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Abstract. Computational difficulties aside, nonequilibrium Green’s
functions appear ideally suited for investigating the dynamics of central
nuclear reactions. Many particles actively participate in those reactions.
At the two energy extremes for the collisions, the limiting cases of the
Green’s function approach have been successful: the time-dependent
Hartree–Fock theory at low energy and Boltzmann equation at high.
The strategy for computational adaptation of the Green’s function
to central reactions is discussed. The strategy involves, in particu-
lar, incremental progression from one to three dimensions to develop
and assess approximations, discarding of far-away function elements,
use of effective interactions and preparation of initial states for the
reactions through adiabatic switching. At this stage we concentrate on
inclusion of correlations in one dimension, where relatively few approx-
imations are needed, and we carry out reference calculations that can
benchmark approximations needed for more dimensions. We switch on
short-range interactions generating the correlations adiabatically in the
Kadanoff–Baym equations to arrive at correlated ground states for uni-
form matter. As the energy of the correlated matter does not quite
match the expectations for nuclear matter, we add mean field to arrive
at the match in energy. From there on, we move to finite systems. In
switching on the correlations, we observe emergence of extended tails
in momentum distributions and evolution of single particle occupations
away from 1 to 0.

1 Introduction

A major current factor expanding the scope of nuclear investigations is the construc-
tion of new accelerator facilities, in particular those accelerating secondary exotic
beams, yielding new nuclides and reactions that could not be studied before. A sec-
ond high-intensity generation of the exotic-beam facilities is now under construction
and these include the Facility for Rare Isotope Beams (FRIB) at the Michigan State
University (MSU), at the moment the largest investment in the low-energy nuclear
physics in North America, to be put into operation in year 2022. The expansion
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Fig. 1. Contour plots of neutron (dashed lines) and proton density (solid lines) in head-on
120Sn + 100Sn collision at 40 MeV/nucl, at different times [5]. The horizontal axis is the
collision axis.

on the experimental side is paralleled by a growth in the theory for nuclear struc-
ture that, till now largely phenomenological, has increasingly become fundamentally
based, even down to QCD, as an effective theory. On the side of nuclear reaction
theory the progress has been much slower. While fundamental advances were made
for systems with few nucleons, particularly at low energy, the theory for central reac-
tions of heavy nuclei, with many nucleons participating in the reaction dynamics, has
remained phenomenological and largely semiclassical. When many particles partici-
pate, it is natural for the theory to be statistical in nature. For dynamics, the natural
general way forward is the quantum transport that we will discuss here.

2 Description of central nuclear reactions

The number of methods developed for central nuclear reactions and employed in
practice has been limited. For low-energy reactions important is the time-dependent
Hartree–Fock (TDHF) method [1]. Nowadays, simulations in variants of TDHF can be
performed in full three-dimensional (3D) and can involve nuclei as heavy as uranium
[2,3]. However, the validity of TDHF requires that role of correlations is suppressed
in the dynamics [4]. At low energies, one might argue that the role of correlations is
minimized by wavefunction antisymmetrization. Conversely, one would expect cor-
relations to dominate at higher energies, where role of the Pauli principle weakens.
With increase of collision energy the limitation of TDHF is exhibited in the fact
that nuclei in TDHF simulations become excessively transparent to each other, see
Figure 1, as compared to experiment.

Intermediate and high energy central nuclear reactions have been commonly
described in terms of the Boltzmann-equation (BE) models [6]. In these models, the
evolution of the phase-space distribution functions f(rrr,ppp, t) of nucleons and other par-
ticles is followed. BE models have been fairly successful in describing many aspects of
higher-energy reactions [7,8]. However, the use of BE in reactions has been criticized
on theoretical grounds. BE relies on the quasiparticle picture and simple estimates
[9] indicate that particle scattering rates are comparable to particle energies, which
undermines that picture. In this context, it is theoretically difficult [10] to separate
collisional effects, described with cross-sections and entering the collisional integrals
in BE from mean-field effects entering the quasiparticle energies.

3 Kadanoff–Baym (KB) equations

The TDHF and BE approaches to central nuclear reactions are fundamentally tied
with the single-particle density matrix

ρ(rrr1 rrr
′
1 t) = 〈Φ|ψ†(rrr′1 t)ψ(rrr1 t)|Φ〉 . (1)
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The density matrix yields all single-particle observables. The Wigner function, that
may be viewed as the quantal version of the classical phase-space distribution, results
from evaluating a Fourier transformation of the equal-time Green’s function, i.e.
density matrix, in relative coordinates:

f(ppprrr t) =

∫
d(rrr1 − rrr′1) e−ippp(rrr1−rrr

′
1) ρ(rrr1 rrr

′
1 t) . (2)

Here, the spatial argument of the Wigner function is rrr = (rrr1 + rrr′1)/2. It can be seen
that the doubled spatial argument in the density matrix accounts for position and
momentum in the classical limit. By extension, one can expect that the doubled time
argument in the Green’s function corresponds to time and energy in the classical
limit, i.e. the density in momentum and energy at a given position and time should
be:

−iG<(ppp εrrr t) =

∫
d(rrr1 − rrr′1) d(t1 − t′1) ei[ε(t1−t

′
1)−ppp(rrr1−rrr

′
1)] (−i)G<(rrr1 t1 rrr

′
1 t
′
1) , (3)

where t = (t1 + t′1)/2. Indeed, for the static case of a Hartree–Fock state, where the
Green’s function is generally a superposition of products of occupied orbitals φα,

−iG<(rrr1 t1 rrr
′
1 t
′
1) =

∑
α

φα(rrr1 t1)φ∗α(rrr′1 t
′
1) , (4)

equation (3) yields

−iG<(ppp εrrr t) =
∑
α

fα(ppprrr) δ(ε− εα) . (5)

Here, fα and εα are, respectively, the Wigner functions and single-particle ener-
gies for individual orbitals. In nuclear physics, the spectral function represented by
equation (3) is explored for ground-state nuclei in inelastic electron scattering.

Outside of the mean-field approximation, an intrinsically consistent dynamics for
the Green’s function (1), in nonequilibrium or even finite temperature situation, can
only be arrived when considering different orderings of single-particle operators in an
expectation value, encompassed in the Green’s function

iG(1, 1′) = 〈Φ|T
{
ψ(1)ψ†(1′)

}
|Φ〉 . (6)

Here, the time arguments of the operators are assigned to either side of a time contour
that runs first forward and then backward in time, representing the evolution of
the ket in the expectation value, on one hand, and of the bra, on the other [9,11].
The superoperator T orders operators according to their order on the time contour.
Depending on the assignment of time arguments to the contour branches, different
actual ordering of the operators can result, with the superscript ‘<’ in the Green’s
function referring to the order in (1) and ‘>’ to the opposite order.

A perturbative expansion of the evolution operators in the Green’s function (6),
followed by resummations, yields a Dyson equation familiar from other contexts

G = G0 +G0 ΣG . (7)

Here, the time integrations run over the contour forward and then backward in time,
reaching above the maximal time of operators in any considered expectation value.
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The self-energy Σ can be expressed in terms of source operators j,(
i
∂

∂t1
+
∇∇∇2

1

2m

)
ψ(1) = j(1) , (8)

with

iΣ(1, 1′) = 〈Φ|T
{
j(1) j†(1′)

}
|Φ〉irr . (9)

The integral Dyson equation may be converted into an integro-differential equa-
tion through application of the differential inverse operator G−10 to both sides of the
equation. For a specific order of operators in G (6), one arrives at the set of KB
equations [11]:(
i
∂

∂t1
+
∇∇∇2

1

2m

)
G≶(1, 1′) =

∫
d1′′Σ+(1, 1′′)G≶(1′′, 1′) +

∫
d1′′Σ≶(1, 1′′)G−(1′′, 1′) .

(10)

Implicit, in the expansion and resummation leading to the Dyson equation and, thus,
to the KB equations, is the presumption that the impact of any multi-particle corre-
lations dies off with time. This presumption is generally going to be better satisfied in
large than small systems. Rigorous accounting for finite-particle effects within Σ gen-
erally yields complicated series there, that normally gets truncated in approximations
to Σ aiming to circumvent the many-body hierarchy.

In different limits, for a variety of cases of Σ, the KB equations yield a variety
of useful known results and moreover they interpolate and extrapolate beyond those
limits and associated results. Thus, when the mean field contribution dominates the
self-energy, Σmf >> Σ≶, in a highly degenerate system, the TDHF description for
the system follows. When the scales of variation for the Green’s functions and self-
energies are significantly larger for the average than relative function arguments, then
the quasiparticle approximation follows, with evolution governed by the BE,

−iG<(1, 1′) ≈
∫

dppp f(ppp, 1) eippp(xxx1−xxx1′ )−i εppp(t1−t1′ ) . (11)

Given the two limiting approaches contained in the KB equations, already
employed in the practice of central nuclear reactions, it is natural to ponder a direct
application of the nonequilibrium Green’s functions (NGFs) to the reactions, covering
the variety of circumstances that are possibly or clearly out of reach of those limit-
ing approaches. The problem with a direct solution of the KB equations, though, is
the eight-dimensional nature of the functions that can easily overwhelm the current
and near-future computational power. By contrast, the TDHF equations involve four
dimensions, or five if one counts the large number of orbitals, and these already tax
the current power.

4 Towards reaction simulations

4.1 General challenges

General issues that must be considered when coping with nonuniform systems,
described in terms of NGF, include the space-time matrix form of the dynamics,
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with abundance of matrix elements that nominally need to be considered. Thus, for a
coarse discretization involving sensible 50 values in any space-time direction, the num-
ber of matrix elements that would need to be considered is 508 = 4× 1013 for every
function, of the order of 100 TB of data! The coarse discretization in itself implies
that effective rather than microscopic interactions need to be employed. When dealing
with time development, consistent approximations must be employed for initialized
states and for dynamics, to avoid spurious evolution due to inconsistencies.

In order to progress on those challenges, we start with dynamics in one dimension.
In one-dimensional (1D) calculation, one can handle the number of elements for such
a discretization as above and one can test approximations needed when moving to
higher dimensionality. Still, one needs to deal with effective interactions and initial-
ization of dynamics. In [12], we studied mean-field dynamics in 1D and demonstrated
that only matrix elements of functions close to diagonal in arguments matter for evo-
lution forward in time. The far off-diagonal elements record phase relation between
portions of the system widely separated in space. When the system expands into vac-
uum those phase relations become irrelevant and can be discarded in evolution. Here,
we go beyond mean field and concentrate on two issues: preparation of correlated
initial state and effective interactions.

4.2 Initialization of correlated states

In Section 3 the KB equations, which govern the time evolution of a many-body sys-
tem, were introduced. Solving the latter equations yields one-body information about
the system and also many-body information provided the effects of correlations are
short-lived. In studying collisions, nuclear systems need to be initialized consistently
with the KB equations used to follow the collisions. Thus, if an uncorrelated ini-
tial state is naively followed with KB equations incorporating correlations, then that
system may spew particles and even explode and/or violently oscillate ahead of any
collision. In the past work [12], we employed adiabatic switching to arrive at mean-
field initial states consistent with a mean-field version of the KB equations. Examples,
where adiabatic switching was used for constructing correlated many-body states,
include references [13,14]. In [15–17], imaginary-time evolution was employed, requir-
ing development of a separate computational infrastructure, but being equivalent to
the adiabatic switching under proper circumstances.

4.3 Effective interactions

The effective interactions, employed for coarse discretizations in space and time, need
to be eventually derived through renormalization from fundamental interactions. In
1D we do not have any microscopic interactions to start with, so we progress with
effective interactions pragmatically, requiring that results obtained in 1D can be
sensibly interpreted as pertaining to a 3D nuclear system that is uniform in two
perpendicular directions. For the mean-field part of the self-energy, we adopt a local
3D Skyrme-type interaction such as in reference [12]. For the self-energies Σ≷, we
employ the so-called self-consistent Born diagram illustrated in Figure 2, yielding

Σ≷(p t; p′ t′) =

∫
dp1
2π

dp2
2π

V (p− p1)V (p′ − p2) G≷(p1 t; p2 t
′) Π≷(p− p1 t; p′ − p2 t′),

(12)
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Fig. 2. Direct Born diagram contributions to the self-energy for neutrons (protons).

where

Π≷(p t; p′ t′) =

∫
dp1
2π

dp2
2π

G≷(p1 t; p2 t
′)G≶(p2 − p′ t′; p1 − p t). (13)

In the semiclassical low-density limit, the self-energies Σ≷ represent phase-space
feeding and depletion rates where cross sections are described in the Born approxi-
mation in terms of the employed residual interaction. To describe semi-quantitatively
3D rates within the 1D calculation, we employ a residual interaction modulated by
a Gaussian:

V (p) =V0
√
π η2 p2 e−η

2 p2/4,

V (x) =V0

(
1− 2

x2

η2

)
e−x

2/η2 .
(14)

The constants V0 and η are adjusted to yield reasonable cross sections and
quasiparticle content of single-particle states in the ground state.

4.4 Adiabatic transformation of interactions

The finalizing of the details of effective interactions is entangled in practice with
arrival at static solutions of dynamics. To ensure that the initial states are con-
sistently determined with intentions for the dynamics, we arrive at states that are
approximately static, through adiabatic transformation of interactions within the
dynamics. We carry that out for uniform matter and for finite systems. In consid-
ering the uniform matter, we adjust the characteristics of the mean-field self-energy
Σmf, so that energy per nucleon, as a function of density, properly represents uniform
3D matter. The finite system, for which we show the results here, has A = 4 particles
in the 1D interpretation. Interestingly, the KB equations to be solved do not change
with particle number – just the initial conditions for the equations change.

Central role in adiabatic switching is played by a switching function F (t) that
changes between 1 and 0 around some cardinal switching time ts. We start from an
uncorrelated state and the residual interaction V (x) is replaced by time-dependent
interaction in the dynamics,

Vt(x, t) = [1− F (t)]V (x), (15)

and the mean-field self-energy Σmf is replaced by

Ut(x t) = F (t)U0(x) + [1− F (t)] ΣHF(x t). (16)

For a finite system, a harmonic oscillator (HO) potential U0(x) = 1
2mΩ2x2 is used

to confine the original state. For a uniform system local energy or potential plays
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Fig. 3. Time evolution of the size 〈|x− 〈x〉|〉 of a system initialized with one filled HO shell,
for different indicated types of switching functions, when the switching is active in the time
interval of [50, 150] fm/c and the cardinal time is ts = 100 fm/c.

a passive role in the dynamics, just changing the net energy by some value, so in
practice Σmf may be left to be specified after conclusion of evolution.

From [12], our standard switching function, in the switching interval from t0 to
t1, bracketing the cardinal switching time ts, is

F (t) =
f(t− ts)− f(t1 − ts)
f(t0 − ts)− f(t1 − ts)

, (17)

where

f(t) =
1

1 + et/τ
(18)

and τ controls the pace of adiabatic switching. However in the literature, there had
been a considerable discussion of the effectiveness of different type of functions in the
adiabatic switching [18]. For switching to be effective, you want to be able to carry it
out over as short time as possible, arriving at a system with the lowest possible energy,
exhibiting this, in particular, by being stationary and not spewing particles to the
outside. In Figure 3, we show the changes in system size when switching from a system
without self-interactions, trapped in an HO potential, to an interacting system within
the Green’s function approach and using different switching functions, our standard
in equations (17) and (18) and some suggested in reference [18]. It is apparent that
our switching function actually works the best from the choices. Still, even for our
function, some oscillations in size can be seen in Figure 3 after completion of the
switching, showing a potential for further improvements. For those, the switching
time may be lengthened, albeit at a computational cost, and the switching function
can be accompanied by the use a cooling friction [19] that we generalize [20]. No
matter what we employ, though, some low-amplitude oscillations and some leakage
of probability into empty space normally remain, but at a level that does not interfere
with the practical ability to study slab collisions and/or large-amplitude collective
motion of a specific type for the slabs.
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Fig. 4. Net energy per nucleon as a function of 3D density in cold correlated nuclear
matter. Symbols represent values arrived at sample densities and the line represents a smooth
interpolation of the results.

[ ]

[
]

Fig. 5. Time evolution of the density in position space for a system initialized in the
first HO shell, when self-interactions are adiabatically switched on and the external poten-
tial is relaxed, cf. Figure 3. Now the switching progresses from t = 0 on and concludes at
t = 100 fm/c.

In Figure 4, we illustrate the energy per nucleon in uniform matter as a function
of 3D density for the matter. We interpret the 1D density in terms of 3D density by
following the Hugenholtz–van Hove theorem in reference [12] and arriving at

n3D = ξ n1D, ξ =

√
5

3

(
πn20
6ν2

)1/3

, (19)
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Fig. 6. Occupation of single-particle states from diagonalization of the single-particle density
matrix at different times, for a system initialized in the first HO shell, when self-interactions
are adiabatically switched on and the external potential is relaxed. The abscissa is the order
of the states by occupation and the lines guide the eye.

where n1D(x, t) = −iνG<(x t;x t), ν = 4 is spin-isospin degeneracy and
n0 = 0.16 fm−3 is the normal density. We aim at a minimum in the energy at the
normal density n0. Numerically, there are fluctuations in the energy that we arrive
at within the process of switching, such as due to the switching process interplaying
with the system oscillations. A smooth fit to the results helps the eye to identify the
location of the minimum. The relatively low value of the energy per nucleon at the
minimum is due to presumed kinetic energy associated with the frozen transverse
degrees of freedom, missing in the count.

For energy minimizing at normal density, the finite self-interacting slabs adjust
their density profiles so that densities close to the normal are reached at their center.
In Figure 5, we show the evolution of the density for a slab initialized in the first HO
shell, when interactions are switched on. The changes in the size for that slab were
already shown in Figure 3. Finally, in Figure 6 we show how the occupation of single-
particle states changes during the transformation of interactions. For an uncorrelated
state, in the case of external potential or mean-field only, the occupation in the
lowest-energy state is either 1 or 0. In uniform matter, the states are occupied up to
Fermi momentum, when there are no correlations, and pronounced tails in momentum
develop when correlations are switched on.

5 Conclusions

We have carried out early steps in advancing the dynamics of correlated nuclear
systems following the NGF method. We prepared correlated infinite and finite nuclear
systems in 1D through adiabatic switching. We explored the use of different switching
functions, initial conditions and cooling friction, arriving at reasonably stationary and
cold states for initiating the dynamics of interest. In parallel, we developed a suitable
combination of mean-field and residual interactions for describing the initial states
and the dynamics.

The authors benefited from discussions with Brent Barker and Hao Lin. This work was
supported by the U.S. National Science Foundation under Grant PHY-1520971.
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