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Abstract. Historically, correspondence rules and quantum quasi-
distributions were motivated by classical mechanics as a guide for
obtaining quantum operators and quantum corrections to classical
results. In this paper, we start with quantum mechanics and show how
to derive the infinite number of quantum quasi-distributions and cor-
responding c-functions. An interesting aspect of our approach is that
it shows how the c-numbers of position and momentum arise from the
quantum operator.

1 Introduction

The concept of a quasi-distribution of position and momentum originated with
Wigner in 1932, who gave what is now known as the Wigner distribution [22]. Imme-
diately after, in 1933, Kirkwood gave another distribution [14]. Both Wigner and
Kirkwood were motivated by the following idea. Since classical quantities such as
the second virial coefficient of a gas are expressed in terms of a classical joint dis-
tribution of position and momentum, then perhaps we could calculate the quantum
corrections to the second virial coefficient if we substituted a joint distribution of
position and momentum that somehow included quantum mechanics. Parallel to this
development, starting with Born and Jordan [2], and Weyl [21], the question arose
as to how to obtain a quantum operator from the classical counterpart. Different
procedures were proposed, giving different answers. Somewhat later, in 1948, Moyal
saw the connection between the Wigner distribution and the Weyl procedure, and
derived the Wigner distribution using it [17]. Subsequently, the quasi-distribution
corresponding to the Born-Jordan rule was derived [5]. In these considerations, and
in the many subsequent works on quantum quasi-distributions, the framework was
how to go from classical machanics to quantum mechanics.

The aim of this paper is to go directly from the density matrix to the derivation of
an infinite number of quasi-distributions. We discuss how an infinite number of quan-
tum phase-space distributions could be obtained from first principles. Our treatment
does not employ characteristic functions, but is entirely contained within the usual

a e-mail: j.s.ben-benjamin@tamu.edu

https://epjst.epj.org/
https://doi.org/10.1140/epjst/e2018-800063-2
mailto:j.s.ben-benjamin@tamu.edu


2172 The European Physical Journal Special Topics

formalism of quantum mechanics. Furthermore, we get the distribution and the cor-
responding c-function in one swoop. This enables us to understand the origin of all
terms, the meaning of the phase-space variables, and the origin of the multiplicity of
distributions.

Our starting point is quantum mechanics. For an operator A and density matrix
ρ, the expected value of the physical quantity represented by the operator is given by

〈A〉 = Tr {ρA} . (1)

We want to express equation (1) so that it can be written as1

〈A〉 =

∫∫
P (q, p)a(q, p)dqdp, (2)

with the very strong conditions that P (q, p) depends only on the density matrix ρ,
and that the c-function a(q, p) depends only on the operator A.

In the next section, we briefly show how we separated equation (1) in [1] for the
Wigner distribution, and in Section 3, we show how equation (1) may be separated
so that we may write equation (2). There, we use the density matrix approach, and
in Appendix A, we give a somewhat different approach by using the wave function
directly. In Appendix B, we obtain the inverse general correspondence rule, presenting
another approach to getting the c-number a(q, p) from a given operator A.

In quantum optics, the question of how to connect the classical theory of elec-
tromagnetism with quantum theory involves phase-space. In looking for analogies
between quantum optics and some probabilistic electromagnetic state, we consider
the classical probability density P (E) that the electric field has some amplitude
between E and E + dE. The question is: What is the quantum counterpart of P (E)?
Since we know that the Glauber coherent states are the most ‘classical-like’ quantum
states of the electric field [19], then quantum-mechanically, we could näıvely say that
the analogous quantity to the classical P (E) are the α–β elements of the density
matrix, 〈α|ρ|β〉. But those quantities depend on two field amplitudes – not one! To
correspond to the classical case, the dependence should be on only one field. In quan-
tum optics, this two-versus-one conundrum is easily resolved as follows. In qunatum
optics, we may always make use of the completeness of the |α〉 states, i.e.

1

π

∫∫
|α〉〈α| d2α = 1̂, (3)

to write

ρ =
1

π2

∫
〈α|ρ|β〉 |α〉〈β| d2αd2β. (4)

This is the usual result for a quantum system. Alternatively, if we were to write the
number state basis analogue to equation (4), then using∑

n

|n〉〈n| = 1̂, (5)

1Operators are indicated by boldface characters. We often represent multiple integrals by a
single integration symbol, the differentials indicating the number of integrals. All integrals go from
−∞ to ∞.
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we write

ρ =
∑
n,m

〈n|ρ|m〉 |n〉〈m| . (6)

But in classical optics, we write 〈f(E)〉 =
∫
f(ε)P (ε)dε, which involves probability

distributions of only one field ε – not two, as is the case in 〈α|ρ|β〉 = ρ(α∗, β). But it
is possible to regain a single-field distribution description as follows: We may write

〈A〉 = Tr {ρA} = Tr

{
ρ
∑
r,s

cr,s(a
†)ras

}
, (7)

i.e., we expressed A in normal-ordered form. Then, we may write

〈A〉 = Tr

{∫∫
ρδ(a† − α∗)δ(a− α)

∑
r,s

cr,s(α
∗)rαsd2α

}
(8)

=

∫∫
P (α, α∗)A(n)(α, α∗)d2α, (9)

where the normal-ordered quantity A(n) is A(n)(α, α∗) =
∑
r,s cr,s(α

∗)rαs and

P (α, α∗) = Tr
{
ρδ(a† − α∗)δ(a− α)

}
is a phase-space distribution (called the

“Galuber–Sudarashan P-distribution”) which is the quantum analog of the
classical P (E) [10,19,20].

2 Wigner distribution from the density matrix in a few easy steps

In this section, we show how we separated the expectation value of some operator A
in the Wigner distribution case [1].

Noticing that the expectation value of the operator A is

〈A〉 =
1

2π}

∫∫∫∫
〈q1|ρ|q2〉 〈p1|A|p2〉 ei(q2p1−q1p2)/}dq1dq2dp1dp2, (10)

we see that the complex exponential is preventing us from separating the integrand
into the two quantities, one depending exclusively on ρ, and the other depending
exclusively on A. To overcome this, we define the averages and differences of positions
and momenta

q′ = q1 − q2 p′ = p2 − p1 (11)

q =
q1 + q2

2
p =

p2 + p1

2
. (12)

We have thus turned the expectation value in equation (10) into

〈A〉 =

∫∫
PW(q, p)AW(q, p)dqdp, (13)
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where in equation (13), the distribution PW is

PW(q, p) =

∫ 〈
q +

q′

2

∣∣∣∣ ρ

2π}

∣∣∣∣q − q′

2

〉
e−iq

′p/}dq′, (14)

which does not depend on A, and AW is

AW(q, p) =

∫ 〈
p− p′

2

∣∣∣∣A∣∣∣∣p+
p′

2

〉
e−ip

′q/}dp′, (15)

which has no dependence on ρ. This means that PW and AW are separated.

3 From quantum mechanics to quasi-distributions

In this section, we show how equation (1) can be separated in general, thus obtain-
ing the general class [5] of phase-space distributions along with their corresponding
c-functions. In the position representation, the expectation value of the operator A,
equation (1), becomes

〈A〉 =

∫∫
〈q′′|ρ|q′〉 〈q′|A|q′′〉 dq′dq′′. (16)

We make a change of variables

q′′ = u+ ~τ/2, q′ = u− ~τ/2, (17)

and obtain that

〈A〉 = ~
∫∫ 〈

u+
~τ
2

∣∣∣∣ρ∣∣∣∣u− ~τ
2

〉〈
u− ~τ

2

∣∣∣∣A∣∣∣∣u+
~τ
2

〉
dudτ. (18)

To separate equation (18) into two terms, one depending only on ρ, and the other
depending only on A, we insert the product of two delta functions, δ(τ − τ ′) δ(u−u′),

〈A〉 = ~
∫∫ 〈

u+
~τ
2

∣∣∣∣ρ∣∣∣∣u− ~τ
2

〉
dudτ

∫∫ 〈
u′ − ~τ ′

2

∣∣∣∣A∣∣∣∣u′ + ~τ ′

2

〉
δ(τ−τ ′)δ(u−u′)du′dτ ′

(19)

where we changed the variables parameterizing the matrix elements of the operator
A from (u, τ) to (u′, τ ′). We thus have one term depending only on ρ, and another
depending on A only. However, we do not yet have an expression of the form of
equation (2) for the expectation value of A. To accomplish that we rewrite the product
of Dirac delta functions as

δ(τ − τ ′)δ(u− u′) =

∫∫ {
1

(2π)2

∫
e−iθq−iτp+iθuΦ(θ, τ)dθ

}
×
{

1

2π

∫
eiθ

′q+iτ ′p−iθ′u′
Φ−1(θ′, τ ′)dθ′

}
dqdp, (20)

where Φ(θ, τ) is any two-dimensional function whose significance will be discussed
subsequently. Notice that the position and momentum c-variables, q and p, emerge
from the separation through the Dirac delta functions.



Non-Equilibrium Dynamics 2175

Substituting equation (20) into equation (19), we have

〈A〉 =

∫∫ {
1

(2π)2

∫∫
dudτdθ

〈
u+

~τ
2

∣∣∣∣ρ∣∣∣∣u− ~τ
2

〉
e−iθq−iτp+iθuΦ(θ, τ)

}
×

{
~

2π

∫∫ 〈
u′ − ~τ ′

2

∣∣∣∣A∣∣∣∣u′ + ~τ ′

2

〉
eiθ

′q+iτ ′p−iθ′u′

Φ(θ′, τ ′)
du′dτ ′dθ′

}
dqdp. (21)

We have thus accomplished our goal: equation (21) has separated the expectation
value and we can write

〈A〉 =

∫∫
PΦ(q, p)aΦ(q, p)dqdp, (22)

where the quasi-distribution PΦ is given by

PΦ(q, p) =
1

(2π)2

∫∫∫ 〈
u+

~τ
2

∣∣∣∣ρ∣∣∣∣u− ~τ
2

〉
e−iθq−iτp+iθuΦ(θ, τ)dudτdθ (23)

which depends only on the density matrix ρ, and the c-function aΦ is

aΦ(q, p) =
~

2π

∫∫∫ 〈
u− ~τ

2

∣∣∣∣A∣∣∣∣u+
~τ
2

〉
eiθq+iτp−iθu

1

Φ(θ, τ)
dudτdθ (24)

which depends only on the operator A. Notice that the function Φ appears in both
expressions, and hence the choice of quasi-probability is coupled to the choice of the
c-function. The function Φ characterizes the particular quasi-distribution.

Equation (23) was first given by Cohen [5], where Φ(θ, τ) is called the kernel,
and parameterizes the totality of quasi-distributions and correspondence rules [15].
Expression (24) gives the c-function aΦ(q, p) that corresponds to the operator A.
This is in contrast to the usual historical procedure of correspondence rules where
one attempts to write the operator for a given classical function. Expression such as
equation (24) have been called inverse correspondence rules [13]. In Appendix B, we
show the equivalence with the standard formulation.

3.1 Special cases

It is of some interest to consider the derivation of quasi-distributions and their corre-
sponding c-functions for some special cases. As examples, we chose the Wigner and
Kirkwood distributions. We note that many variations of the Kirkwood distribution
have been studied, both in quantum mechanics and in time-frequency analysis, and
among the names that have been used are the Rihaczek, Margenau-Hill, and standard
distributions [7].

3.1.1 Wigner case

The Wigner distribution case was derived using these methods in [1]. Here we show
that it is a special case of our general approach. The Wigner distribution corresponds
to the case where

ΦW = 1. (25)
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For equation (20), the delta function product becomes

δ(τ − τ ′)δ(u− u′) =
1

2π

∫∫ [
δ(u− q)e−iτp

] [
δ(u′ − q)eiτ

′p
]
dqdp (26)

where it is important that the integrations over q and p are kept. Therefore, the
expectation value of A as per equation (21) (or (19)) is

〈A〉 =
~

2π

∫∫ {∫
e−iτp

〈
q +

~τ
2

∣∣∣∣ρ∣∣∣∣q − ~τ
2

〉
dτ

}{∫
eiτ

′p
〈
q +

~τ
2

∣∣∣∣A∣∣∣∣q − ~τ
2

〉
dτ ′
}
dqdp

(27)
We can hence write

〈A〉 =

∫∫
PW (q, p)aW (q, p)dqdp (28)

where the quasi-distribution is

PW (q, p) =
1

2π

∫ 〈
q +

~τ
2

∣∣∣∣ρ∣∣∣∣q − ~τ
2

〉
e−iτpdτ, (29)

which is the Wigner distribution, and the corresponding c-function is

aW (q, p) = ~
∫ 〈

q +
~τ
2

∣∣∣∣A∣∣∣∣q − ~τ
2

〉
eiτpdτ. (30)

In Appendix B we show that equation (30) is the inverse Weyl correspondence for
the operator A.

3.1.2 Kirkwood

The Kirkwood distribution corresponds to

ΦK(θ, τ) = eiθτ}/2. (31)

Equation (20) for the delta function product becomes

δ(τ − τ ′)δ(u− u′) =
1

2π

∫∫
dqdp

(
δ

[
u−

(
q − ~τ

2

)]
e−iτp

)(
δ

[
u′ −

(
q − ~τ ′

2

)]
eiτ

′p
)
,

(32)
and further, from equation (21) or (19), we have that the expectation value is

〈A〉 =

∫∫
〈q|ρ|p〉〈p|A|q〉dqdp. (33)

Inserting an identity into equation (33), we have

〈A〉 =

∫∫
e−iqp/~√

2π~
〈q|ρ|p〉

√
2π~ eiqp/~〈p|A|q〉dqdp. (34)
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We can therefore write the expectation value of A as

〈A〉 =

∫∫
PK(q, p)aK(q, p)dqdp, (35)

where the quasi-distribution is

PK(q, p) =
e−iqp/~√

2π~
〈q|ρ|p〉, (36)

which is the Kirkwood distribution, and the c-function aΦ is

aK(q, p) =
√

2π~e−iqp/~〈p|A|q〉. (37)

4 Conclusion

An interesting aspect of our derivation is understanding how the separation of the
quasi-distribution and c-function is achieved in the expression for the quantum expec-
tation value of an operator. In addition, the separation shows how the position and
momentum c-numbers appear.

We emphasize that in the expression for the delta function as given by equations
(20) and (A.8), we have assumed that the separation does not involve the wave
function or the operator, and that is why the quasi-distributions given by equations
(23) and (A.11) are called bilinear. One may take the kernel to be a functional of the
wave function and/or the operator, in which case, the resulting expressions would
not be bilinear. That case has not been studied extensively.

We also note that in our derivation, we have not assumed that the operator is
Hermitian or that the quasi-distribution has to be real. Indeed, neither has to be the
case, as long as the quasi-distribution and c-function are coupled appropriately by
way of equations (23)–(24) or equations (A.11)–(A.12). One can impose conditions
on the quasi-distribution by imposing conditions on the kernel, and such methods are
called kernel design [3,4,6,7,11,12,16,23].

We point out that the same methods may be used to derive the general class of
time-frequency distributions for both the deterministic and random cases. Mathe-
matically, the situations become identical if one lets position go into time, treating
the wavefunction ψ(q) as the signal s(t) in time. Momentum in the wavefunction
case is the frequency ω. For the random case, one replaces the density matrix by the
ensemble average of the signal. That is, instead of the density matrix ρ(q, q′), one
takes the ensemble average 〈s∗(t)s(t′)〉. In this case the Wigner distribution is called
the Wigner spectrum. In a future paper, the details of the time-frequency case will
be discussed.

We also mention that one can develop the concept of quasi-distributions for
variables other than position and momentum. The usual way of studying quasi-
distributions for arbitrary variables is by way of the characteristic function [8,9,18]. If
α and β are associated with the operators A and B, then the charactersitic function
is

M(θ, τ) = 〈eiθA+iτB〉 =

∫
ψ∗(q)eiθA+iτB ψ(q) dq, (38)
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and the quasi probability distribution is

P (α, β) =
1

4π2

∫∫
M(θ, τ)〉e−iθα−iτβdαdβ . (39)

The ambiguity comes in by the fact that instead of eiθA+iτB in equation (38), one
can use eiθA eiτB or eiθA/2eiτBeiθA/2, and each gives a different quasi-distribution,
all of which satisfy the marginals for α and β. This method has been applied to
a number of variables, including spin. In the case of momentum and position, the
derivations presented in this paper avoided the characteristic function method, and
it would be of some interest to apply the current approach to the case of arbitrary
variables. Preliminary results show that indeed, this can be done, and the results will
be presented in a future paper.
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the Office of Naval Research (Award No. N00014-16-1-3054), and the Air Force Office of
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Appendix A: Wave function approach

In this Appendix, we consider the pure case and explicitly use the wave function. In
the position representation, the density matrix is

ρ(q′′, q′) = ψ∗(q′)ψ(q′′). (A.1)

The matrix elements, aq′q′′ , of an operator A(x,px) in the position representation
are

aq′q′′=

∫
δ(q′ − x)A(x,px)δ(q′′ − x)dx. (A.2)

The expectation value of A is then

〈A〉 = Tr(ρA) =

∫∫
ρ(q′′, q′)aq′q′′dq

′dq′′ (A.3)

=

∫∫∫
ψ∗(q′)ψ(q′′)δ(q′ − x)Aδ(q′′ − x)dq′dq′′dx. (A.4)

In equation (A.4), we change variables according to

q′′ = u+ }τ/2 q′ = u− }τ/2, (A.5)

giving that

〈A〉 = }
∫
ψ∗(u− }τ/2)ψ(u+ }τ/2)δ(u− }τ/2−x)Aδ(u+ }τ/2−x)dτdudx. (A.6)

To separate the integral into the product of two terms, one depending only on the
operator A, and the other only on the quantum state, we insert δ(τ − τ ′)δ(u− u′),
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leading to

〈A〉 = }
∫∫

ψ∗(u− }τ/2)ψ(u+ }τ/2)dudτ

×
∫∫∫

δ(τ − τ ′)δ(u− u′)δ(u′ − }τ ′/2− x)Aδ(u′ + }τ ′/2− x)dxdτ ′du′.

(A.7)

Now, for δ(τ − τ ′)δ(u− u′) we take

δ(τ − τ ′)δ(u− u′) =

∫∫ {
1

(2π)2

∫
dθeiθ(u−q)−iτpΦ(θ, τ)

}
×
{

1

2π

∫
dθ′e−iθ

′(u′−q)+iτ ′pΦ−1(θ′, τ ′)

}
dqdp (A.8)

and insert into equation (A.7), giving

〈A〉 = }
∫∫ {

1

(2π)2

∫∫∫
ψ∗(u− }τ/2)ψ(u+ }τ/2)e−iθq−iτp+iθuΦ(θ, τ)dτdθdu

}
{

1

2π

∫∫∫∫
δ(u′ − }τ ′/2− x)Aδ(u′ + }τ ′/2− x)

× eiθ
′q+iτ ′p−iθ′u′

Φ−1(θ′, τ ′)dxdτ ′dθ′du′
}
dqdp, (A.9)

which achieved the separation. We may therefore write the expectation value of A as

〈A〉 =

∫∫
dqdpPΦ(q, p)aΦ(q, p), (A.10)

with the quasi-distribution being

PΦ(q, p) =
1

4π2

∫∫∫
ψ∗(u− }

2 τ)ψ(u+ }
2 τ)Φ(θ, τ) e−iθq−iτp+iθu dθ dτ du, (A.11)

depending only on ψ, and the c-function depending only on A being

aΦ(q, p) =
}

2π

∫
eiθq+iτp−iθu

Φ(θ, τ)
δ(u− }τ/2− x)Aδ(u+ }τ/2− x)dxdθ dτ du. (A.12)

A.1 Wigner distribution

The Wigner case is obtained by taking ΦW (θ, τ) = 1, for which equation (A.8)
becomes

δ(τ − τ ′)δ(u− u′) =

∫∫ {
1

2π
δ(u− q)e−iτp

}{
δ(u′ − q)eiτ

′p
}
dqdp. (A.13)

For equations (A.11) and (A.12), we have

PW (q, p) =
1

2π

∫
ψ∗(q − }

2 τ)ψ(q + }
2 τ) e−iτpdu, (A.14)
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and

aW (q, p) = }
∫∫

eiτpδ(q − }τ/2− x)Aδ(q + }τ/2− x)dx dτ. (A.15)

Equation (A.15) corresponds to equation (4.45) of reference [13], and was derived
from the Weyl correspondence.

A.2 Kirkwood

Taking the kernel to be

ΦK(θ, τ) = eiθτ}/2, (A.16)

and substituting into equation (A.8), we obtain

δ(τ−τ ′)δ(u−u′) =
1

2π

∫∫ (
δ

[
u−

(
q − ~τ

2

)]
e−iτp

)(
δ

[
u′ −

(
q − ~τ ′

2

)]
eiτ

′p

)
dqdp.

(A.17)
We insert the expression in equation (A.17) for the delta functions into equation
(A.7), and get that

PK(q, p) =
1

4π2

∫∫∫
ψ∗(u− }

2 τ)ψ(u+ }
2 τ)eiθτ}/2 e−iθq−iτp+iθu dθ dτ du (A.18)

=
1

2π~
ψ(q) e−iqp/~

∫
ψ∗(τ) eiτp dτ, (A.19)

which may be written as

PK(q, p) =
1√
2π~

ψ(q) e−iqp/~ϕ∗(p), (A.20)

where ϕ(p) is the momentum wave function.
For the c-function, equation (A.12) becomes

aK(q, p) =
}

2π

∫∫∫∫
e−iθτ}/2 eiθq+iτp−iθuδ(u− }τ/2− x)Aδ(u+ }τ/2− x)dxdθ dτ du,

(A.21)

which simplifies to

aK(q, p) = }
∫
eiτpδ(q − ~τ − x)Aδ(q − x)dx dτ. (A.22)

Appendix B: General correspondence rule and inverse

The general formulation of correspondence rules and quasi-distributions as given by
Cohen [5] is that for a quantum operator A (q,p) and the corresponding c-function
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a(q, p) we want the quantum average to be the same as the phase space average,∫
ψ∗(q)A (q,p)ψ(q) dq =

∫∫
a(q, p)P (q, p) dq dp. (B.1)

All bilinear phase space distributions are given by

PΦ(q, p) =
1

4π2

∫∫∫
ψ∗(u− }

2 τ)ψ(u+ }
2 τ)Φ(θ, τ) e−iθq−iτp+iθu dθ dτ du, (B.2)

which is equation (A.11), and the generalized correspondence rule for operators is

A (q,p) =

∫∫
âΦ(θ, τ)Φ(θ, τ) eiθq+iτp dθ dτ (B.3)

=

∫∫
âΦ(θ, τ)Φ(θ, τ) eiθτ}/2eiθq eiτpdθ dτ, (B.4)

where âΦ is the Fourier transform of aΦ

âΦ(θ, τ) =
1

4π2

∫∫
aΦ(q, p) e−iθq−iτp dq dp. (B.5)

In the usual formulation, one starts with the c-function aΦ(q, p), while in this paper we
started with the operator A (q,p) and we have obtained the c-function, equations (24)
and (A.12)

aΦ(q, p) =
}

2π

∫
eiθq+iτp−iθu

Φ(θ, τ)
δ(u− }τ/2− x)A (x,px) δ(u+ }τ/2− x)dxdθ dτ du.

(B.6)
We call the expression in equation (B.6) the inverse general correspondence rule.

We now show that equation (B.6) is indeed the inverse of equation (B.3). We first
calculate the Fourier transform of a(q, p). Substituting equation (B.3) into equation
(B.5) results in (we drop the subscript Φ to unencumber notation)

â(θ, τ) =
}

2π

∫
e−iθu

Φ(θ, τ)
δ(u− }τ/2− x)A (x,px) δ(u+ }τ/2− x) dx du. (B.7)

Substituting â(θ, τ) into the left hand side of equation (B.3), we have∫∫
â(θ, τ)Φ(θ, τ) eiθq+iτp dθ dτ

= }
1

2π

∫∫
1

Φ(θ, τ)
e−iθu

′
δ(u− }τ/2− x)A (x,px) δ(u+ }τ/2− x)Φ(θ, τ) eiθq+iτpdθdτdxdu′,

(B.8)

which simplifies to∫∫
â(θ, τ)Φ(θ, τ) eiθq+iτp dθ dτ = }

∫∫
δ(q − x) [A (x,px) δ(q + }τ − x)] eiτp dx dτ.

(B.9)
Changing variables according to

y = q + }τ,
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we obtain that indeed, equation (B.3) is correct∫∫
â(θ, τ)Φ(θ, τ) eiθq+iτp dθ dτ =

∫∫
δ(q − x) [A (x,px) δ(y − x)] ei(y−q)p/} dx dy

(B.10)

=

∫∫
[A (q,pq) δ(q − x)] dx (B.11)

= A (q,pq) . (B.12)
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