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Abstract. We present analytical solutions for the electrokinetic equa-
tions at a charged surface with both non-zero Stern-layer conductance
and finite chemical reaction rates. We have recently studied the
same system numerically [B.L. Werkhoven et al., Phys. Rev. Lett.
120, 264502 (2018)], and have shown that an applied pressure drop
across the surface leads to a non-trivial, laterally heterogeneous sur-
face charge distribution at steady state. In this work, we linearise
the governing electrokinetic equations to find closed expressions for
the surface charge profile and the generated streaming electric field.
The main results of our calculations are the identification of three
important length and time scales that govern the charge distribu-
tion, and consequently the classification of electrokinetic systems into
three distinct regimes. The three governing time scales can be associ-
ated to (i) the chemical reaction, (ii) diffusion in the Stern layer, and
(iii) conduction in the Stern layer, where the dominating (smallest)
time scale characterises the regime. In the reaction-dominated regime,
we find a constant surface charge with an edge effect and recover
the Helmholtz–Smoluchowski equation. In the other two regimes, we
find that the surface charge heterogeneity extends over the entire
surface, either linearly (diffusion-dominated regime) or nonlinearly
(conduction-dominated regime).

1 Introduction

While the field of electrokinetics is over a century old, interest in it has only grown
since its foundations were laid by Helmholtz and Smoluchowski [1,2]. In addition to
applications in well-established fields such as geology [3] and catalysis [4], the advent
of micro- and nano-fluidics renewed interest in electrokinetics [5–9] due to applica-
tions in, for example, blue-energy harvesting [10,11]. At the basis of all electrokinetic
systems is the interaction between fluid flow and a charge current. In a closed-circuit
setup, an imposed voltage drop over a channel with a charged wall induces fluid flow
via the electric body force in the Navier–Stokes equations, while in an open-circuit
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setup, an imposed pressure drop induces an electric field. This streaming electric field
implies a voltage drop across the channel, the so-called streaming potential ∆Φ. In
the linear response regime, the generated streaming potential is linearly related to
the applied pressure drop ∆p via the Helmholtz–Smoluchowksi equation [1,2],

∆Φ = − ζε

ηG
∆p, (1)

where G is the channel conductivity, ε and η are the permittivity and shear viscosity
of the liquid, respectively, and ζ is the zeta potential – the electrostatic potential
at the slipping plane of the charged surface of the channel. Since G, ε, and η are
material properties of the liquid, measurements of ∆Φ at a known ∆p allow one to
use equation (1) to measure ζ, an important surface property. The presence of the
charged walls is essential for electrokinetic phenomena, since charged surfaces induce
an electric double layer (EDL) in the fluid adjacent to the surface. This diffuse layer
of ions screens the charge of the surface. A fluid flow (electric field) through the
charged EDL induces a charge current (body force), which in turn induces an electric
field (fluid flow). A detailed understanding of the surface charge is therefore vital to
describe electrokinetic systems accurately.

The total channel conductivity is typically decomposed as G = Gb +Gs/H, with
Gb the bulk conductivity of the fluid, Gs the surface conductivity, and H the channel
height [12]. The significance of the surface conductivity is expressed by the Duhkin
number Du = Gs/(GbH) [12]. The surface conductivity Gs can be further decom-
posed as Gs = GEDL

s + GSs . Here, GEDL
s originates from the increased conductivity

of the EDL with respect to the bulk fluid, as first described by Bikerman [13,14],
while GSs is the conductivity due to the mobile charges in the Stern layer [15], the
quasi-2D layer the surface charge resides in. It is well known that for a wide variety
of materials, including insulating materials such as glass or clay [16–21], the charges
in the Stern layer are not static. It has even been shown previously that the mobility
of the Stern-layer charges is comparable to the mobility of ions in bulk [16,22,23].

In the most common case, the surface charge in the Stern layer originates from
a chemical reaction with dissolved ions in the fluid, via either an adsorption or a
desorption reaction. The surface charge is therefore not a fixed quantity, but is deter-
mined by a charge regulation process [24]. In this work, we will consider the desorption
reaction SC
 S−+ C+, where a neutral surface group SC releases a cationic counter
ion C+ leaving behind a charged, covalently bound surface group S−. This reaction
represents, for example, a deprotonation reaction if we identify C+ as a proton.
In equilibrium, the balance of this reaction is given by the Langmuir desorption
isotherm f = (1 + ρC,s/K)−1 [24–26], with f the fraction of charged surface groups,
K the chemical equilibrium constant, and ρC,s the counter ion density at the surface.
However, the Langmuir isotherm assumes chemical equilibrium at all times, as in
previous theories of charge regulation in electrokinetic systems [27,28], and therefore
does not take finite chemical reaction rates into account. We have recently shown,
however, that the combination of finite chemical rates with a non-zero Stern-layer
mobility leads to novel electrokinetic properties [29]. In particular, our numerical
solutions showed that a lateral fluid flow induces a heterogeneous surface charge on a
chemically homogeneous, finite surface, which furthermore provided a first-principles
explanation for the experimentally observed influence of fluid flow on the surface
chemistry [30]. In Section 2, we linearise the governing equations used in reference
[29], and solve them analytically with the aid of several simplifying approximations.
The analytical solutions exhibit qualitative agreement with the numerical results, but
due to the underlying approximations we do not obtain full quantitative agreement.
Nevertheless, our analytical approach allows us to identify three important length
and associated time scales, summarised in Section 3.1, as well as three distinct and
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qualitatively different regimes. For fast reaction rates, the reaction-dominated regime
discussed in Section 3.2, we reproduce a constant surface charge and the Helmholtz–
Smoluchowski equation (1), while for finite reaction rates we obtain either a linear
surface charge profile (diffusion-dominated regime, Sect. 3.3) or a nonlinear profile
(conduction-dominated regime, Sect. 3.4). Our analysis allows one to categorise all
electrokinetic setups in three regimes, such that the characteristics of the surface
charge distribution can be predicted or tuned.

2 The (linearised) Poisson–Nernst–Planck equations

We consider an electrokinetic system consisting of two water reservoirs connected by
a rectangular channel with height H and length 2L. We denote the normal and lateral
Cartesian coordinate by z ∈ [0, H] and x ∈ [−L,L], respectively, and assume trans-
lational invariance in the y direction. The top (z = H) and bottom (z = 0) surface
of the channel carry chargeable surface groups, which for simplicity we assume to be
equal such that the plane at z = 1

2H is a symmetry plane of the system. Without loss
of generality, we take the fluid flow in the positive x direction. The reservoirs contain
three different ionic species labelled by i = +,−, C, with valency z+ = −z− = 1 and
zC . Charge neutrality in the bulk demands

∑
i ziρb,i = 0, with ρb,i the bulk concen-

tration of ion i in the two reservoirs, i.e. we do not consider diffusio-osmotic processes
here. This fixes the Debye screening length, as λD =

√
εkBT/(e2

∑
i z

2
i ρb,i), the typ-

ical thickness of the EDL, with kB the Boltzmann constant, T the temperature, and
e the elementary charge.

We denote the position and time dependent concentration and flux of the three
ion species by ρi(r, t) and Ji(r, t), respectively, the electric potential by ψ(r, t) and
the fluid velocity and pressure by u(r, t) and p(r, t), respectively. These quantities are
governed by the Poisson–Nernst–Planck–Navier–Stokes (PNP-NS) equations [31],

∂ρi
∂t

= −∇ · Ji; Ji = −D
(
∇ρi +

eziρi
kBT

∇ψ
)

+ ρiu;

m
∂u

∂t
= −m(u · ∇)u−∇p+ η∇2u−

∑
i

zieρi∇ψ;

∇ · u = 0; ∇2ψ = −e
ε

∑
i

ziρi, (2)

where D is the diffusion constant (assumed for simplicity to be equal for all ionic
species), and m is the mass density of the fluid. The PNP-NS equations combine the
Poisson equation for the electrostatic potential, the incompressible Navier–Stokes
equation for the fluid flow, the Nernst–Planck equation for ionic transport, and the
continuity equation for the ion densities.

These equations are then to be coupled to a dynamic Stern layer. In our theoretical
framework, we treat the density of surface charges σ(x, t), a 2D analogue of ρi(r, t),
as a dynamic variable. The surface charges are produced by a chemical reaction
SC
 S−+ C+, and therefore σ(x, t) is not necessarily a locally conserved quantity.
However, since the total number of counter ions must be conserved, the production
rate R of surface charges is equal to the counter-ion flux leaving the surface ns ·
JC,s, with ns the normal vector of the solid–liquid interface pointing into the liquid.
Denoting the flux of surface charges in the x-direction by jσ(x, t), the 2D analogue
of Ji(r, t), we can write the continuity equation for σ(x, t) as

∂σ

∂t
= −∂jσ

∂x
+ ns · JC,s. (3)
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The production rate of surface charges is governed by the chemical rate equations,
which state that the surface charge production (annihilation) rate is proportional to
the density of uncharged (charged) sites. Furthermore, we assume a Nernst–Planck-
like equation for jσ, derived via a dynamical density functional theory in Appendix A,
with the noticeable absence of convection in the Stern layer. The resulting equations
that govern the surface dynamics, which function as the boundary conditions to the
PNP-NS equations (2), are given by

ns · ∇ψs = −zσeσ
ε

; us = 0; (4)

jσ = −Ds

(
1

1− σ/Γ
∂σ

∂x
+ zσ

eσ

kBT

∂ψs
∂x

)
; (5)

ns · JC,s = R = kdes(Γ− σ)− kadsσρC,s, (6)

with Ds is the diffusion constant of the surface charges, zσ = −zC the valency of
the surface charges, Γ the density of surface sites, and kads and kdes the adsorption
and desorption rate constants, respectively. Here, and throughout this work, we use
the subscript “s” to denote surface quantities, such that us = 0 enforces a no-slip
boundary condition and ρC,s(x) ≡ ρC(x, z = 0) the counter ion concentration at
the surface. The diffusion contribution (∝ ∂xσ) to jσ must in general be adjusted
by a factor (1 − σ/Γ)−1 as the surface groups cannot be multiply occupied [32].
Furthermore, we assume that Ds does not depend on the surface concentration σ.
For high concentrations, however, the diffusion constant depends non-trivially on the
concentration [33]. However, since at most a few percent of the total number of sites
is charged, σ is sufficiently small to safely assume Ds to be constant. Similarly, we
have assumed that the bulk diffusion constant D in equation (2) is homogeneous
throughout the system, while in general this depends on for example the distance to
the surface [34]. For simplicity, we leave out these higher order effects. In equilibrium
all fluxes vanish, and for JC = 0 we recover from equation (6) the standard Langmuir
desorption equation σ = Γ/(1 + ρC,s/K), with K = kdes/kads equal to the chemical
equilibrium constant of the reaction SC
 S−+C+.

The governing equations (2)–(6) cannot be solved analytically in general. In this
article, however, we will show how to obtain approximate solutions to these equa-
tions. As is common in pressure-driven electrokinetic systems, we neglect not only
the inertial terms in the Navier–Stokes equation (low Reynolds number, effectively
m = 0), but also the electric body forces on the fluid [31], such that we can ignore
the final term on the right hand side of the Navier–Stokes equation (2). The latter
approximation can be justified for setups with H � λD, and by realising that the
body force is localised in the EDL while the pressure gradient extends over the entire
channel height. This approximation is confirmed by our numerical calculations (see
Appendix B), which show that including the electric body force has no significant
effect on the steady state surface charge profile. The Navier–Stokes equation then
reduces to the Stokes equation, and the fluid flow u and pressure p are now decou-
pled from other quantities. This allows us to solve for u and p, resulting for an applied
pressure drop ∆p in the standard Poiseuille flow,

u(z) = −∂p
∂x

z(H − z)
2η

x̂, (7)

with x̂ is the unit vector in the x direction and ∂p
∂x = −∆p

2L the pressure gradient. The
typical flow velocity can be estimated from equation (7). For pressure drops ∆p no
larger than 1 bar, η ∼ 1 mPa s, and channel dimensions H ∼ 1µm and L ∼ 10µm,
one arrives at ux(λD) < 10−2 m/s for physically relevant salt concentrations in water.
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In the following analysis, we will focus solely on the net charge density ρe(r, t) =∑
i ziρi(r, t) and electric current Je(r, t) =

∑
i ziJi(r, t). The latter can be written as

Je = −D
(
∇ρe +

eρ

kBT
∇ψ
)

+ ρeu, (8)

with ρ(r, t) =
∑
i z

2
i ρi(r, t) is the total local ionic strength. As is common in a lin-

earised theory of electrokinetic systems, we assume here that ρ is constant throughout
the system and equal to its bulk value, ρ =

∑
i z

2
i ρi,b. At steady state, ∇ · Je = 0,

together with the use of the Poisson equation to eliminate the electric potential in
favour of the charge density, we obtain the governing equation for ρe(x, z),(

−D ∂2

∂x2
−D ∂2

∂z2
+

D

λ2
D

+ ux(z)
∂

∂x

)
ρe(x, z) = 0. (9)

We can simplify equation (9) using scaling arguments. From our previous work, we
know that the fluid flow will induce heterogeneities in the x direction, and therefore
we estimate that ∂/∂x ∼ 1/L. We also know that ρe reduces quickly to 0 within a
few λD in the z direction, and hence ∂/∂z ∼ 1/λD. This allows us to define a few
characteristic time scales for the EDL,

τL =
L2

D
; τEDL =

λ2
D

D
; τadv =

L

ux(λD)
. (10)

Here, τL is the characteristic time for an ion in bulk to diffuse the lateral length L,
and is of the same order of magnitude as the first term of equation (9). Additionally,
τEDL is the characteristic equilibration time of an EDL, and is of the same order of
magnitude as the second and third term of equation (9). Lastly, τadv is the charac-
teristic time it takes for an ion in the EDL to be advectivelly transported from one
end of the channel to the other. Since ρe is only non-zero in the EDL, we evaluate ux
at z = λD. For our geometry, L � λD, and thus we can conclude that τEDL � τL,
meaning that the diffusion in the lateral direction [first term Eq. (9)] is negligible
compared to diffusion in the normal direction [second term Eq. (9)]. Moreover, since
D/λD ∼ 0.1 m/s> ux(λD) for our parameter choice of interest, we have τEDL � τadv

implying that convection in the lateral direction [last term Eq. (9)] is negligible with
respect to diffusion in the normal direction. After plugging in typical values, one
indeed finds that τEDL is of the order of (tens of) nanoseconds, while τadv is of the
order of milliseconds or larger. Equation (9) now reduces to a simple differential
equation,

∂2ρe
∂z2

=
1

λ2
D

ρe ⇒ ρe(x, z) = −ζ(x)ρe−z/λD , (11)

where ζ(x) is an integration constant that remains to be found. As we will show below,
we can identify ζ(x) = βe(ψ(x, 0)− ψ(x, 1

2H)) as the (heterogeneous) dimensionless
zeta potential at steady state. The second integration constant has been set to zero
since ρe(x, z → 1

2H) = 0 if H � λD. Equation (11) is analogous to the equilibrium
linear Poisson–Boltzmann equation for the charge density, and is a direct consequence
of τEDL � τadv: the EDL is equilibrated in the z direction as convection is typically
not strong enough to deform the EDL significantly.

To determine the integration constant ζ(x), we apply the boundary conditions
equations (3) and (4)–(6). To facilitate the calculations, we make use of the fact that
for the majority of surfaces only a small fraction of the sites are charged, σ � Γ.
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For instance, only a few percent of the surface groups of silica are charged under
typical conditions (3 < pH < 11, 1 mM< ρs <100 mM) [35]. With this assumption,
the equation for σ(x) simplifies to

Ds

(
∂2σ

∂x2
+

zσe

kBT

∂

∂x

(
σ
∂ψs
∂x

))
+ kdesΓ−

(
kdes + kadsρC,s

)
σ = 0. (12)

Equation (12) constitutes a diffusion-conduction-reaction problem coupled to the

3D-channel via the in-plane electric field ∂ψs
∂x and the counter ion density ρC,s. As

a consequence, three regimes will arise depending on which process is dominant.
This is reminiscent of a convection-diffusion problem [36] with a linear/exponential
density profile for diffusion/convection dominated systems. In our case, the role of
convection in the Stern layer is played by conduction, but we will analogously find a
linear/exponential in the diffusion/conduction dominated regime.

Since the fluid flow is in the positive x direction, the streaming electric field
−∂ψs/∂x must have the same sign as the surface charge such that no net charge
is transported between the two reservoirs. It is convenient to separate the sign and
magnitude of the streaming electric field. Thus, we define −βe∂ψs/∂x = zσE, where
E is a positive quantity with dimensions of inverse length. To solve for σ(x), we
further assume that both ρC,s and E are spatially constant. While this is a valid
assumption in simple electrokinetic systems, we have shown recently [29] that such
approximations are no longer valid when both Stern-layer conduction and finite chem-
ical rates are taken into account; we found that a heterogeneous surface charge leads
to a heterogeneous streaming electric field and counter ion density along the surface.
Nevertheless, approximating E and ρC,s to be spatially constant allows us to solve
for σ(x) and determine ρe, Je, and E. In principle one could then reinsert the solu-
tions in equation (12) and obtain an improved σ(x), ρC,s, and E. However, in this
work we will refrain from applying an iterative scheme and aim for an analytical and
qualitative understanding of the electrokinetic phenomena.

For a spatially constant E and ρC,s, equation (12) is straightforward to solve.
Since z2

σ = 1, we find

σ(x) = σeq(1 + a+e
k+x + a−e

k−x), (13)

with a± integration constants and σeq ≡ Γ(1 +
ρC,s
K )−1 the equilibrium surface

charge density. The wavenumbers k± = 1
2E ±

1
2

√
E2 + 4λ−2

reac set the relevant lat-

eral length scales, with λreac ≡
√
Dsτreac (discussed in more detail in Sect. 3.1), and

τreac =
(
kdes + kadsρC,s

)−1
the characteristic time scale of the chemical reaction. The

amplitudes a± can be determined by imposing that the surface current vanishes at
the end-points of the charged surface, jσ(±L) = (−Ds∂xσ + DsEσ)|x=±L = 0. The
integration constants a± are then found to be

a± =
E

k∓

sinh k∓L

sinh(k± − k∓)L
. (14)

Note that σ(x) does not depend on zσ, and that in equilibrium, E → 0, and hence
σ(x) → σeq. For non-zero E, we find a double exponential profile. This reduces to
either a linear profile for k±L� 1, or a single exponential profile if k±L� 1.

The final unknown, the integration constant ζ(x), can be determined using
equation (6), coupling σ(x) to ρe(x, 0), see Appendix C. To facilitate this calcula-
tion, we rewrite the counter ion flux as ẑ · JC(x, 0) = zC ẑ · Je(x, 0), where we have
used ns = ẑ, ẑ · J+(x, 0) = ẑ · J−(x, 0) = 0. Using the solutions to ρe, equation (11),
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and σ, equation (13), we find

ζ(x) = ζeq(1 + a+e
k+x + a−e

k−x). (15)

Here, we identified the dimensionless equilibrium zeta potential ζeq = zσ4πλBλDσeq

from linear Poisson–Boltzmann theory. Comparing equation (13) with equation (15),
we see that ζ(x) is proportional to the steady state surface charge, and indeed can
be interpreted ζ(x) as the steady state zeta potential.

To determine E, we impose that at any position x no net current passes through
any channel slice with normal x̂. This condition is a direct consequence of the
vanishing divergence of Je and the open circuit geometry, hence

zσjσ(x) +

∫ 1
2H

0

dzJe,x(x, z) = 0, (16)

where zσjσ(x) is the net charge current through the Stern layer, determined using
equations (13) and (5). Due to symmetry we only integrate over half the channel
height. Equation (16) is a local condition, and we will in general find E to depend on x
(see below). This, however, contradicts our previous assumption that E is spatially
constant, and it is at this point that our analytic approach is inconsistent. Neverthe-
less, the results of this analytic approach allow us to obtain approximate solutions
to the governing equations that qualitatively agree well with the full numerical solu-
tions. Despite the inconsistency, this approach gives us physical insight in the system,
and allows us to identify three separate regimes.

3 Three electrokinetic regimes

3.1 Governing time and length scales

We identify two physically important length scales, that appear in the definition of
the wavenumbers k±,

λreac =
√
Dsτreac; λcond =

1

E
. (17)

We can interpret the first length scale λreac as the typical distance a surface charge
traverses diffusively during a time τreac, that is, the typical distance travelled between
ad- and desorption. The conductive length scale λcond can be interpreted as the
distance a monovalent ion needs to travel in order to gain an energy equal to kBT
due to the streaming electric field. The dynamics of the system is fully determined
by λreac, λcond, and the channel length L.

Alternatively, we can identify an equivalent time scale for each length scale using
the surface diffusion constant Ds. Equation (17) shows that τreac is the equivalent
time scale of λreac. By introducing a conductive velocity vcond = DsE and a diffusive
velocity vdif = Ds/L, we can transform L and λcond into equivalent time scales,

τdif =
L

vdif
=
L2

Ds
τcond =

λcond

vcond
=

1

DsE2
. (18)

We can interpret τdif as the characteristic time for a Stern-layer charge to diffuse
across the channel length, and τcond as the characteristic time after which a Stern-
layer charge has gained one thermal energy unit due to the streaming electric field.
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Together with τreac, the three time scales can be used equivalently to the three length
scales to characterise the electrokinetic system, as we can express the ratio between
every pair of length scales as the ratio between the two equivalent time scales:

λreac

L
=

√
τreac

τdif
;

L

λcond
=

√
τdif

τcond
;

λcond

λreac
=

√
τcond

τreac
. (19)

The three distinct characteristic times allow us to identify three electrokinetic
regimes, defined by the smallest time (or associated length). While the three length
scales appear naturally in the analytical description, we found it more intuitive to
consider the three time scales when considering the different dynamical regimes.
In the reaction-dominated regime, characterised by the near-equilibrium of the
adsorption/desorption process, τreac � τcond, τdif (and hence λreac � L, λcond), to
be discussed in Section 3.2, we obtain the standard Helmholtz–Smoluchowski picture
with a constant surface charge and electric field, except for a region of size λreac

around the edges at x = ±L. In the diffusion-dominated regime, τdif � τcond, τreac

(L� λcond, λreac), discussed in Section 3.3, the surface charge is heterogeneous over
the entire surface and linear in the lateral position x. Consequently, the streaming
electric field E is also heterogeneous, but we find that the streaming potential approx-
imately conforms to the Helmholtz–Smoluchowski equation, equation (1). However,
in the conduction-dominated regime τcond � τreac, τdif (and hence λcond � λreac, L),
to be discussed in Section 3.4, equation (1) no longer holds, and both σ and E are
heterogeneous and nonlinear functions of x.

3.2 Reaction-dominated regime

In the first regime, we consider systems where the chemical reaction rates are the
fastest process in the system. In this regime, therefore, we expect to find a constant
surface charge and consequently the standard Helmholtz–Smoluchowski equation (1).
In terms of time scales we have τreac � τdif , τcond, which implies that λreac is the small-
est length scale, i.e. λreac � L, λcond. It should be noted that, since τcond, τdif ∝ D−1

s ,
a system without Stern-layer conduction (Ds = 0) cannot be diffusion- or conduction-
dominated and is in fact always in the reaction-dominated regime. The resulting
equations in the reaction-dominated regime do not depend on the ratio λcond/L, which
we can therefore leave unspecified. In this limit, the wavenumbers can be approxi-
mated by k+ = −k− = λ−1

reac. This simplifies the solution for σ(x), equation (12), the
Stern-layer flux jσ(x), equation (5) (see Appendix C for the general expression), and
the surface charge production rate R(x) = −ns · JC . Equation (6), as

σ(x) = σeq

(
1 + Eλreac

sinhx/λreac

coshL/λreac

)
; (20)

jσ(x) = DsσeqE

(
1− coshx/λreac − Eλreac sinhx/λreac

coshL/λreac

)
≈ DsσeqE

(
1− coshx/λreac

coshL/λreac

)
; (21)

R(x) =
σeqEλreac

τreac

sinhx/λreac

coshL/λreac
. (22)

In Figures 1a and 1b, we plot σ(x) and jσ(x), respectively, for several values
of L/λreac smaller and larger than unity. From λreac � L, we can deduce from
equations (20)–(22) that σ(x) ≈ σeq, jσ(x) ≈ DsσeqE, and R ≈ 0 for all x except
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(a) (b)

Fig. 1. Surface charge density σ(x) (a) and Stern-layer current jσ(x) (b) between channel
inlet (x = −L) and outlet (x = L), in the limit λreac � λcond according to equations (20)
and (21) for varying values of L/λreac. For (a) we used λreac/λcond = 0.2 (jσ does not depend
on this quantity). As L/λreac decreases, the system leaves the reaction-dominated regime
and enters the diffusion-dominated regime (for which λreac � λcond holds) and σ and jσ
become increasingly heterogeneous.

within a few λreac away from x = ±L. In Figure 1, we show this deviation near
x = ±L for both σ(x) and jσ(x), which is clearly visible for several values of L/λreac.
This edge effect is a direct result of the boundary condition jσ(±L) = 0, that stems
from the fact that our surface has finite length. In order for a non-zero jσ to develop,
counter ions must adsorb at the inlet and desorb at the outlet, which is only possible
if σ deviates from σeq. This explains the heterogeneities of σ shown in Figure 1 that
persist even for large L/λreac. Even in the classical Helmholtz–Smoluchowski setting,
a finite Stern-layer conduction implies that at the edges of the surface σ deviates
from its equilibrium value. The range of this inhomogeneity is given by λreac, as can
be seen in Figure 1. Consequently, the Stern-layer current and surface charge profile
are constant up to a few λreac from the edges of the surface. The amplitude of the
relative deviation is interestingly given by λreac/λcond. This edge effect exists purely
due to the surface charge discontinuity at x = ±L, but λreac is nevertheless not to
be confused with the healing length ` = HDu introduced by Khair and Squires [37],
which also arises in the absence of Stern-layer conduction.

Imposing a vanishing net current at every position x, according to equation (16),
we find the streaming electric field E,

E =
|∂xp|ζeqε

ηGb

[
1 +

1

H

Dsσeq

Dρ

]−1

, (23)

with ∂xp a short-hand notation for ∂p
∂x . In this limit, we recover the standard

Helmholtz–Smoluchowski equation (1) with a spatially constant electric field consis-
tent with our assumptions. However, just like jσ and σ, E is not constant close to the
edges and equation (23) only holds several λreac from x = ±L. The contributions of

the edge effect to the streaming potential ∆Φ =
∫ L
−L dxE are negligible (note the anti-

symmetric nature of the edge effect). Furthermore, we can identify using equation (23)
the Stern-layer contribution to the surface conduction Gs = Dsσeqβe

2 = GSs . The lat-
ter is proportional to the charge carrier density σ in the Stern layer and a 2D-analogue
of Gb = Dρβe2. Note that in our calculations, the EDL surface conductivity GEDL

s ,
which originates from the increased ion density in the EDL, does not appear since
we assumed that ρ is spatially constant.
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3.3 Diffusion-dominated regime

In the second dynamic regime, the diffusion time τdif is the smallest time scale, and
the channel length L is the smallest length scale, L � λcond, λreac. Consequently,
this implies that the dimensionless streaming potential βe∆Φ ∼ EL = L/λcond is
small. Analogously to the Helmholtz–Smoluchowski regime, the ratio between the
other two lengths, λcond/λreac, will have no significant impact on the results. We can
use equation (20), which was derived assuming only λreac � λcond, but now with
L� λreac to write the surface charge, flux, and chemical production rate as

σ(x) ≈ σeq(1 + Ex);

jσ ≈
1

2
DsσeqE

τdif

τreac

(
1− x2

L2

)
;

R(x) ≈ σeqE

τreac
x. (24)

In this parameter regime, we thus recover a linear profile for the surface charge
density σ(x) also found numerically [29] and shown in Figure 1a. We can intuitively
understand this linear profile by realising that the system is diffusion dominated. For
a surface with translation invariance in one direction, the steady state would then be
given by a linear profile. The linear profile is maintained because the chemical reaction
is not fast enough to force σ to the equilibrium value (τreac � τdif). Additionally, since
jσ ∝ τdif/τreac, the surface flux is very small, as can be observed in Figure 1b. At
steady state, the surface charge profile is therefore determined by a balance between
the conduction caused by E and diffusion in the opposite direction, which explains
why the slope of σ(x) is given by the electric field E. This result is analogous to
a diffusion-dominated convection-diffusion problem. Within the diffusion-dominated
regime, we obtain from equation (16) a new expression for the streaming electric field,

zσE(x) =
|∂xp|ζeqε

ηGb

[
1 + |ζeq|

(
2λD
H
− |∂xp|ε

ηGb
x

)]−1

≈ zσE
HS

1− EHSx
. (25)

Here, we used λD � H and introduced EHS =
|∂xp||ζeq|ε

ηGb
, the (magnitude of the)

streaming electric field as predicted by the Helmholtz–Smoluchowski equation (1)
without Stern-layer conduction. Since we have defined ζeq as the dimensionless equi-
librium zeta potential, EHS has dimensions of inverse length. Note that the solution
does not depend on Ds (except for the restriction that τreac � τdif , τcond ∝ D−1

s ) due
to the vanishing jσ. The streaming electric field is, similar to σ(x), heterogeneous,
with a smaller value than EHS at the inlet and a larger value at the outlet. The
impact of Stern-layer conduction is thus indirect in this case, and not direct via a
charge current ‘leaking’ through the Stern layer as in the reaction-dominated regime.
The Stern-layer conduction now allows for a heterogeneous surface charge to develop,
which causes the heterogeneity of the channel and all other results discussed here.

The result in equation (24) agrees qualitatively with the full numerical solutions,
where the electric field and surface charge density are smaller at the inlet and larger
at the outlet with respect to EHS. Both the analytical and numerical solution are
equal to the Helmholtz–Smoluchowski result in the centre (x = 0) of the channel.
The analytical solution does, however, overestimate the heterogeneity of σ(x) and
E(x). The reason for this is that we assumed that the counter ion concentration
at the surface, ρC,s, does not depend on the surface charge. In reality, of course, it
does, since an increased surface charge attracts more counter ions. The lack of this
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regulation mechanism explains the overestimation of the surface charge and electric
field.

Equation (25) additionally allows us to derive an expression for the streaming
potential,

βe∆Φ = −zσ
∫ L

−L
dx

EHS

1− EHSx
= −zσ log

(
1 + EHSL

1− EHSL

)
≈ βe∆ΦHS, (26)

where βe∆ΦHS
S ≡ −zσ2LEHS is the streaming potential predicted by the Helmholtz–

Smoluchowski equation (1). For small ∆Φ, which, as we have discussed above,
is always the case in the diffusion-dominated regime, we find that the streaming
potential can be accurately estimated using the standard Helmholtz–Smoluchowski
expression, ∆Φ ≈ ∆ΦHS. The lateral heterogeneity therefore has no significant effect
on ∆ΦS . This can be explained by the quasi-antisymmetric profile of σ(x), as the
streaming potential is a laterally integrated quantity. This, combined with the ten-
dency to measure at the center of the channel, might explain why such lateral
heterogeneities have not been observed yet. Note that equation (26) breaks down
for |∆Φ| → 1. However, we are in the regime where L � λcond, which implies that
βe∆Φ ≈ 2EL� 1. The streaming potential will therefore never diverge, but the sys-
tem will change to a new regime as ∆Φ increases. Lastly, we can derive a surprisingly
simple expression for the surface charge difference between inlet and outlet in the
diffusion-dominated regime,

∆σ ≡ σ(L)− σ(−L) =

∫ L

−L
dx∂xσ(x) ≈ σeqβe∆Φ ≈ σeqβe∆ΦHS. (27)

The streaming potential therefore gives the fractional difference in surface charge
between the inlet and outlet, providing a good measure of the heterogeneity of
the system. Given that here the streaming potential is approximately equal to the
Helmholtz–Smoluchowski result, equation (27) gives a priori a measure of the hetero-
geneity to be expected, although one should keep in mind that in general our results
overestimate the actual heterogeneity.

3.4 The conduction-dominated regime

The third regime, the conduction-dominated regime, is reached when τcond (λcond)
is the smallest time (length) scale, τcond � τdif , τreac (and hence λcond � L, λreac),
such that the wavenumbers can be approximated as k+ ≈ Es and k− ≈ 0. Also here,
the ratio of the remaining lengths does not impact the results. This allows us to
simplify equation (12) significantly. The surface charge profile is no longer linear or
anti-symmetric compared to the equilibrium value σeq, but rather exponential, while
jσ vanishes

σ(x) = σeq
EL

sinhEL
eEx, jσ = −Ds∂xσ + Eσ = 0. (28)

It should be noticed that jσ only vanishes because we assumed a constant E. How-
ever, we have already seen that this is no longer generally the case, and jσ will in
fact not exactly vanish in a fully self-consistent analysis, but our analysis does show
that jσ is small. Our numerical calculations confirm that in this regime, as well as
in the diffusion-dominated regime, jσ is negligible compared to the bulk fluxes [29]
as the chemical reaction rates are too small for a significant surface flux to develop.
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Fig. 2. Surface charge profile σ(x) induced by the electric field E(x), obtained numer-
ically as a solution to equation (29), for several values of the pressure drop ∆p. The
profiles cross the equilibrium value at x > 0, and agree qualitatively with the full numerical
solutions [29].

Note that equation (28) shows that the density profile is exponential, which is anal-
ogous to a convection-dominated convection-diffusion problem. If we take L� λcond

(EL � 1), we recover the same linear profile as in the diffusion-dominated regime
equation (24).

To determine E in the conduction-limited regime we again impose a vanishing
net charge current for every x, equation (16), from which we obtain the condition

ζeq
EL

sinhEL
eEx

(
2λDE −

|∂xp|Hε
ηGb

)
+ zσEH = 0. (29)

Equation (29) can be solved numerically for E(x), and we obtain qualitatively similar
behaviour as in the full numerical calculations [29] which is of course inconsistent
with our assumptions that E is spatially constant. In Figure 2, we plot the resulting
surface charge profile according to equations (28) and (29) for several values of the
pressure drop across the channel. For small pressure drops, the surface charge profile
is roughly linear, corresponding to the diffusion-dominated regime. For larger pressure
drops, the profile becomes highly nonlinear, increasing exponentially as x approaches
the outlet position at x = L. The point where the profile crosses the equilibrium
surface charge is, contrary to the diffusion-dominated regime, no longer at x = 0. Our
semi-analytical results agree qualitatively but not quantitatively with the numerical
calculations. In particular, the surface charge close to x = L is much larger in the
semi-analytical results. The reason for this must again reside in the assumptions that
ρC,s is constant, similar to the diffusion-dominated regime.

There is, in fact, also some qualitative discrepancy between the numerical calcu-
lations and the current analysis. In the numerical calculations, the average surface
charge decreases with an increasing pressure drop, while Figure 2 shows that the
average surface increases with an increasing pressure drops. The reason for this prob-
ably lies again in the missing charge regulation mechanism discussed above, and the
exponential increase of σ(x) greatly overestimates the average surface charge. Con-
sequently, the predicted streaming potential is also overestimated, and cannot be
accurately determined in the current analytical approach. The breakdown of the the-
ory is not unexpected in this respect, as our linearised theory and lack of regulation
work best for small driving forces. Lastly, we note that multiplying equation (29)
with L, we see that the solution is given in terms of EL rather than E, if ∆p is fixed.
Hence, in this regime, σ is invariant under changes in L if ∆p is fixed, as was in fact
also suggested by the numerical solutions [29].
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Fig. 3. Schematic representation of the three regimes and how to transition between them.
Each regime is given for each of the six possible orderings of the three governing time scales
τcond, τdif , and τreac.

4 Summary and conclusion

In this work, we revealed some consequences of a chemically and physically dynamic
Stern layer on electrokinetic phenomena. By allowing the surface charges to diffuse
across the Stern layer and by assigning a finite rate to the adsorption and desorption
reactions, we showed that a simple electrokinetic system develops novel properties.
We identified three dynamical regimes, schematically represented in Figure 3. These
regimes can be identified via three time scales (or equivalent lengths): the chemical
reaction time scale τreac = (kdes + kadsρC,s)

−1, the diffusive time scale τdif = L2/Ds,
and the conductive time scale τcond = 1/(DsE

2). Here, E = βe∂xψs is the dimen-
sionless streaming electric field and has dimensions of inverse length. The particular
regime is determined by which of the three time scales is the smallest. There are
three basic parameters to change the regime of the electrokinetic system: the pres-
sure gradient ∂xp changes the conduction time τcond and λcond, the bulk counter ion
density (for example, the pH of the solution) alters τreac and λreac, while τdif varies
with L. Note that the bulk ionic strength ρ is also an experimentally tunable param-
eter, which has a similar effect as the pressure gradient; increasing ρ decreases E and
thus increases τcond and λcond. In order to transition between the three regimes, the
ordering of the time scales must be changed, which is schematically represented in
Figure 3.

The first regime, the reaction-dominated regime, emerges when the chemical reac-
tion rates are the fastest process, τreac � τdif , τcond. Due to the high chemical rates, we
find a mostly constant surface charge profile, except for a region of size λreac away from
the ends of the surface. Moreover, we recover the standard Helmholtz–Smoluchowski
equation (1) for the streaming electric field, from which we can read off an explicit
expression for the Stern-layer conductivity. The system is in the second regime, the
diffusion-dominated regime, if L is the smallest length scale, or equivalently if τdif is
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the smallest time scale. In this regime, the system develops a linear surface charge
profile equal to the equilibrium value at the middle of the surface. Although the
surface charge and thus the streaming electric field are laterally heterogeneous, the
resulting streaming potential is within a good approximation equal to the Helmholtz–
Smoluchowski expression equation (1) with zero Stern-layer conductance. For large
streaming potential and slow reaction rates, τcond � τdif , τreac, the system reaches
the final regime, the conduction-dominated regime. The surface charge profile is
then exponential, and is no longer equal to the equilibrium value in the center of
the channel. Consequently, the streaming electric field is also exponential, and must
be found numerically. In the conduction-dominated regime, the electric field and
thus the streaming potential differ significantly from the Helmholtz–Smoluchowski
expression.

We believe that this theoretical framework provides both a deeper physical under-
standing of the processes at work for a dynamic Stern layer, and is able to predict
what properties to expect from an experimental setup. A difficulty is posed by the
chemical rates, which seem to be unknown for many surface-electrolyte combinations.
Perhaps, by exploring the behaviour of the surface charge by altering the pressure
drop or system size, our framework might actually provide insight in the numerical
values of the chemical rates.

This work is part of the D-ITP consortium, a program of the Netherlands Organisation
for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture
and Science (OCW). This work is a part of an Industrial Partnership Program of The
Netherlands Organization for Scientific Research (NWO) through FOM Concept agreement
FOM-15-0521. Financial support was provided through the Exploratory Research (ExploRe)
programme of BP plc.

Appendix A: Governing equations from dynamic density functional
theory

The governing equations for the surface charge density σ and ion densities ρi can be
derived using dynamical density functional theory (DDFT) [38], a dynamic extension
of density functional theory [39,40]. We consider a system consisting of a 3D bulk
region, denoted by R, and a 2D surface, denoted by S which is part of ∂R, the
boundary of R. Here, we will denote a position vector in R with r and a position
vector in S with rs. The surface charges σ(rs) are located in S. First we set up
the density functional for ρ(r), which consists of an ideal contribution, Fb,id, and an
excess contribution Fb,ex to account for the electric interaction between the charged
ions

βFb[{ρi}] = βFb,id[σ] + βFb,ex[σ] =
∑
i

∫
R

d3rρi(r)[log
(
ρi(r)Λ3

i

)
− 1]

+
1

2

∫
R

d3r ρe(r )φ(r), (A.1)

with ρe(r) =
∑
i ziρi(r) is the net charge density, β = (kBT )−1 the inverse thermal

energy, φ(r, t) = βeψ(r, t) the dimensionless electrostatic potential, and e the proton
charge.

For the surfaces charges, we can set up an analogous free energy for σ, Fs, which is
also the sum of an ideal part, Fs,id, where we must take into account that the surface
charges are confined to move on a lattice (multiply occupied sites are forbidden), and
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an electrostatic excess functional Fs,ex,

βFs[σ] = βFs,id[{ρi}] + βFs,ex[{ρi}] =

∫
S

d2rs

[
σ(rs) log

(
σ(rs)

Γ

)
+ (Γ− σ(rs)) log

(
Γ−σ(rs)

Γ

) ]
+ 1

2zσ

∫
S

d2rs σ(rs)φ(rs), (A.2)

where Γ is the total density of chargeable sites and zσ the valency of the surface
charges. We include no free energy of binding included in equation (A.2), since
we are interested in out-of-equilibrium processes. We are interested in the chemical
desorption reaction SC 
 S−+ C+, which we can describe by the rate equation

d{SC}
dt

= kdes{SC} − kads[C+]{S−}. (A.3)

Here, kads is the adsorption rate constant and kdes is the desorption rate con-
stant. We use curly brackets to indicate surface densities, and square brackets
to indicate volume densities. In equilibrium, the time derivative vanishes and
we obtain the Langmuir adsorption isotherm with chemical reaction constant
K ≡ {S−}[C+]/{SC} = kdes/kads.

The continuity equation for the ionic species is given by

dρi(r, t)

dt
= −∇ · Ji(r , t), r ∈ R, (A.4)

with Ji is the bulk flux of ion species i, where we should note that we used the full
(material) derivative of ρi(r, t) in order to account for advection. The bulk current
Ji(r, t) can be derived using DDFT,

Ji(r, t) = −Db,iρi(r, t)∇

(
δβFb [ρi]

δρi(r)

∣∣∣∣
ρi(r,t)

)
= −Db,i(∇ρi(r, t) + ziρi(r, t)∇φ(r, t)),

(A.5)
where Db,i are diffusion coefficients for the ions in the liquid. The continuity equation
for σ(rs) includes a source/sink term in order to account for the chemical reaction,

∂σ(rs, t)

∂t
= −∇S · jσ(rs, t) +R(rs, t), rs ∈ S, (A.6)

where R is the production rate of surface charges and jσ the (2D) flux of surface
charges and ∇S is the (2D) divergence in S. For example, for a flat plate in the
xy-plane, we have ∇S = (∂x, ∂y). We have implemented a type B dynamic model
because the total number of ions (on surface plus in the water) is conserved. From
equation (A.3) we can write down R(rs)

R(rs, t) = −kads (Γ− σ(rs, t)) + kdesρC(rs, t)σ(rs, t). (A.7)

Analogously to the bulk equation, the surface current is given by,

jσ(rs, t) = −Dsσ(rs, t)∇S

(
δβFs [σ]

δσ(rs)

∣∣∣∣
σ(rs,t)

)

= −Ds

(
Γ∇Sσ(rs, t)

Γ− σ(rs, t)
+ zσσ(rs, t)∇Sφ(rs, t)

)
, (A.8)
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with Ds is the diffusion coefficient for the ions adsorbed in the Stern layer. The final
equation needed in order to close the above set is the Poisson equation for the electric
potential ψ,

∇2φ(r, t) = −4πλB [ρe(r, t) + zσσ(r, t)fS(r)], (A.9)

where λB = βe2

4πε is the Bjerrum length with ε the permittivity, and the function fS(r)
(with dimension inverse length) encodes the location of the chargeable surface S. In
the case of a chargeable plate parallel to the xy-plane at z = 0, we have fS(r) = δ(z).
Combined with the Navier–Stokes equation for the fluid flow, equations (A.4), (A.7),
(A.6), (A.5) and (A.8), (A.9) give the set of governing equations.

We couple the bulk ions to the surface charges via a Robin boundary condition
in R, such that the total influx of counter ions is equal to the destruction rate of the
surface charges −R. In addition to the standard electric boundary condition and the
no-slip boundary condition for u, we obtain the boundary conditions

−ns · JC(rs, t) = −R(rs, t),

ns · ∇φ(rs, t) = −4πλBσ(rs, t)

u(rs, t) = 0 (A.10)

with ns is an inward pointing normal vector (into the fluid) and JC the counter ion
flux. All other, non-charged surfaces are impermeable for all ions. The charged surface
at S is impermeable for all ions expect the counter ion.

In order we check the consistency of the governing equations, we consider equilib-
rium condition where all time derivatives and fluxes vanish. Therefore, we find that
in equilibrium R(rs, t) = 0, and equation (A.7) reduces to the Langmuir adsorption
isotherm,

σ(rs, t→∞) = Γ

[
1 +

ρC(rs, t→∞)

K

]−1

. (A.11)

In order for all bulk fluxes to vanish, the functional derivative of F must reduce to a
constant,

δβFb
δρi(r)

= constant = µR, (A.12)

with µR the chemical potential of the system (there is no external potential except
for the hard wall potential) fixed by ρb,i, the bulk concentrations of the ions. Solving
for the densities ρi we get the Boltzmann distribution for all ionic species,

ρi(r) = Ai exp[−ziφ(r, t→∞)]. (A.13)

In the grand canonical ensemble the integration constant Ai is fixed by the chemical
potential µR.

Combining equations (A.11) and (A.13) we find that

δβFs
δσ(rs)

= constant, (A.14)

and therefore represent a valid equilibrium condition. Alternatively, we could also
have enforced jσ(rs) = 0, and thus a constant first derivative of Fs, which can then
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Fig. B1. The surface charge profile at steady state in the conduction-dominated regime
with (red full line) and without (green dashed line) the electric body force included in the
Navier–Stokes equation. The channel length 2L = 30µm, channel height H = 1µm, and a
pressure drop ∆p = 0.5 bar was used.

be solved for the equilibrium surface charge

σ(rs) = Γ
[
1 + Cσ e

zσφ(rs,t→∞)
]−1

, rs ∈ S, (A.15)

with Cσ is an integration constant. We can then combine this with the condition
R = 0 to obtain once again the Langmuir adsorption isotherm for the surface charge
and the Boltzmann weight for the dissolved ions. This shows the internal consistency
of the theory, for if we set any 2 of Ji, jσ or R to zero, it follows that the third
vanishes.

Appendix B: Electric body force

In Section 2, we assumed that the electric body force in the Navier–Stokes equation
is negligible in pressure-driven electrokinetic systems. The electric body force is pro-
portional to the local net charge density, and therefore is only non-zero in the EDL.
Although comparable in magnitude, the pressure gradient extends through the whole
channel, and since we have that H � λD we can therefore a priori expect that the
electric body force will have a negligible effect compared to the applied pressure gra-
dient. To test this assumption, we numerically calculated the surface charge profile in
the conduction-dominated regime, shown in Figure B1. In the conduction-dominated
regime, the electric field is large and thus the electric body force is large. Regardless,
Figure B1 shows that including the electric body force has no significant impact on
the surface charge profile at steady state. We can thus safely neglect the electric body
force and still obtain the same qualitative behaviour.

Appendix C: Derivation of zeta potential and net charge current

The integration constant ζ(x) of the solution to the charge density ρe(x, z),
equation (9), can be determined using equation (6). We rewrite the counter ion flux
as ẑ · JC(x, 0) = zC ẑ · Je(x, 0) and use the expression for the net charge flux Je,
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equation (8), and solution to ρe, equation (9), to find

zC ẑ · Je(x, 0) = zσD
(
λ−1
D ρζ(x) + 4πλBρσ(x)

)
= kdesΓ−

(
kdes + kadsρC,s

)
σ(x),

(C.1)
where we have used the electrostatic boundary condition ns ·∇ψs = −σ/ε to eliminate
the electrostatic potential ψ. Now we can use the solution to σ, equation (12), to derive
an expression for ζ(x),

zσ
D

λD
ρζ(x) = kdesΓ−

(
kdes + kadsρC,s −Dλ−2

D

)
σ(x),

= zσ
D

λD
ρζeq + σeq(τ−1

EDL − τ
−1
reac)(a+e

k+x + a−e
k−x).

(C.2)

Here, we used that kdesΓ −
(
kdes + kadsρC,s

)
σeq = 0 by definition and identified

the expression for the dimensionless equilibrium zeta potential ζeq = zσ4πλBλDσeq

from linear Poisson–Boltzmann theory. As argued in the text, we know that
τEDL = λ2

D/D � τreac. Using the identity ρλD = (4πλBλD)−1 we can rewrite the
expression for ζ(x) as

ζ(x) = ζeq +
σeq

zσρλD

(
a+e

k+x + a−e
k−x
)

= ζeq(1 + a+e
k+x + a−e

k−x). (C.3)

To determine E, we impose that at any position x no net current passes through
any channel slice with normal x̂. This condition is a direct consequence of the van-
ishing divergence of Je and the open circuit geometry. Using the symmetry of the
system we thus demand that

zσjσ(x) +

∫ 1
2H

0

dzJe,x(x, z) = 0, (C.4)

where zσjσ(x) is the net charge current through the Stern layer. Using equation (8),
and the solution to ρe, equation (9), we find the net charge current through the liquid∫ 1

2H

0

dzJe,x(x, z) = −D∂x
∫ 1

2H

0

dzρe + zσDρ

∫ 1
2H

0

dzE +
∂xp

2η

∫ 1
2H

0

dzz(H − z)ρe,

≈ 2Dρ

(
λD∂xζ(x) +

1

2
zσEH −

∂xpHλ
2
D

2Dη
ζ(x)

)
(C.5)

where have used thatH � λD and included a factor zσ in the second term on the right
hand side since E was defined as a positive quantity. Lastly, we use equations (12)
and (5) to derive an expression for the Stern-layer current

jσ(x) = −Ds(∂xσ − Eσ) = DsEσeq +Dsk−a+e
k+x +Dsk+a−e

k−x, (C.6)

where we used that E − k± = k∓. Equations (C.3), (C.5), and (C.6) can then be
plugged in equation (C.4) which can then in principle be solved for the streaming
electric field E.
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