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Abstract. We study the peculiarities of the solitary state appearance
in the ensemble of nonlocally coupled chaotic maps. We show that the
nonlocal coupling and features of the partial elements lead to the emer-
gence of multistability in the system. The existence of solitary state is
caused by the formation of two attracting sets with different basins
of attraction. Their evolution is analyzed depending on the coupling
parameters.

1 Introduction

One of inexhaustible areas of research is connected with nonlinear ensembles with a
large number of elements and different network topologies, which give rise to various
types of spatio-temporal dynamics. Thus, besides widely considered chimera states
(see e.g., Refs. [1–12]), ensembles with nonlocal coupling can demonstrate another
spatio-temporal structure, which is called “solitary state” [7–9,11,13–21]. In contrast
to chimera state (which consists of spatially divided clusters of coherent and incoher-
ent behaviour), the solitary state regime is characterized by a coherent behaviour of
the whole system, except several elements. These elements do not form a cluster and
for this reason these oscillators are called solitary ones.

Solitary states can be observed in ensembles with different topologies: global
[13,14,21], nonlocal [7–9] and for some cases of local coupling [19]. Moreover, solitary
states can coexist with chimera states and can be an intermediate regime leading
to chimera emergence [7]. There is a class of partial elements for which the chimera
state can be observed in ensembles with nonlocal coupling and the solitary state
is not [8]. This class includes chaotic maps and chaotic time-continuous oscillators
which are characterized by the transition to chaos via period-doubling bifurcations
(Feugenbaum scenario). The transition from spatial coherence to incoherence in such
ensembles occurs through chimera states. Peculiarities of their formation and their
characteristics have been described in a number of works (see e.g., Refs. [3,8,9,22,23]).
Some of them [8,9] show that the type of a chaotic attractor impacts on the appear-
ance of different spatial structures. For example, if we consider a ring of nonlocally
coupled Hénon maps (they have a nonhyperbolic chaotic attractor) this system can
demonstrate chimera states. But if we replace Hénon maps with Lozi maps, which
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exhibit quasihyperbolic attractors, such a system would not show chimera states and
the transition to spatial incoherence would occur through solitary states [8,9].

Therefore, the question arises: “What is the bifurcation mechanism of solitary
state formation in an ensemble of elements such as the Lozi map?” The present paper
is dedicated to the analysis of the solitary state formation in ensemble of nonlocally
coupled Lozi maps.

One of the possible mechanisms of solitary state emergence has been described in
[19] for an ensemble of phase oscillators with inertia. It has been shown that solitary
states arise in a homoclinic bifurcation of a saddle-type synchronized state and die
eventually in a crisis bifurcation after essential variation of the parameters. Another
one mechanism has been shown in [24], where the solitary state has been found in a
chain of locally coupled bistable units with two stable equilibrium states. The number
of steady inhomogeneous states (among them there are solitary ones) decreases with
increasing the coupling strength through cascade of saddle-node bifurcations. Similar
states have been observed for amplitudes and/or phases of oscillators in the ring
of self-sustained nonisochronous oscillators with diffusive coupling [25]. For the both
models [24,25], the appearance of solitary states is connected with bistability of partial
elements.

It reveals that there are several mechanisms of solitary state emergence, and not
all of them are studied. The bifurcation mechanisms and their appearance depends
on the type of partial elements and the network topologies. The existence of solitary
state can be explained by the bistability or multistability of the network elements.
However, the multistability or bistability of one isolated partial element is not a
necessary condition. Solitary states appear in the ensemble of the nonlocally coupled
Lozi maps, which have only one attracting set. In the present paper we investigate
an ensemble of nonlocally coupled Lozi maps and analyse in detail the dynamics of
partial elements, which leads to the appearance of solitary states. We show that the
nonlocal coupling can give rise to bistability in the ensemble, and this is one of the
reasons of the emergence of solitary states.

2 System under study

Let us consider the ensemble of coupled maps:

xt+1
i = fx(xti, y

t
i) + σ

2P

i+P∑
i−P

[fx(xtj , y
t
j)− fx(xti, y

t
i)],

yt+1
i = fy(xti, y

t
i), i = 1, 2, . . . N.

(1)

Here, fx(xti, y
t
i) and fy(xti, y

t
i) are the functions defined by the right sides of the two-

dimensional Lozi map, xi, yi are the state variables, t is the discrete time and N is
the number of elements in the ensemble. The nonlocal coupling is characterized by
the coupling strength σ, the number of neighbours 2P (P neighbours on the either
side of the ith element), and the coupling range r = P/N . For simplification we add
the coupling only to the first equation (1). It is not essential for our investigations.

It has been shown in [8,9] that the ensemble dynamics depend on individual
elements. In the present work we are focused on the system (1) with Lozi maps:

xt+1 = fx(xt, yt) = 1− α|xt|+ yt, yt+1 = fy(xt, yt) = βxt. (2)

In this paper, we fix the parameters α = 1.4, β = 0.3, r = 0.2 (P = rN = 200
when N = 1000) and change the coupling strength σ to obtain the transition from
coherence to incoherence through the solitary states. These states have already been



Advances in Nonlinear Dynamics of Complex Networks 1175

found in works [8,9], however, no explanation has been given there. In the case of
considered parameters α and β, the attractor of one Lozi map consists of two parts
(gray points in Fig. 1c) and Lozi map demonstrates chaotic regime.

3 Numerical analysis of formation and evolution of solitary states
in the ensemble of Lozi maps

This section is dedicated to transition from spatial coherence to incoherence via
solitary states. First of all let us consider the case of spatial coherence (Fig. 1). It
can be observed in a wide range of coupling parameters [8,9]. The regime of spatial
coherence is characterised by a smooth instantaneous spatial profile. It means that
|xi − xi+1| < δ, δ � 1 for neighbouring oscillators. Figure 1a illustrates the instan-
taneous spatial coherence at time t = 10000 for the coupling strength σ = 0.27. This
figure has been obtained in the following manner. We choose 20 different sets of initial
conditions distributed in the intervals x0

i ∈ [−0.5; 0.5] and y0
i ∈ [−0.6; 0.6]. Figure 1a

shows the most typical spatial profile demonstrated by the system (1) for σ = 0.27.
To show the main possible spatial profiles which the system demonstrates at

different time moments, one can depict last 50 instantaneous profiles in one figure.
Corresponding spatio-temporal profiles [23] are shown in Figure 1b. All spatial profiles
are distributed near four curves (1,2,3,4 in Fig. 1c), but the regime is chaotic and is
characterized by positive Lyapunov exponent.1 The switching order of spatial profiles
is the following 1,2,3,4,1,2,3... (see Fig. 1c). The same character of switching takes
place for other regimes contained in this section.

To illustrate the difference between obtained regime and the dynamics of one Lozi
map, we consider the projections of the spatio-temporal profiles (xti, y

t
i) on the phase

plane (x, y) of one Lozi map. Figure 1c shows the set of nonlocally coupled Lozi
maps (black points) and the set demonstrated by one uncoupled isolated map (2) for
the same values of system parameters (gray points). In the case of spatial coherence
regime these two sets are almost identical (Fig. 1c).

The distinctive feature of the ensemble (1) of Lozi maps is that all points of
the instantaneous spatial profile belong to one band of the double-band attractor.
However, it does not occur in the ensemble (1) of Hénon maps (see Refs. [8,9]). Thus,
we can assume that this distinction is caused by different transitions to chaos in the
Hénon and Lozi maps, as it has been mentioned in Section 1.

The preparation of basins of attraction for the whole system is a very difficult
problem due to imaging of 2N basins on the phase plane. For this reason we prepare
the basin of attraction for only one oscillator from the stable regime. The basin of
attraction for the kth oscillator can be computed as follows. We use the spatial profile
shown in Figure 1a as initial conditions. Then we change the initial conditions of the
kth oscillator in the intervals x0

k ∈ [−1.5; 2], y0
k ∈ [−1; 1.5] and make 5×104 iterations

of the system (1) to calculate the basins of attraction for different sets. In the case
of coherence regime (Fig. 1, σ = 0.27) all initial conditions of kth oscillator lead to
the spatial profile shown in Figure 1. It corresponds to the left band of two-band
attractor depicted in Figures 1c and 1d. No other sets have been found for this case.

Now let us decrease the coupling strength σ to obtain a solitary state regime.
When σ = 0.226, the first solitary oscillator i = 702 appears in the ensemble

(Fig. 2a). The other oscillators stay in the coherence regime (compare Figs. 1a
and 2a). Figure 2 shows the instantaneous profile (panel a), spatio-temporal profile

1The network (1) is considered as a dynamical system with the dimension 2N (N = 1000) and
λmax is estimated by using the standard Benettins algorithm[26]. Our calculations have indicated
that the regime of spatial coherence is characterised by positive exponent. The specific value depends
on the initial conditions and averaging interval.
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Fig. 1. Spatial coherence in the ensemble (1) of Lozi maps for σ = 0.27. Top panels illus-
trate the instantaneous snapshot at the time t = 10, 000 (a) and the last 50 instantaneous
spatial profiles xti (b). Panel (c) depicts the projections of the spatio-temporal profiles for
the ensemble (1) (black dots) on the phase plane (x, y) of one isolated Lozi map (2), and
the gray points correspond to the attractor of this one map. The projections of this ensemble
set and its basin of attraction on the same phase plane (x, y) are shown in panel (d) for the
oscillator k = 600. Other parameters: α = 1.4, β = 0.3, r = 0.2.

(panel b), projection of ensemble dynamics to the phase plane of one Lozi map
(panel c) and corresponding basins of attraction (panel d). For better understand-
ing we will call the oscillators which belong to the smooth spatial profile as typical
oscillators, and the other elements as solitary oscillators. The corresponding sets on
the phase plane (x, y) are solitary and typical, respectively. Now there are two sets
on the phase plane (x, y) (Fig. 2c): black points correspond to typical set (oscillators
from the smooth spatial profile) and red points agree with solitary one.

Figure 2c shows that both sets consists of two parts. This effect is caused by
discrete dynamics of the considered ensemble (1). At even time moment the solitary
oscillator belong to the left part of the red set (Fig. 2c), and in the next iteration
(odd time) this oscillator is located in the right part. The typical oscillators from
the smooth profile demonstrate similar dynamics but for the black set of Figure 2c.
The appearance of two different attracting sets in one system indicates the emer-
gence of bistability. It means that each oscillator can fall into typical or solitary set
depending on the initial conditions. The bistability of the ensemble elements can
be confirmed by basins of attraction for two different sets. The procedure of their
preparation is the same as it was for Figure 2c with the exception of initial condi-
tions coinciding with the spatial profile of Figure 2a. The basins of attraction have
been obtained for the oscillator k = 702 which is solitary in the considered regime.
Figure 2d shows that one can obtain the oscillator k = 702 in the typical or the solitary
set. Their basins of attraction are shown by light gray and gray colors in Figure 2d,
respectively.

The solitary set has the basin of attraction in the form of V-letter. This domain
of non-zero measure is much smaller than another basin. The same basins can be
obtained for the other oscillators. Nevertheless, the basin is rather narrow. Therefore,
the solitary oscillator is only one for random initial conditions.

One more distinguishing feature of the solitary state is a phase shift between
realizations of typical or solitary oscillators and the dynamics of the corresponding
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Fig. 2. Solitary state in the ensemble (1) of Lozi maps for σ = 0.226. Top panels illustrate
the instantaneous snapshot at t = 10, 000 (a) and the last 50 instantaneous spatial profiles
xti (b). Panel (c) depicts the projections of solitary and typical sets of the ensemble (1) on
the phase plane of one isolated Lozi map (red and black points, respectively); the attracting
set for one Lozi map (2) is shown by gray points. The projections of these ensemble sets
(1) and their basins of attraction are shown in panel (d) for the oscillator k = 702. The
light gray area corresponds to the basin of attraction for the typical set; the gray region
is the same but for the solitary set. Panels (e) and (f) show the realizations of the system
(1) for solitary oscillator (i = 702 in (e)) and typical oscillator (i = 701 in (f)) and the

corresponding coupling terms σ
2P
×

i+P∑
j=i−P

f(xtj , y
t
j), j 6= i.

coupling terms, i.e. impact of other coupled oscillators on each ith partial element.
Equation (1) can be rewritten in the form:

xt+1
i = (1− σ)fx(xti, y

t
i) + σ

2P

i+P∑
j=i−P

fx(xtj , y
t
j), j 6= i,

yt+1
i = fy(xti, y

t
i).

(3)

This form of equation (1) shows the coupling term σ
2P

i+P∑
j= i−P

fx(xtj , y
t
j), j 6= i

with a full picture of the impact of all coupled oscillators on the ith element. As
Figures 2e and 2f show, the typical oscillator is in-phase with the coupling term
and the solitary oscillator is anti-phase. This effect will be more fully described and
explained in Section 4.

When decreasing of the coupling strength σ, the number of solitary oscillators
increases (Figs. 3a and 3b). They start influencing on the dynamics of the whole
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Fig. 3. Solitary state regime in the ensemble (1) of Lozi maps for σ = 0.22. Top panels show
the instantaneous snapshot at t = 10000 (a) and the last 50 instantaneous spatial profiles
xti (b). Panel (c) depicts the projections of solitary and typical sets of the ensemble (1) on
the phase plane of one isolated Lozi map (red and black points respectively); the attracting
set for one Lozi map (2) is shown by gray points. The projections of these ensemble sets (1)
and their basins of attraction are shown in panel (d) for the oscillator k = 580. The light
gray area corresponds to the basin of attraction for the typical set; the gray region is the
same but for the solitary set. Other parameters: α = 1.4, β = 0.3, r = 0.2.

ensemble. For this reason, the solitary set involves new points and becomes more
blurred (Fig. 3). The recorded growth leads to an enlargement of the correspond-
ing basin of attraction (Fig. 3). This finding explains a growing number of solitary
oscillators obtained from random initial conditions.

With further decreasing of the coupling strength σ, the number of solitary oscil-
lators continues growing up, and their basin of attraction also enlarges. In this case
the basin prepared for only one oscillator (like in Fig. 3d) depends on the choice of an
ensemble element. This is caused by a random distribution of solitary elements in the
ensemble. In some cases the basins demonstrate a fractal structure (like in Fig. 4d).

Finally, the number of “solitary” oscillators sharp increases. The ensemble demon-
strates the spatial incoherence. And both sets (black and red sets in Fig. 4) have
four parts and approach each other. This is the end of transition to chaotic spatial
incoherence.

In such a way, Figures 2–4 depict that the decrease of the coupling strength leads
to the increase of the solitary oscillators number, accompanied by the enlargement
of their basins of attraction. The growing number of solitary oscillators is caused by
the fact that their initial conditions falls within the increasing basin of attraction.
However, using specially prepared initial conditions one can artificially increase the
solitary oscillators number. To illustrate this effect we use the system in the stable
regime shown in Figure 3a for σ = 0.22, choose 10 (Fig. 5a), 200 (Fig. 5b), and 400
(Fig. 5c) random oscillators and specify the same initial conditions from the basin of
attraction for solitary oscillators for these elements. Figure 5 shows how the basins of
attraction change (see Figs. 5a–5c). Thus, one can enlarge their basin of attraction by
increasing the number of solitary oscillators. It means that the principle “the wider
the basin, the larger number of solitary oscillators” works in both sides.

Thus, each kth element can become solitary if one artificially set its initial condi-
tions in the basin of attraction for the solitary oscillators. Moreover, using specially
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Fig. 4. Spatial incoherence in the ensemble (1) of Lozi maps (2) for σ = 0.1. Top panels
reflect the instantaneous snapshot at t = 10000 (a) and the last 50 instantaneous spatial
profiles xti (b). Panel (c) shows the projections of the attracting sets for the lower oscillators
(red points) and the upper oscillators (black dots) of the ensemble (1) in the phase plane
(x, y) of one isolated Lozi map; the attracting set for one Lozi map (2) is shown by gray
points. The projections of these ensemble sets (1) and their basins of attraction are plotted
in panel (d) for the oscillator k = 350. The light gray area corresponds to the basin of
attraction for the upper oscillators; the gray region is the same but for the lower oscillators.
Other parameters: α = 1.4, β = 0.3, and r = 0.2.

Fig. 5. Projections of the basins of attraction on the phase plane of one isolated Lozi map.
The figure has been prepared choosing the initial conditions for a group of oscillators in the
solitary set. The numbers of oscillators in the group are 10 (a); 200 (b); 400 (c). Parameters:
α = 1.4, β = 0.3, σ = 0.22, and r = 0.2.

prepared initial conditions for a group of oscillators one can create a cluster of oscil-
lators which demonstrate the same dynamics as one solitary oscillator (Fig. 6). For
that we choose the parameter σ = 0.226 corresponding to solitary state with only one
solitary oscillator (Fig. 2a) and put the oscillators 300–500 to the basin of attraction
for the solitary oscillators. All the parameters are the same for Figures 2 and 6. This
effect confirms the existence of the second attractor and the fact that solitary state
is caused by the multistability of individual elements in the ensemble (1).

4 Modelling the individual element dynamics in the ensemble (1)
using a nonautonomous map

Let us consider a single element (node) of the ensemble (1) which is under the action
of the neighbouring oscillators. We choose the oscillator i = k and denote xtk = xt,
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Fig. 6. Specially prepared cluster of oscillators in the solitary set. Panel (a) corresponds to
the instantaneous snapshot at t = 10, 000, panel (b) depicts the last 50 instantaneous spatial
profiles xti, and the panel (c) illustrates the projections of the typical (black) and the solitary
(red) sets in the ensemble (1) of Lozi maps. Parameters: α = 1.4, β = 0.3, σ = 0.226, and
r = 0.2.

ytk = yt. This enables us to rewrite the equation for the kth oscillator in the following
form:

xt+1 = (1− σ)fx(xt, yt) + F t, yt+1 = fy(xt, yt), (4)

where F t = σ
2P ×

j= i+P∑
j= i−P

f(xtj , y
t
j) = σ

2P ×
j= i+P∑
j= i−P

(1− α|xtj |+ ytj), j 6= i.

Equation (4) indicates that the coefficient σ affects the effective parameters of indi-
vidual elements. In fact, if the term F t is discarded, equation (4) can be transformed
to the form (1) by letting x = (1− σ)X, y = (1− σ)Y :

Xt+1 = 1− αeff |Xt|+Xt, Y t+1 = βeffX
t,

where αeff = (1− σ)α and βeff = (1− σ)β are the effective values of parameters.
If the coupling radius is too large, then F t can be regarded as a mean field showing

an averaging impact of neighbours on the considered element. The impact of the kth
oscillator on the dynamics of the other elements in the ensemble may be ignored in
the first approximation. Let us consider the case when all neighbouring oscillators are
in the typical regime. It means that their instantaneous states belong to one part of
the double-band attractor which is demonstrated by the autonomous map (2) with
the parameters α and β. It allows us to replace F t by a certain value x∗ averaged
over all x from the corresponding part of the attractor.

We now explore the system (4) for the Lozi map with parameters α = 1.4, β = 0.3,
and σ = 0.226. The ensemble (1) of Lozi maps with these parameters demonstrates
the regime with only one solitary oscillator (Fig. 2). Figure 7a shows the attractor of
the map (4) without the external force (F t = 0) (black X-points) and the attractor
of the Lozi map (2) with the effective values of parameters (light gray circles). They
do not coincide because of the multiplier (1− σ) in the first equation (4). The chosen
value σ corresponds to the period-2 dynamics in the autonomous system (2). Now
we add the term F t to modulate the influence of neighbours in the ensemble. We are
focused on the regime of typical state for all neighbouring oscillators. It allows us to
replace their impact by averaged values of variables on one part of the Lozi attractor.
Taking into account the period-4 dynamics of the typical state (see Fig. 2b) we
consider every 4 value of xt-realizations of the Lozi map (2) and then we obtain the
time-mean value.

For the most part of initial conditions one can obtain the typical set shown by
blue points in Figure 7a. However, some initial conditions lead to another set (red
points in Fig. 7a). This set is almost the same as the set demonstrated by a single Lozi
map (2) with the effective parameters αeff and βeff . But in the case of the system (4)
with the external force, this set consists of a large number of closely spaced points.
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Fig. 7. Simulation results for an individual element in the ensemble (1) using the system
(4). The panel (a) shows the sets which can be observed in this system: light gray circles
represent the attractor of the Lozi map (2) with α = 1.4, β = 0.3; x-points correspond to
the autonomous system (4) (F t = 0); red and black points indicate coexisting sets which
can be observed for different initial conditions with σ = 0.226 and F t 6= 0. Their basins of
attraction are shown in (b). The light gray region in the panel (b) conforms to the black set
and the gray region corresponds to the red set. Panels (c) and (d) depict the external force
F t and realizations of the system (4) in the typical regime (d) [black points in panel (a)]
and in the “solitary” one (c) [red points in the panel (a)].

The basins of attraction for these two coexisting sets are shown in Figure 7b for the
left part of the blue set and the right part of the red set. It can be seen that the red
set has a V-form of the basin. The same form has been obtained for solitary states
(Fig. 2d) in the ensemble (1).

What is the mechanism of occurrence of two stable regimes in the nonautonomous
oscillator (4)? To answer this question, it is enough to compare their realizations with
the external force wave form. The corresponding curves are shown in Figures 7c and
7d. It is obvious that both regimes in the system (4) represent in-phase and anti-
phase synchronizations of self-sustained oscillations (periodic or almost periodic) by
the external force, which is also periodic. In contrast to the in-phase regime, the
anti-phase mode has a narrow basin of attraction (IC1). The same results have been
obtained for the ensemble (1) (see Figs. 2e and 2f). The oscillations of the solitary
element k = 702 are anti-phase with respect to other oscillators from the typical

regime and the coupling term σ
2P ×

j=i+P∑
j=i−P

f(xtj , y
t
j), j 6= i. The typical oscillators

represent in-phase synchronization (Fig. 2f).
Thus, the model (4) enables us to understand the mechanism of appearance of

solitary states in the ensemble of Lozi maps. The coexistence of two sets and their
location above and below the attractor of the autonomous map (2) harmonize with
the results for the ensemble (1) (compare Figs. 2 and 7). On the other hand, there
is no quantitative correspondence between these two systems. It is caused by the
neglecting impact of the considered oscillator on the external force. For the limiting
cases of large and small values of the coupling strength, the model (4) looses its
correlation with the ensemble dynamics. The system (4) does not take into account
synchronization between elements for strong σ and the impact of the other solitary
states for weak coupling σ.
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The mechanism described above is realized if the following conditions are met: (1)
the force F t has to be periodic or has to possess a periodic component; (2) the periodic
force must lead to coexisting regimes of in-phase and anti-phase synchronization
obtained for different initial conditions. In this case oscillations have to exhibit also
a periodic component; (3) the induced regime of anti-phase synchronization should
have a narrow basin of attraction. It leads to a small number of initial conditions
which provides this set. All these conditions are fulfilled in the ensemble (1) of Lozi
maps in contrast to a similar ensemble of Hénon maps.

5 Conclusions

The numerical results presented above describe one of the possible mechanisms for
solitary state formation in an ensemble of nonlocally coupled oscillators. As we have
anticipated, it differs from the mechanism proposed in [19]. It is caused by a prin-
cipally different dynamics of individual elements. We have studied the ensemble of
Lozi maps which demonstrate a quasihyperbolic chaotic attractor.

It is shown that the ensemble of nonlocally coupled Lozi maps demonstrates the
solitary state for specific values of coupling parameters. The coupling changes the
properties of partial elements, and leads to the bistability, though the Lozi map do
not have this property in the uncoupled form. The emergence of solitary states is
accompanied by the arising of the second attracting set for the ensemble element.
In the present work, we investigate its basin of attraction and show that this basin
increases with decreasing of the coupling strength. For this reason, the number of
solitary oscillators grow too.

One can artificially increase the number of solitary oscillators and even make the
cluster of elements which demonstrate the dynamics similar to one solitary oscilla-
tor. It can be done using specially prepared initial conditions and setting the initial
conditions of chosen oscillators in the basin of attraction for solitary oscillators.

We have shown that the changes in the dynamics of an individual oscillator are
caused by an almost periodic external influence from the neighbours. This means that
all neighbours belong to the same part of the Lozi attractor.

It has been shown that in a wide range of the coupling parameter, the partial
elements in the ensemble demonstrates dynamics with a clearly produced periodic
component. As a result, one can obtain either in-phase or anti-phase synchronization
for different initial conditions. The last one regime of the ensemble element has a
narrow basin of attraction and corresponds to the solitary oscillators. The other oscil-
lators, which are in-phase synchronized, are typical ones, since their initial conditions
does not belong to the basin of attraction for solitary oscillators.

We suppose that there are different ways of the solitary state appearance. This
paper describes the mechanism for the ensemble of chaotic Lozi maps. However, the
peculiarities of the mechanism may depend on a type of individual elements and their
interplay.

This work was supported by the Russian Ministry of Education and Science (Project Code
3.8616.2017/8.9) and by the Russian Science Foundation (Grant No. 16-12-10175).
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