m0mγD0γ

)

=
kB
n

(
ρ0

ρα

(1 + ρα
ρ0

)2

m0mαD0α
+
∑
γ 6=0,α

ργ
ρα

1

mγmαDγα
+
ργ
ρ0

1

m0mγD0γ

)
, (39a)

and for α 6= β we have

Bαβ =
τ̃αβ
ραρβ

− τ̃0β
ρ0ρβ

− τ̃α0

ραρ0
+

τ̃00

ρ0ρ0
=

ταβ
ραρβ

− τ0β
ρ0ρβ

− τα0

ραρ0
−
∑
γ 6=0

τ0γ
ρ0ρ0

=
kB
n

(
− 1

mαmβDαβ
+

1

m0mβD0β
+

1

mαm0Dα0
+
∑
γ 6=0

ργ
ρ0

1

m0mγD0γ

)
. (39b)

4 Discussion of two limiting cases

For further characterization of the continuum model and to relate it to the literature,
we discuss two limiting situations. Let us consider an incompressible mixture, where
A0 denotes the uncharged solvent of the mixture, i.e. zα = 0. Insertion of the chemical
potentials (22) into the diffufluxes (11a) yields an explicit expression for the diffusion
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fluxes

Jα = −kBT mα

N∑
β=1

Mαβ

Tmαmβnβ

×
(
∇nβ + nβ

zβe0

kBT
∇ϕ+

nβ
n0

[
− mβ

m0
∇n0 −

n0

n

(
1− mβ

m0

)
∇n

+
n0

kBT

(
vref
β −

mβ

m0
vref

0

)
∇p
])
. (40)

Compared to the standard Nernst–Planck model, cf. [2,20], there are three additional
terms inside the square brackets. The first term represents the solvent–ion interaction,
the second one takes into account the different size of the constituents and the third
term represents the coupling of pressure and diffusion fluxes.

4.1 Dilute solution theory

In the dilute solution limit, the number density of the solvent is assumed to be large
compared to those of all remaining species, i.e. nα � n0 for α = 1, . . . , N .

Mobility matrix. To study the mobility matrix Mαβ in the dilute solution limit,
we first analyze the dependency of the inverse matrix on the species densities. We infer
from (39) that in the strong dilution limit the diagonal elements grow proportional to
number densities of the respective constituents, whereas the non-diagonal elements
stay bounded, i.e.

ρα
ρ0
Bαα →

kB
n

1

m0mαD0α
for

ρα
ρ0
→ 0 (41a)

ρα
ρ0
Bαβ → 0 for

ρα
ρ0
→ 0 and α 6= β (41b)

and conclude for the mobility matrix

Mαα → nα
n

n0

m2
αD0α

kB
for

nα
n0
→ 0 (42a)

Mαβ → 0 for
nα
n0
→ 0 and α 6= β. (42b)

In the strong dilution limit, the mobility matrix is diagonal and thus cross diffusion
is negligible in this regime.

Nernst–Planck fluxes. Since n → n0 for nα
n0
→ 0, the diagonal entries in (42)

simplify to

Mαα → nα
m2
αD0α

kB
for

nα
n0
→ 0. (43)
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Insertion of the mobility matrix (43) into the diffusion fluxes (40), then directly yields
the classical Nernst–Planck fluxes

Jα = −mαD0α

(
∇nα + nα

zαe0
kBT
∇ϕ
)
. (44)

We conclude that under strong dilution conditions a volume exclusion mechanism
is not required in an electrolyte model. However, if the Nernst–Planck flux is inap-
propriately applied inside electrochemical double layers, then the absence of such a
volume exclusion mechanism allows unphysical, almost infinite accumulation of ions,
as it is well known for the classical Poisson–Nernst–Planck model, cf. e.g. [9,14].

Conductivity and transference numbers. In the dilute solution limit, conduc-
tivity and transference numbers reduce to

σ =
N∑
α=1

(zαe0)2nαD0α

kBT
, tα =

(zαe0)2

σ

nαD0α

kBT
. (45)

We conclude that in dilute solutions the transference numbers are always positive.

4.2 Electroneutral bulk transport

Writing the Poisson equation (7a) in dimensionless form with ϕ = kBT
e0

ϕ̃ and

nF = e0n
ref ñF yields

−λ2∆ϕ̃ = ñF with λLref =

√
(1 + χ)ε0kBT

e2
0n

ref
. (46)

Here, Lref and nref denote reference values for the size of the considered system and
the electrolyte concentration, respectively. Given typical values Lref = 1 cm, nref =
1 mol/L, we find that λ ≈ 10−9 is an extremely small parameter. Thus, the left hand
side of the Poisson equation (46) is close to zero. Then, the Poisson equation (7a)
can be replaced by the electroneutrality condition

λ→ 0 : 0 = nF. (47)

Thus, here the Poisson equation does not(!) reduce to the Laplace equation but to the
algebraic equation (47). Note, this approximation does not hold in charged boundary
layers at surfaces, where the electric field ∇ϕ changes strongly. A detailed asymptotic
derivation and discussion of the electroneutrality condition and the handling of the
boundary charged layers are given in [10].

Mechanical quasi-equilibrium. For simplicity we consider a quasi-equilibrium
version of the momentum balance (7c),

vanishing viscosity: ∇p = −nF∇ϕ. (48)

The term on the right hand side is the electrostatic approximation of the Lorentz
force. In the electrical double layer, where charge accumulates and electric potential
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drops in the order of several volts per nm, a large pressure gradient is generated. But
in the electroneutral bulk region, the pressure gradient vanishes and we can set

p = pref in the bulk with nF = 0. (49)

Bulk diffusion flux of concentrated solutions. In the bulk, the diffusion fluxes
(40) simplify to

Jα=− kBT mα

N∑
β=1

Mαβ

Tmαmβnβ

(
∇nβ+nβ

zβe0
kBT
∇ϕ− mβ

m0

nβ
n0
∇n0 −

(
1−mβm0

)nβ
n
∇n
)
,

(50)

where the last two terms describe the non-ideality of a concentrated solution in an
explicit way.

5 Transport coefficients of concentrated solutions

Bulk transport properties for concentrated solutions are well described in (Sect. 12
of [20]). In this section, we investigate how the transport parameters are influenced
by

– solvation of ions,

– incomplete dissociation of the neutral salt.

We consider an electrolyte that is prepared by dissolving some neutral salt AE in a
neutral solvent A0, such that the salt dissociates into anions and cations. Many sol-
vents, in particular in water, have a molecular structure that gives rise to microscopic
dipoles. These dipoles cause a microscopic electrostatic interaction between solvent
and charged ions. This interaction leads to clustering of solvent molecules around a
center ion, which is known as solvation. The solvation has a profound impact on the
mixing entropy within the electrolyte model [6]. Solvent molecules that are bounded
by an ion do not participate in the entropic interaction with the other constituents
of the electrolytic mixture. Therefore, we choose as the constituents of the mixture
the solvated ions consisting of the center ion and its solvation shell and refer to the
solvated anions and cations as A− and A+, respectively. Moreover, bounded solvent
molecules move with the velocity of the center ion and contribute mass to the ionic
constituent. Both effects have an impact on the barycentric velocity.

The dissociation reaction is accompanied by a solvation reaction and we write the
net reaction as

AE + (ν−κ− + ν+κ+)A0 −−⇀↽−− ν−A− + ν+A+, (51)

where κ− and κ+ are the numbers of solvent molecules in the solvation shell of A−
and A+, respectively. The total amount of salt molecules within the electrolyte is
given by the salt concentration,

c = nE +
1

2

(
n+

ν+
+
n−
ν−

)
. (52)
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Fig. 1. Partial dissociation of a salt with υref
E = 2υref

0 and υref
± = (κ + 1)υref

0 . Dissociation
degree for different values of the dissociation energy ∆g and no solvation of ions, i.e. κ = 0
(left) and solvated ions with κ− = κ+ = κ = 4 (middle). Right: dissociation degree for fixed
∆g = 3kBT and varying κ.

We assume fast dissociation and study the limit R0 →∞, such that the reaction is
in local equilibrium. From the constitutive equation (11c) we get

mEµE + (ν−κ− + ν+κ+)m0µ0 = ν−m−µ− + ν+m+µ+, (53)

where the chemical potentials are given by (22). Moreover in fast dissociation limit
R0 → ∞ the reaction rate R is not determined by the constitutive equation (11c)
anymore and becomes a new unknown of the system, which is determined by one of
the mass balances. This strategy to simplify the equation system is considered e.g.
in [4,21].

The amount of dissociated salt is controlled by the dissociation energy

∆g =
∑

α∈{0,+,−,E}

να(ψref
α + vref

α pref). (54)

Equation (53) implies for ∆g → −∞ the salt is completely dissociated, see Figure 1.
We ignore the viscosity, i.e. ηb = 0 and ηs = 0, such that the momentum balance

reduces to (48). Since we are only interested in ion transport within the bulk far away
from charged boundaries, we assume that the electrolyte is locally electroneutral,

z−n− + z+n+ = 0. (55)

Electroneutrality of the reaction (51) implies

z−ν− + z+ν+ = 0 and with (55)
n−
ν−

=
n+

ν+
. (56)

According to Section 4.2, the pressure is constant in the bulk and is determined by
the outer pressure such that p = pref .

5.1 Electrolyte with completely dissociated salt

Assuming complete dissociation, we consider the electrolyte consisting of A0 and the
solvated ions A+ and A−, but there is no remaining undissociated neutral salt AE .
We define the salt mass fraction as

ω∞ = 1
ρ

(
ρ− + ρ+

)
. (57)
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The constraints of local electroneutrality (55) and incompressibility (21) allow to
express the partial mass densities ρα and the chemical potentials as functions of the
salt mass fraction ω∞,

ρα = ρ̂α(ω∞), µα = µ̂α(ω∞), for α ∈ {+,−, 0}. (58)

From the balance equations of mass (7b) together with the diffusion fluxes (16)
we obtain a balance equation for the salt mass fraction

ρ
(
∂tω∞ + υ · ∇ω∞

)
= div

(
ρD∇ω∞

)
− ν−m− + ν+m+

ν+z+e0
JF · ∇t+, (59)

where the salt diffusion coefficient is defined by

D =
1

ρ

∑
α,β∈{+,−}

(Mαβ

T
− σ mα

zαe0

mβ

zβe0
tαtβ

)d(µβ − µ0)

dω∞
. (60)

The introduction of the salt mass fraction has the advantage that for an electrolytic
solution, where (i) the total mass density is almost constant, (ii) the barycentric
velocity vanishes and (iii) no electric current flows, the equation (59) reduces to a
simple diffusion equation for the salt concentration,

∂tc = div(D∇c). (61)

In experimental studies, this diffusion equation is used to determine the salt diffusion
coefficient D.

Motivated by (53), we define the chemical potential of the neutral salt as

mEµE = ν−m−µ− + ν+m+µ+ − (ν−κ− + ν+κ+)m0µ0. (62)

From the structure of the chemical potential (22), the Gibbs–Duhem relation in
the right hand side of (12) and the vanishing pressure gradient ∇p = 0, we obtain
relations between the chemical potentials

dm±µ±
dω∞

=
n0

(ν+ + ν−)n0 + (ν+κ+ + ν−κ−)(n+ + n−)

dmEµE
dω∞

, (63a)

dm0µ0

dω∞
= − (n+ + n−)

(ν+ + ν−)n0 + (ν−κ+ + ν+κ−)(n+ + n−)

dmEµE
dω∞

. (63b)

A direct calculation then yields for the salt diffusion coefficient

D = (z+ − z−)F ρ2z+e
2
0

m2
−m

2
+ρ

2
0n−

kB det(M)

Tσ
, with

F =
ρ2

0(ρ+ + ρ−)

ρ3m−m0

(m+ +m−)z−ρ0 +m−(z−m+ − z+m−)(n+ + n−)

(ν+ + ν−)n0 + (ν+κ+ + ν−κ−)(n+ + n−)

1

kBT

dmEµE
dω∞

.

(64)

Here, the so-called thermodynamic factor F is introduced, which is independent
of the Maxwell–Stefan diffusivities. Finally, we use the representations (39) for the
inverse of the mobility matrix to obtain explicit representations for the transference
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Table 2. Material parameters used in the numerical examples.

z+ = 1 z− = −1 ν± = 1
υref

0 = 0.0182 L/mol υref
− = (κ+ 1) vref

0 υref
+ = (κ+ 1) vref

0

υref
E = 2υref

0 m− = (κ+ 1)m0 m+ = (κ+ 1)m0

number, conductivity and salt diffusion coefficient in terms of the Maxwell–Stefan
diffusivities,

t+ =
ρ0

ρ

z+D0+

z+D0+ − z−D0−
+
ρ−
ρ
, (65a)

D =
n

n0
F
(D0+D0−(z+ − z−)

z+D0+ − z−D0−

)
, (65b)

1

σ
=

kBT

−z−z+e2
0

1

n

( 1

D+−
+
n0

n−

z+

z+D0+ − z−D0−

)
. (65c)

The conductivity σ, transference number t+ are expectable in full agreement with
(Sect. 12 of [20]) because they do not directly depend on the free energy model, i.e. on
the chemical potentials. Also the dependence of D on the Maxwell–Stefan diffusivities
in (65b) agrees with (Sect. 12 of [20]), but the coincidence of the thermodynamic
factor is not obvious and depends on the considered potentials. We observe in (65)
that at any salt concentration the three Maxwell–Stefan diffusivities D0+, D0− and
D+− can be uniquely determined from the three transport parameters t+, D and
σ, but only the conductivity depends on the coefficient D+−. In the dilute solution
limit, this dependence of σ on the ion–ion interaction vanishes.

To study the transport parameters (65), we introduce a mean value D̄ of the
Maxwell–Stefan diffusion coefficients and the molar conductivity Λ as

D̄ :=
z+D0+ − z−D0−

z+ − z−
Λ :=

e2
0

kBT

∑
α=+,−

z2
αναD0α. (66)

Then the salt diffusion coefficient and the conductivity are normalized with respect to
D̄ and Λ, respectively. Thus, the normalized quantities depend only on the fractions
D+−/D̄ and D0±/D̄. We use the material parameters defined in Table 2 to describe
a monovalent binary electrolyte. We assume that cations and anions are solvated by
the same number κ of solvent molecules.

Electrolytes without ion solvation. To describe electrolytes consisting only of
free solvent molecules and unsolvated ions, we set in (51) κ− = κ+ = 0. Keeping D̄
and Λ fixed, we observe in Figure 2 that the conductivity σ is – as expected from (65c)
with fixed D̄ – independent of the ratio D0+ and D0− and monotone increasing with
the salt concentration c. For low salt concentrations σ is already fully determined by
Λ, while for higher salt concentrations the influence of D+− increases, leading to a
less than linear growth of σ with respect to c, if D+− < D̄, see Figure 3.

Increasing the ratio D0+/D0− leads to a larger fraction of the current being carried
by the cations. Thus, the transference number changes proportional to D0+/D0−. We
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Fig. 2. Transport parameters for different ratios of D0−/D0+ and fixed D̄. Conductivity
σ (left), cation transference number t+ (middle) and salt diffusion coefficient (right) with
respect to the salt concentration c. The remaining parameters are κ = 0 and D+− = D̄/10.

Fig. 3. Impact of D+− on the conductivity σ for κ = 0.

observe only a small impact of the salt concentration on the transference numbers.7

For increasing c, the transference numbers tend to limit value 1/2.
For the given choice of parameters the diffusion coefficient D shows almost no

dependence on the salt concentration. A variation of D0+/D0− leads to a shift of D,
whereby the largest value is obtained for equal diffusivities D0+ = D0−.

Keeping D0+ and D0− fixed and varying D+−, the resulting curves of t+ and D
are unchanged as in Figure 2 only the conductivity depends on D+− as shown in
Figure 3, as expected from (65).

Impact of solvation number κ. Ion solvation leads to an increase of the specific
volume and molar mass of the ionic species, compared to the unsolvated ions. As a
simple approximation we assume that κ+ = κ− = κ and the mass and the specific
volume of the solvated ions are given by

mα = (zακ+ 1)m0, υref
α = (zακ+ 1)υref

0 (67)

for α ∈ {+,−}. In a mixture where the constituents are solvated ions, the total
number density n is lower than in the corresponding cases, where the ionic species
are represented by center ions without the solvation shell. Therefore, increasing the
solvation number κ decreases the total number density n. According to (65) we have
to expect an influence of the solvation number κ on all transport parameters.8

Nevertheless, the salt diffusion coefficient is almost constant D ≈ D̄ as before
and almost unaffected by the solvation number. However, the conductivity depends
strongly on the solvation number for high salt concentrations, see Figure 4 left. Larger
values of κ lowers the conductivity. In particular, for κ > 2, the conductivity becomes

7 The transference number t0+ with respect to the solvent velocity is independent of the salt
concentration and is given by the values of t+ for c = 0.

8See footnote 7.
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Fig. 4. Impact solvation solvation number κ on the conductivity σ (left) and transference
number t+ (middle) for fixed D+− = D̄/10. Conductivity for fixed κ = 4 and variation of
D+− (right). The remaining parameter is D0− = D0+/10.

non-monotone with respect to c, leading to the well-known parabolic shape of σ for
aqueous electrolytes [29]. A reduction of the ion–ion diffusion coefficient D+− leads to
a further decrease of the conductivity and the maximum is attained at lower salt con-
centration, shown in Figure 4 right. For unequal ion–solvent diffusion coefficients the
transference numbers are almost linear and for larger solvation numbers t+ increases
its slope, see Figure 4 middle.

5.2 Electrolyte with incomplete dissociated salt

To describe incomplete dissociation, we consider a mixture of four constituents: the
solvent A0, the possibly solvated ions A+ and A− and the neutral salt AE . Thus, in
addition to the three diffusivities D0+, D0− and D+−, three further diffusivities occur,
denoted by DE+, DE− and DE0. Nevertheless, in the fast dissociation regime the
imposed constraints of local electroneutrality (55) and of incompressiblity (21) still
allow a characterization of the electrolyte by the three transport parameter conduc-
tivity σ and transference number t+ according to (15) and a salt diffusion coefficient
D defined below in (72).

Similar to the case of complete dissociation, we define the salt mass fraction as

ωe =
1

ρ

(
ρ− + ρ+ +

ν−m− + ν+m+

mE
ρE

)
. (68)

Again, the local electroneutrality (55), the incompressiblity constraint (21) and in
addition now the fast reaction assumption (53) allow to express all number densities
ρα and chemical potentials as functions of the salt mass fraction ωe. Moreover, from
the mass balance equations (7b) we obtain a balance equation for the salt mass
fraction ωe,

ρ
(
∂tωe + υ · ∇ωe

)
+ div

 ∑
α∈{+,−},E

δαJα

 = 0, (69)

where δα is defined as

δα =

{
1 for α ∈ {+,−}

ν−m−+ν+m+

mE
for α = E

. (70)
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Fig. 5. Impact of dissociation energy ∆g on the conductivity for an electrolyte without
solvation (κ = 0), D0± = DE± = D̄ and D+− = DE0 = D̄/10.

Inserting the diffusion fluxes (16) yields

ρ
(
∂tωe + υ · ∇ωe

)
= div

(
ρD∇ωe

)
−

 ∑
α∈{+,−,E}

δαmα

zαe0
∇tα

JF, (71)

where the salt diffusion coefficient D is defined as

D =
1

ρ

∑
α,β∈{+,−,E}

δα

(
Mαβ

T
− σ mα

zαe0

mβ

zβe0
tαtβ

)
d(µβ − µ0)

dωe
. (72)

As before the balance equation (71) reduces to the simple diffusion equation (61)
for the salt concentration, given that the mass density ρ is almost constant, the
barycentric velocity vanishes and no electric current flows.

With the definition (15) in terms of the mobility matrix Mαβ in mind, it might
seem at first glance, that σ and t+ are the same for complete and incomplete dis-
sociation. Similarly, it might seem that (72) just adds some terms to (60). However,
due to the rather complex relation between the Maxwell–Stefan coefficients and the
mobility matrix according to (33) and (29), the newly introduced coefficients DE+,
DE− and DE0 also contribute to the mobilities Mαβ for α, β ∈ {+,−}. Therefore,
the explicit representations (65) are not valid in the context of incomplete dissoci-
ation and the derivation of such explicit relations for incomplete dissociation does
not appear promising. In the following parameter study, we thus take the Maxwell–
Stefan diffusivities to compute Bαβ according to (33) and (35) and then determine
the mobility matrix Mαβ by numerical inversion of the matrix with coefficients Bαβ .

Impact of dissociation energy ∆g. The dissociation energy ∆g controls at given
salt concentration c the amount of ions in the solution, i.e. the dissociation degree
n+/c, cf. Figure 1. Larger values of the dissociation energy thus decrease the conduc-
tivity of the electrolyte, see Figure 5 for electrolytes without solvation. In contrast
to complete dissociation, the salt diffusion coefficient D can now change significantly
over the range of salt concentrations, depending on the diffusivity coefficients DE+,
DE− and DE0, as studied below in more detail. Deviations from the complete disso-
ciation case with a constant value of D get stronger as ∆g increases. Similarly, the
diffusivity coefficients DE+, DE− and DE0 also have influence on the transference
number of an incompletely dissociated electrolyte at higher salt concentrations, as
studied below.

In the following, we keep the dissociation energy fixed at ∆g = 3kBT .
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Fig. 6. Impact of DE± on the transport parameters when DE+ = DE−. Plots for conductiv-
ity (left), transference number (middle) and salt diffusion coefficient (right). The remaining
parameters are κ = 0, ∆g = 3kBT , D0± = D̄ and DE0 = D+− = D̄/10.

Fig. 7. Impact of DE± on the transport parameters when DE+DE− = D̄2. Plots for
conductivity (left), transference number (middle) and salt diffusion coefficient (right). The
remaining parameters are κ = 0, ∆g = 3kBT , D0± = D̄ and DE0 = D+− = D̄/10.

Impact of the salt-solvent and salt-ion diffusion coefficients. The salt-
ion diffusivities have a strong impact on all three transport parameters, see
Figures 6 and 7. In particular, they can change the qualitative behavior of the
conductivity curves. If both salt-ion diffusivities are small, DE+ = DE− < D̄, the con-
ductivity is lower than for complete dissociation and can even become non-monotone
function of the salt concentration.

In contrast to the complete dissociation, the transfer number t+ does in general
not approach 1/2 for high salt concentrations. Even more, if D0+ = D0− then t+
deviates from 1/2 if the salt-ion diffusivities DE+ and DE− differ from each other,
see Figure 7.

The salt-ion diffusivities also influence the salt diffusion coefficient, where the
reduction of D is more pronounced DE+,DE− < D̄ than the increase of D for
DE+,DE− > D̄, see Figure 6. The salt-solvent diffusivity DE0 expectable only
influences the salt diffusion coefficient, as illustrated in Figure 8 for varying salt
concentration. We observe that D can be monotone increasing if DE0 is comparable
or larger than D̄. Conductivity and transference number are not significantly affected
by variation of DE0.

Impact of solvation number κ. We choose small values for the salt-ion and salt-
solvent diffusivities, i.e. DE± = DE0 = D̄/10 and study in Figure 9 the variation of
the transport parameters in dependence of the solvation number κ. Increasing the
solvation number amplifies the influence of DE± and DE0 and thus decreases the
conductivity and the salt diffusion coefficient. Most notably, all conductivity curves
are monotone, in contrast to Figure 4 for complete dissociation.

Taking a fixed value κ = 4 for the solvation number, we study the impact of
the salt-ion and salt-solvent diffusivities. Comparison of Figure 7 left and Figure 10



Dynamical Aspects of Mean Field Theories for Electrolytes and Applications 2535

Fig. 8. Impact of DE0 on the salt diffusion coefficient D. The remaining parameters are
κ = 0, ∆g = 3kBT and D0− = D0+/10, DE± = D̄ and D+− = D̄/10.

Fig. 9. Impact of the solvation number κ on conductivity (left), transference number
(middle) and salt diffusion coefficient (right) for D0− = D0+/10 and D+− = DE± = DE0 =
D̄/10. Dissociation energy is ∆g = 3kBT .

Fig. 10. Impact of salt-ion and salt-solvent diffusivities for fixed solvation number κ = 4.
Left: dependence of the conductivity on variation of DE+ with the remaining parameters as
in Figure 6. Right: salt diffusion coefficient when varying DE0 and the remaining parameters
as in Figure 8.

left shows that ion solvation reduces the conductivity σ and non-monotonicity can
already be observed for larger values of DE+. Compared to Figure 8, the ion solvation
decreases the salt diffusion coefficient at higher salt concentrations see Figure 10
right. As a consequence, all curves of D are monotone decreasing for larger salt
concentrations and we only observe an initial increasing behavior of the salt diffusion
coefficient in the non-monotone curve for DE0 = 2D̄.
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6 Discussion and conclusion

The transport parameters of electrolytes combine in a rather complex way differ-
ent effects which are related to both the free energy and to the kinetic coefficients.
These two ingredients are modeled with theories of different origin and thus one must
guarantee that the transport parameters combine the two theories in a consistent way.

Thermodynamic consistency. At several places in the literature, the thermo-
dynamic consistency of the concentrated solution transport theory is discussed.
A particular issue in the context of thermodynamic consistency is the admissibil-
ity of negative transference numbers. Based on experimental measurements, negative
cation transference numbers t+ have been reported for several polymer electrolytes
[5,17], but also for liquid electrolytes containing some zinc-halides [23].

To guarantee a non-negative entropy production the authors of [17] impose on the
Maxwell–Stefan diffusivities Dαβ for electrolytes with a complete dissociated salt the
constraints (written in the notation of the current paper)

(p. 1866 of [17]):
nα
Dαγ

+
nβ
Dαβ

≥ 0,
nγ

nαDγβ + nβDαγ
+

1

Dαβ
≥ 0, (73)

and conclude (p. 1866 of [17]): “these two conditions place no limit on the sign or mag-
nitude of the transference number”. In [16], the condition required for thermodynamic
consistency is formulated in our notation as

(p. 650 of [16]) τ̃αβ is symmetric and positive semi-definite, (74)

where the definition of τ̃αβ is identical to (35). The authors conclude (p. 650 of [16]):
“Be aware that ... this does not in principle restrict all the Maxwell–Stefan coefficients
to be positive” and moreover (p. 655 of [16]): “the transference number t0− (or t0+)
can take any real value”.

However, as stated before in [1], (37) imposes on the coefficients τ̃αβ in addition
to (74) also the condition

τ̃αβ ≤ 0 implying Dαβ ≥ 0 for α 6= β. (75)

in order to guarantee a non-negative entropy production. In the case of a binary
electrolyte with completely dissociated salt this implies non-negativity of t+ ≥ 0,
according to (65a). For dilute solutions we have due to (45),

(dilute solution limit) tα =
(zαe0)2

σ

nαD0α

kBT
≥ 0 for α = 0, . . . , N. (76)

This is in full agreement with the reported experimental results of [5,17,23] mentioned
above, since for low salt concentrations the transference numbers are positive and only
become negative for high salt concentration.

The occurrence of negative t+ necessarily requires the application of more complex
models for mixtures consisting of more than three constituents. For electrolyte mix-
tures containing a partially dissociated salt, we are not able to adjust the parameters
in a way that a negative transference number would result. This does not guarantee
the non-negativity of t+ in general, although we see no reason to expect t+ < 0 in
this setting if Dαβ ≥ 0 for α 6= β. If more complex mixtures containing more than
two charged species are considered, negative transference number might appear at
finite salt concentrations.
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Transport parameters. The transport in an electrolyte resulting from dissocia-
tion of a single neutral salt into anions and cations in a neutral solvent is controlled
by the three transport parameters conductivity σ, transference number t+ and salt
diffusion coefficient D. This holds independent of whether the salt dissociation is
complete or incomplete. Maxwell–Stefan theory for a mixture of four constituents
provides six independent diffusivity coefficients to determine these three transport
parameters in dependence of the salt concentration. In the case of complete disso-
ciation, only three constituents and three independent diffusivity coefficients remain
and in this case they already uniquely determine the transport parameters over the
full range of salt concentrations.

From the numerical study we draw the following conclusions:

– The conductivity strongly depends on the number of available ions in the elec-
trolyte and the mean value D̄ of the ion–solvent diffusivities, but not on the
ratio D0+/D0−. Therefore, we observe a monotone growth of the conductivity
with respect to the salt concentration in a large parameter range. There are two
exceptions: (i) in the case of complete dissociation, solvation causes for increas-
ing salt concentration a strong decrease of the solvent number density, such that
the impact of the ion–ion diffusivity D+− becomes dominant. If D+− � D̄, then
the conductivity becomes non-monotone with respect to salt concentration. (ii)
For incomplete dissociation, low salt-ion diffusivities DE± � D̄ reduce the ion
mobility and thereby can cause non-monotone conductivity with respect to the
salt concentration.

In case of non-monotone conductivity, the maximum of the conductivity is
attained at lower salt concentrations when increasing the solvation number or
decreasing the salt-ion diffusivities.

– The transference number t+ at low salt concentrations is determined by the ratio
D0+/D0−. For complete dissociation t+ always tends to 1/2 for large salt con-
centrations, whereas for incomplete dissociation, a transition to a different value
can be observed, if the ratio DE+/DE− is sufficiently different from D0+/D0−.
Generally, ion solvation fosters these transition processes, most pronounced in
the case of complete dissociation.

– For complete dissociation, the salt diffusion coefficient D depends only on D0+

and D0− and is almost independent of the salt concentration. Thus, the thermo-
dynamic factor is F ≈ n0/n, independent of the salt concentration. Remarkably,
this also holds for solvated ions with large solvation number where the con-
sidered salt concentration reaches close to the saturation limit. When the
dissociation is incomplete, D is also influenced by DE± and DE0, and this
influence gets stronger, the more salt remains undissociated. Thus, when DE±
and DE0 are sufficiently different from D̄, the salt diffusion coefficient varies
considerably with the salt concentration, often in a monotone way.

For solvated ions, a non-monotone salt diffusion coefficient can be observed if
the salt-solvent diffusion coefficient DE0 > D̄ ≈ DE±.

Extensions of the continuum model. In order to limit the complexity of the
model, we considered in this work only an isothermal electrostatic setting. However,
the continuum model applied here is derived within a much more general framework
of coupled bulk-surface electro-thermodynamics [12]. Therefore, an extended model
containing the energy balance and the full set of Maxwell’s equation can be thermo-
dynamically consistently derived from the same framework. Moreover, the framework
allows the continuum model applied here to be easily adapted to different electrolytes
like solid and polymer electrolytes. Such an adaption only requires the derivation of
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suitable free energy models for solid or polymer electrolytes to replace the free energy
model for liquid electrolytes defined in Section 3.1. Then, the impact on mechanical
stresses within the crystal lattice in solids or the length of the polymer chains on the
transport parameters can be studied.
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