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Abstract. This letter gives a general review on the monostability,
bistability, periodicity and chaos in gene regulatory network. Some sim-
ple motifs that generate monostability, bistability, periodicity and chaos
are analytically and numerically reported. Further research directions
of the nonlinear dynamics of gene regulatory network are discussed.

1 Introduction

Gene regulatory network is a group of molecular regulators and their connections
which controls the gene expression levels of mRNAs and proteins in the cell. The
regulators can be deoxyribonucleic acid (DNA), ribonucleic acid (RNA), messenger
ribonucleic acid (mRNA), protein and other substances involved in regulation process.
Their connections are very diverse and dynamically evolving. The gene expression
commonly has two important processes: transcription and translation. The genes on
DNA are first transcribed into mRNAs, and then mRNAs are translated into proteins.
For deeply understanding the mechanism of gene expression, scholars incline to study
the gene regulatory network rather than focusing on a single gene. The gene regulatory
network is widely known as the key factor in determining the morphogenesis and
phylogenesis of living organisms [1–3]. More and more studies have been emphasised
on gene regulatory network to reveal the nature of biodiversity, leading to the great
prosperity of evolutionary developmental biology [4,5].

As a strongly nonlinear complex system, gene regulatory network often pro-
duces various types of amazing dynamic properties, such as multistability [6],
synchronization [7], periodic oscillation [8], bifurcation [9], chaos [10], etc. In the
past few decades, a large number of valuable research results on nonlinear dynamics
of gene regulatory network have been constantly reported. The asymptotic stability
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conditions of gene regulatory networks with time delay, noise perturbation, impulsive,
reaction-diffusion factor, parameter uncertainty and Markovian switching were estab-
lished by applying the classic Lyapunov stability theory and linear matrix inequality
approach [11–15]. The robust stability criteria of stochastic genetic regulatory net-
works were analytically and numerically presented [16–18]. The fractional order gene
regulatory network was constructed and its Mittag–Leffler stability criterion was
derived via the fractional Lyapunov method [19]. The bifurcation of delayed gene
regulatory networks were investigated by analyzing the corresponding characteristic
equations and taking time delay as the bifurcation parameter [20–22]. With the time
delay crossing a certain critical value, the network yielded bifurcation and became
unstable. The periodic oscillation of gene regulatory networks were investigated as
well [23,24]. Hori et al. established the graphical results for the generation of periodic
oscillations of cyclic gene regulatory networks and claimed that the local instability
of an equilibrium indicates the existence of periodic oscillations [25]. Some achieve-
ments on the study of chaos of gene regulatory networks were presented by statistical
analysis and numerical verification [26,27]. Much attention has also been paid to the
research of multistability of gene regulatory network in recent years [28–30]. Ozbudak
et al. discovered the bistability of lactose utilization network of Escherichia coli by
using the phase diagram [6]. Pan et al. analytically verified the existence of mul-
tiple stable states in gene regulatory network with time delays and multivariable
regulation functions [31]. In a nutshell, the study of dynamic properties of gene regu-
latory networks is an important issue that attracts a wide range of research interests.
It is of great significance for the understanding of regulatory mechanism and the
interpretation of biodiversity.

In order to study the gene regulatory network, a mathematical model which quan-
titatively describes the regulating action between genes should be constructed. The
commonly used model of gene regulatory network with n coupled nodes is described
by the following ordinary differential equations [32–34]

ẋi(t) = −aixi(t) + (1− bi)fi(x) + bi, (1)

where x = (x1, x2, . . . , xn), xi > 0 (i = 1, 2, . . . , n) is the protein concentration of the
ith node, ai > 0 denotes the decay rate, bi > 0 represents the leakage transcription
rate in the absence of activator and the presence of repressor. The function fi(x) is
given as follows

fi(x) =

{
pi(x), Active regulation,
ri(x), Repressive regulation,
pi(x)ri(x), Joint regulation,

(2)

with

pi(x) =
ϕhi
i (x)

ϕhi
i (x) +Khi

i

, ri(x) =
Khi
i

φhi
i (x) +Khi

i

,

ϕi(x) =
n∑
j=1

cijxj , φi(x) =
n∑
j=1

dijxj , j = 1, 2, . . . n, (3)

where ϕi(x) and φi(x) respectively denote the sum of active and repressive tran-
scriptional factors, hi > 0 is the Hill coefficient that implies the degree of cooperative
binding, Ki > 0 represents the concentration of activator (repressor) for defining the
regulation half-maximal, cij and dij respectively denote the strength of the node
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Fig. 1. Monostable motifs coupled by two or three nodes, where the red “a” and green “→”
respectively denote the repressive and active regulation.

j that activate and repress the node i. The model (1) directly shows the relation-
ships between different regulating nodes in the network with respect to their protein
concentrations. It takes into account the active regulation, repressive regulation and
joint regulation in the process of gene expression. Also it is more consistent with
the general complex network model that can be used in many biological networks.
Thus many scholars consider the dynamic properties of the gene network based on
this model. In order to facilitate the analysis, we usually let the leakage transcription
rate bi = 0 and assume all the nodes have homogeneous parameter distributions with
ai = a, hi = h, Ki = K, cij = dij = 1 for any i = 1, 2, . . . , n. In the following part,
we will discuss the monostability, bistability, periodicity and chaos of gene regulatory
network based on the mathematical model (1).

2 Monostability

Stability is the prerequisite for the normal operation of gene regulatory network. It
determines whether the network can maintain a steady state for a long time. The
monostability which refers to the existence of a unique stable state can be observed
in gene regulatory network with negative feedback loops. From this point of view, we
can discover many gene regulatory networks with different structures and functions
that exhibit monostability. The motifs of gene regulatory network shown in Figure 1
are introduced as typical examples of monostability. These motifs coupled by two
or three nodes have the only negative feedback loop. Based on the motifs, a large
number of monostable gene regulatory networks with more nodes and more complex
structures can be produced in cells.

The stability of the motifs can be studied based on the mathematical model (1)
and the classic stability theory. From the equations (1)–(3), we can write the model
of motif (A1) as the following simplified differential equations{

ẋ(t) = −ax(t) + r(y(t)),
ẏ(t) = −ay(t) + p(x(t)),

(4)

where x(t), y(t) denote the protein concentration of the nodes, The functions r(y),
p(x) represented the active and repressive regulations are given as follows

r(y) =
1

1 + yh
, p(x) =

xh

1 + xh
. (5)
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Fig. 2. Monostability of system (4) with a = 0.2, h = 3: (a) phase portrait on x(t)− y(t);
(b) time series of x(t).

It is easy to verify that r(y) is monotonically decreasing for y ∈ (0,+∞) and p(x)
is monotonically increasing for x ∈ (0,+∞). Let O(x̄, ȳ) is a positive equilibrium
of system (4), then it satisfies the equations ax̄ = r(ȳ), aȳ = p(x̄). It follows
that G(x̄) = −ax̄ + r(p(x̄)/a) = 0. Since G(x̄) is monotonically decreasing and
G(0) = 1 > 0, G(+∞) < 0, then there exists only one x̄ > 0 such that G(x̄) = 0.
It implies that system (4) has only one positive equilibrium.

Linearizing the system (4) at O(x̄, ȳ) and by some simple calculations, the
corresponding characteristic equation can be obtained as follows

λ2 + 2aλ+ a2 − r′(ȳ)p′(x̄) = 0. (6)

Since a > 0 and r′(ȳ) < 0, p′(x̄) > 0 for x̄, ȳ > 0, then a2 − r′(ȳ)p′(x̄) > 0. It follows
that all the roots of equation (6) have negative real parts. Thus the equilibrium
O(x̄, ȳ) is asymptotically stable. The monostability of the motif (A1) is determined.
We also can verify that the motifs (A2)–(A4) have only one stable positive equilibrium
that leads to the appearance of monostability.

Let a = 0.2, h = 3, the only positive equilibrium of system (4) can be calculated as
O(0.8089, 1.7305). The eigenvalues λ1,2 = −0.04± 0.4855i of equation (6) imply that
O(0.8089, 1.7305) is asymptotically stable. Solving the system (4) via the fourth-
fifth-order Runge–Kutta method with time step size ∆t = 0.01 and time interval
t ∈ [0, 100] on Matlab 8.0, we can obtain the phase portrait on x(t)− y(t) and time
series of x(t) as shown in Figure 2. Clearly, the system (4) exhibits stable state with
a = 0.2, h = 3.

3 Bistability

The coexistence of multiple steady states in gene regulatory network plays an impor-
tant role in the emergence of biodiversity. It enables organisms to have diverse
functions that respond to different internal and external environments. The bista-
bility has been widely discovered in gene regulatory networks. The existing results
have shown that the gene regulatory network with positive feedback loops is prone to
yield bistability [35,36]. Here, we give some coupled networks that generate bistabil-
ity, as shown in Figure 3. The bistability of networks (B1) and (B2) in Figure 3 have
been verified in literature [37,38]. The networks (B3) and (B4) are special motifs
with simple cyclic symmetry. However, their bistability is mainly due to the exis-
tence of positive feedback loops, not the cyclic symmetry. Any other networks with
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Fig. 3. Bistable motifs coupled by two or four nodes, where the red “a” and green “→”
respectively denote the repressive and active regulation.

positive feedback loops are likely to produce bistability. We will show our discus-
sion on the bistability of network (B3). The model of the network (B3) derived from
equations (1)–(3) is described by the following simplified differential equations:

ẋ(t) = −ax(t) + r(u(t)),

ẏ(t) = −ay(t) + r(x(t)),

ż(t) = −az(t) + r(y(t)),

u̇(t) = −au(t) + r(z(t)),

(7)

where x(t), y(t), z(t), u(t) are the protein concentration of the nodes. The posi-
tive equilibrium S(x̄, ȳ, z̄, ū) satisfies ax̄ = r(ū), aȳ = r(x̄), az̄ = r(ȳ), aū = r(z̄).
Accordingly we have

H(x̄) = −ax̄+ r(r(r(r(x̄)/a)/a)/a) = 0. (8)

Thus we can determine the existence of positive equilibrium of the system (7) by
discussing the equation (8). Since H(0) > 0, H(+∞) = −∞, then equation (8) has
at least one positive root. As the function H(x̄) is not monotonous for x̄ ∈ (0,+∞),
then equation (8) may exist multiple positive roots. It implies that the system (7)
may exist multiple positive equilibria.

The characteristic equation at the equilibrium S(x̄, ȳ, z̄, ū) can be written as
follows

(λ+ a)4 − β = 0, (9)

where a > 0, β = r′(x̄)r′(ȳ)r′(z̄)r′(ū) > 0. It is easy to verify that S is asymptotically
stable as long as a > 4

√
β. If the system (7) has multiple equilibria, then the condition

a > 4
√
β can guarantee the stability of all the equilibria and the multistability may

appear in system (7).
Let the parameters h = 2, a = 0.2 of system (7), then we can get that system (7)

has the following three positive equilibria

S(1.516, 1.516, 1.516, 1.516),

S1(0.2087, 4.7913, 0.2087, 4.7913),

S2(4.7913, 0.2087, 4.7913, 0.2087).

By computing the corresponding eigenvalues of the equilibria, we can determine that
S1, S2 are stable and S is unstable. The numerical simulations in Figure 4 discover
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Fig. 4. Bistability of system (7) with a = 0.2, h = 2: (a) phase portrait on x(t) − y(t);
(b) time series of x(t).

that system (7) has two stable states as the trajectories from different initial values
finally tend to the equilibria S1 and S2.

4 Periodicity

The periodic oscillations are ubiquitous in gene regulatory networks. When the peri-
odic oscillation occurs, the concentration of proteins will remain in a bounded range
and do regular reciprocating movements as time goes on. It is widely believed that
the periodic oscillations of gene regulatory networks play an important role in main-
taining the rhythmic behaviors of living organisms. Many scholars have shown great
interest in the study of periodic oscillations of gene regulatory networks. Some exist-
ing results indicated that the gene regulatory networks with time delays or negative
feedback loops are more likely to produce periodic oscillation [39–41]. That is to say,
the time delays or negative feedback loops have the positive effect on yielding the
periodic oscillation in the networks. Time delay which causes by the slow biochemical
reactions is inevitable in gene regulatory network. It can easily drive the network to
lose stability and produce bifurcation leading to periodic oscillation.

We will take the motif (A1) in Figure 1 as the example for illustrating the periodic
oscillation. By introducing the time delays τ1, τ2 to the system (4), we can rewrite
the system (4) as follows {

ẋ(t) = −ax(t) + r(y(t− τ1)),

ẏ(t) = −ay(t) + p(x(t− τ2)).
(10)

The characteristic equation of system (10) at the equilibrium O(x̄, ȳ) is given by

λ2 + 2aλ+ a2 − µe−τ = 0, (11)

where τ = τ1 + τ2 > 0, µ = r′(ȳ)p′(x̄) < 0. Since a2 − µ > 0, then λ = 0 is not a
root of equation (11). Assume λ = ±σi, σ > 0 is a pair of pure imaginary roots of
equation (11), we have {

µ sin(στ) = −2aσ,

µ cos(στ) = a2 − σ2.
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Fig. 5. Periodic oscillation of system (10) with a = 0.2, h = 3, τ1 = τ2 = 2: (a) phase
portrait on x(t)− y(t); (b) time series of x(t).

It follows that σ = σ0 =
√
−µ− a2 > 0 if µ+ a2 < 0. It means that equation (11)

has pure imaginary roots λ = ±σ0i. We can compute the critical value τ = τ0 =
min{τk, k = 0, 1, 2, . . .}, where τk is given by

τk =
1

σ0
arccos

(
a2 − µ
µ

)
+

2kπ

σ0
, k = 0, 1, 2, . . . (12)

By establishing the transversability condition Re(dλ/dτ) |σ=σ0,τ=τ0 6= 0, we can
confirm the generation of Hopf bifurcation of system (10) which leads to periodic
oscillation at the equilibrium O. The periodic oscillation of system (10) is illustrated
in Figure 5 by fixing the parameters h = 3, a = 0.2, τ1 = τ2 = 2.

5 Chaos

Chaos in gene regulatory network has been reported before [42–45], but the corre-
sponding studies are still scarce. The main reason for the limitation of chaos research
of gene regulatory network is that the restricted availability of gene expression data
and the existence of gene expression noise greatly increased the difficulty of quantita-
tively describing chaos, and chaos itself is rare in gene regulatory network. However,
this does not mean that chaos is not important for gene regulatory network. On the
contrary, it plays an important role in the realization of some special biological func-
tions. Sevim et al. claimed that the gene regulatory networks with strong robustness
to mutations and noise are more likely to generate chaos, and the chaos is of great
significance to hold stable gene expression patterns [46]. Zhang et al. presented a con-
clusion that the formation of chaos in gene regulatory networks is mainly the result
of competitions between different oscillatory modes with rivaling intensities, and they
proposed many chaotic network motifs with three or four nodes [47]. Here, we show
two chaotic network motifs with autoregulations in Figure 6 proposed by Zhang et al.
as examples of analysis. The mathematical model of motif (C1) in Figure 6 can be
described as follows 

ẋ(t) = −ax(t) +
_
r (z(t)),

ẏ(t) = −ay(t) +
_
r (x(t))

_
p(y(t)),

ż(t) = −az(t) +
_
r (y(t))

_
p(x(t)),

(13)
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Fig. 6. Chaotic motifs coupled by three or four nodes, where the red “a” and green “→”
respectively denote the repressive and active regulation.

Fig. 7. The bifurcation diagram and finite time Lyapunov exponents with a = 1, h = 3 and
K ∈ [0.165, 0.185] of system (13).

with the simplified functions

_
r (x) =

Kh

Kh + xh
,

_
p(x) =

xh

Kh + xh
. (14)
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Fig. 8. The phase portraits on x− y of the periodic-1, periodic-2, periodic-4, and chaotic
attractors of system (13) with K = 0.183, 0.178, 0.174, and 0.170.

By plotting the bifurcation diagram and finite time Lyapunov exponents of sys-
tem (13) with a = 1, h = 3 and K ∈ [0.165, 0.185], we can numerically determine
the existence of chaos. As shown in Figure 7, the system (13) generates chaos via
reverse period-doubling bifurcation. It can be illustrated visually by presenting the
phase portraits of the periodic-1, periodic-2, periodic-4 and chaotic attractors with
parameter K = 0.183, 0.178, 0.174, and0.170, as shown in Figure 8. The notable
feature of chaos is the extreme sensitivity to the initial condition. By compar-
ing the trajectories starting from initial values (0.4, 0.4, 0.5) (blue solid line) and
(0.401, 0.4, 0.5) (red dash line) in Figure 9, we can know that the small change
(∆x = 0.001) in initial values causes the big difference of the final trajectories with the
evolution of time. It means that system (13) with K = 1.70 is sensitive dependence
on initial conditions and the chaotic motion is determined. The chaotic behavior of
motif (C2) can be detected by numerical experiments as well.

6 Discussions

A general presentation of nonlinear dynamics of gene regulatory network was given
in this letter. By introducing some typical motifs, the monostability, bistability,
periodicity and chaos of gene regulatory network were analytically and numerically
investigated. Although the dynamic properties of gene regulatory networks have been
studied for many years, there are still many problems to be further explored. On the
one hand, more research needs to focus on the dynamic analysis of more complex
large-scale gene regulatory networks. Many kinetic study results have been limited
to small-scale gene regulatory networks with fixed topology and can not well explain
the biological phenomena since the actual gene regulatory network consists of many
different nodes and complex, multiple, uncertain interaction relationships. On the
other hand, many unknown and strange dynamic properties of gene regulatory net-
work should be detected to understand the law of gene expression comprehensively,
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Fig. 9. Sensitive dependence on initial conditions: (a) time series of x(t); (b) time series of
y(t).

such as the study of hidden attractors and coexisting attractors. The study of hidden
attractors and coexisting attractors has been a hot research topic in recent years
which has received widespread attention [48–51]. The hidden attractors and coex-
isting attractors are ubiquitous in nonlinear systems. Actually the multistability is
an important manifestation of coexisting attractors. The bistability has been widely
discovered in gene regulatory network. However, the multistability with three or more
steady states has not been well addressed. Thus the study of hidden attractors and
coexisting attractors of gene regulatory network and their biological insights will be
an interesting research work. Furthermore, the control of gene regulatory network
has been of recent interest [52–54]. The control of gene regulatory network has two
research aspects: the understanding of internal control function of gene regulatory net-
work itself and the design of external control input. The control design can improve
the performance of gene regulatory network and obtain the desired dynamic behav-
iors. Especially the control of multistability is of great significance [55]. More research
results on gene regulatory network will be reported in our forthcoming paper.
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