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Abstract. This article presents experimental data, and their compre-
hensive analysis, for a polystyrene foam (with an initial density of
0.623 g/cm3) subjected to large strains and high pressures. The data
were obtained from unconfined uniaxial stress tests in compression (at
two different strain rates), confined compression tests with compres-
sive strains to almost 50%, and a tension test. The confinement for
the compression tests consists of a steel cylinder with external strain
gages to monitor the hoop strains due to the radial stresses from the
compressed foam. The procedure used to analyze the data allows for a
continuous determination of axial, radial and hoop stresses, pressure,
and von Mises equivalent stress. A parametric finite element analysis
was used to provide for the determination of the stresses from small
strains to large strains approaching 50%. There is excellent agreement
between test results for similar conditions, as well as the results from
data obtained from the confined experiments with two different wall
thicknesses. The strength (von Mises equivalent stress) is highly depen-
dent on the pressure, but not as dependent on the strain. The strain
rate has a significant effect on strength for the uniaxial stress tests,
but only limited data were obtained. Constants were obtained for an
existing computational model, and there is good correlation between
the experimental data and the model.

1 Introduction

Foam materials are used for a wide range of applications, from low-stress conditions
for packaging and shipping, higher-stress conditions for containment of electronic
components subjected to high dynamic environments, and very high stress and strain
conditions for energy-absorbing applications. Not only is there a wide range of foam
materials, but each of the specific materials comes in a range of densities. When
dynamic computational analyses are performed on systems that contain foam mate-
rials, it is necessary to have appropriate material models and constants to represent
the foam, and often these are not available.

During the past two or three decades there have been significant research efforts
directed at better understanding the response of foam materials to a wide range of
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loading conditions. On the one extreme, some of these efforts have resulted in very
complex models, for a specific material, that require numerous and complex exper-
iments. Often these models are not incorporated into production computer codes,
and if they are, the appropriate constants for the user’s material of interest are not
available. The other extreme is that inappropriate elastic–plastic models are used
with approximated constants, but these models do not even allow for some of the
most basic characteristic of foam materials. Several comprehensive discussions of the
many factors associated with testing and modeling foam materials are provided by
Neilson et al. [1], Zhang et al. [2], Jo et al. [3], Sherwood and Frost [4], Song et al.
[5] and Doroudiani and Kortschot [6]. More recently, Jeong et al. [7] presented a
constitutive model for polyurethane foam with strain rate sensitivity, Ju et al. [8]
determined parameters and performed computations for a hyperelastic constitutive
model for polyurethane foam, Mouhamadou et al. [9] performed both finite-element
and micro-structural modeling of foam materials, Srivastava and Srivastava [10] used
two different existing models to investigate the response of Expanded Polypropylene,
Goga and Hučko [11] presented a new phenomenological model for foam materials,
and Lewis [12] presented a compressible hyperelastic model for foamed rubber.

The work presented in this article is for a polystyrene foam subjected to large
strains, high pressures, and a range of strain rates. Data from both confined and
unconfined experiments are obtained, and the essential features of the responses are
identified and quantified, and put into a relatively simple computational model. The
confined experiments are conceptually simple, the analysis techniques are straightfor-
ward, and a single test provides data for a wide range of conditions. The remainder
of this article provides the experimental results, an analysis of these results, and the
determination of constants for a simple computational model.

2 Experimental results

The experiments were performed on a polystyrene foam with a density of 0.623 g/cm3.
The material was obtained from the U.S. Army Armament, Research, Development
and Engineering Center (ARDEC), and it was delivered in the form of cylindrical
specimens with a diameter of 19.05 mm and a length of 38.1 mm. Most of the tests
were performed on the specimens as received, and all of the tests were performed on
an MTS servohydraulic load frame.

The data obtained from the compression experiments are shown in
Figures 1 and 2, and the test fixture for the confined tests is shown in Figure 3.
Some additional data for the hoop strains on the test fixture are provided later. The
test fixture in Figure 3 is composed of several steel parts, and the configuration shown
is for the thinner sleeve walls (6.35 mm). The strain gage is used to measure the hoop
strain in the cylinder such that the radial loading from the compressed cylinder can
be determined. The length of the sleeve is 50.8 mm, and the initial length of the
cylindrical specimen is 38.1 mm. In the initial condition the sleeve extents 6.35 mm
beyond the foam specimen (both top and bottom). When compressed to half the
initial length/volume, the sleeve wall extends 25.4 mm above the top of the com-
pressed specimen and 6.35 mm below the bottom of the specimen. The location of
the strain gage is at the center of the specimen when it is compressed to half the
initial length/volume.

For the unconfined test results in Figure 1 the data are presented as engineering
stress versus engineering strain, with compression being positive. Engineering stress
for the unconfined tests can lead to errors at larger strains, as the stress is computed
from the applied force and the initial area. However, at small strains the stresses
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Fig. 1. Engineering stress versus engineering strain for unconfined compression tests at
strain rates of 0.001 s−1 and 1.0 s−1.

Fig. 2. Axial stress versus engineering strain for confined compression tests at strain rates
of 0.001 s−1.

should be accurate. For the confined tests (Fig. 2) the axial stress is essentially iden-
tical to the true stress, as the confinement holds the area constant (except for small
elastic deformations). The engineering (axial) strain is a value that can be readily
measured during the course of the experiments, and it is defined as εz = 1 − h/h0,
where h and h0 represent the deformed and initial lengths of the specimen. The
use of confinement to provide higher pressures during testing is not new. Chen and
Ravichandran [13] used confinement for split Hopkinson bar tests on sintered alu-
minum nitride, Forquin et al. [14] used confinement to determine the effect of pressure
on concrete, and Chocron et al. [15] used a similar test fixture to determine the effect
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Fig. 3. Test fixture for the confined experiments.

of confinement on predamaged glass. A common requirement is that the strength of
the tested material must be significantly lower than the strength of the steel test
fixture. The unique feature for this application is that the tested specimen undergoes
significant volumetric strains during the course of the test, which provides variable
spatial loading on the confinement sleeve.

For the unconfined test results in Figure 1, the data for the lower strain rates
(ε̇≈ 0.001 s−1) show good reproducibility out to strains of about 0.2, and the data
for the higher strain rates (ε̇≈ 1.0 s−1) show good reproducibility out to strains of
about 0.1. The stresses for the higher-rate tests drop off at lower strains than do
the lower-rate results and this is probably because the deformation is not as uniform
along the longitudinal axis of the cylindrical test specimen (and failure therefore
occurs earlier). It should also be noted that there is sufficient time for numerous
wave transmissions throughout the length of the specimen to occur by the time the
maximum stresses have been achieved. The maximum compressive stresses for two
specific tests (U-01 and U-05) are shown as black dots in Figure 1, and these data are
used to determine pressure and strain-rate sensitivity. There is little strain hardening
indicated by these data, and the data with strains greater than those indicated by
the maximum stresses (which may not be as accurate because of the increased areas
of the deformed specimens at large strains) are not used to characterize the response.
In fact, there is some strain softening, probably due to damage/pore collapse, that
occurs right after the maximum stresses have been achieved.

For all of the tests the specified strain rates are simply the loading velocity divided
by the initial length of the specimen (Vpusher/h0). No attempt has been made to
compute current strain rates during the duration of the test, or equivalent strain
rates, as the differences between the different strain-rate definitions are small when
compared to the three decades of strain rates considered (0.001–1.0 s−1).
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Fig. 4. Photograph of the tensile-test configuration and the failed tensile specimen.

The confined test results in Figure 2 are compressed to almost half the initial
volume of the cylinders, and then released. Some of the tests include intermediate
loading and unloading, but the subsequent responses after the unloading cycles do not
significantly alter the responses when compared to the tests which do not including
unloading. It appears that the unloading and reloading are elastic responses that do
not alter the material. However, it can be seen that the elastic (loading/unloading)
stiffnesss tends to increase as the strains are increased. Three of the tests used a test
fixture with a thinner sleeve wall (6.35 mm), as shown in Figure 3, and the other three
tests used a thicker sleeve wall (9.525 mm). Both fixtures are essentially rigid when
compared to the large strains in the compressed foam, and there are no noticeable
differences between the data in the two test configurations. There are significant
differences in the hoop strains for the two configurations, however, and it is shown
later that there is good agreement between the computed stress distributions in the
foam specimens.

The tensile-test specimen was machined from the cylindrical specimens noted pre-
viously, with a reduced diameter of 12.7 mm in the center. The ends of the specimen
(with a full diameter of 19.05 mm) were glued to anvils in the MTS machine with
an adhesive. A photograph of the test apparatus and the failed tensile specimen is
provided in Figure 4. The tensile stress at failure was 6.7 MPa.

3 Analysis of the confined test results

The data in Figure 2 provide a qualitative indication of the response of the mate-
rial, but it is of interest to determine the individual stress components, such that a
predictive model can be generated to use for other loading conditions. This analysis
can be performed by using the axial stress–strain data from Figure 2, together with



66 The European Physical Journal Special Topics

Fig. 5. Hoop strains versus engineering strain in the specimen for experimental results and
computed results. Test C-9 has a wall thickness of 6.35 mm and test C-13 has a wall thickness
of 9.525 mm.

the hoop strain data shown in Figure 5. The analyses are performed for tests C-9
(thinner wall) and C-13 (thicker wall). As expected, the hoop strains for the thinner
wall are greater than the strains for the thicker wall.

In addition to the experimental results in Figure 5, computed results are also
shown for a constant radial pressure (P0 = 68.95 MPa) applied on the inside of the
steel sleeve. Numerous computations were performed to apply the radial pressure on
the sections of the steel sleeve that correspond to the axial strain in the foam speci-
men. If the length of the foam specimen was always equal to the length of the steel
sleeve, then it would not be necessary to perform computations because a simple ana-
lytic equation for a thick-walled cylinder could be used. For this application, however,
only a portion of the cylinder is loaded and a numerical solution is required. Finite-
element computations were performed with the EPIC code [16], using a converged
mesh with slowly applied loading (as it is an explicit code). The close agreement with
an analytic solution tends to verify the results.

It is interesting that the computed hoop strains are almost constant for the range
of applied loadings, and that they are close to the analytic solution. For the thin
wall the computed hoop strains vary from 0.000381 to 0.000400, with the analytic
hoop strain of 0.000386 (for loading along the entire length of a thick-walled cylinder
with no axial load), and for the thick wall the computed hoop strains vary from
0.000204 to 0.000226, with the analytic hoop strain of 0.000229. Due to the design of
the test fixture in Figure 3, the only axial load acting on the cylinder is that due to
friction between the outside of the foam specimen and the inside of the steel sleeve.
The computed and analytic results do not include friction, but it probably does not
have a significant contribution to these results. Some support for this assumption is
provided by Ilseng et al. [17] who used load cells on either side of a confined rubber
specimen, and determined that the frictional effect was less than 1.4%.

With the data from Figure 5 it is possible to determine the radial stress
between the foam specimen and the steel sleeve. Because the steel sleeve behaves
in a linear elastic manner the radial stress (σr) between the two materials, at a
given axial strain (εz), is simply the applied pressure for the computed strains
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Fig. 6. Stress components for the confined test results. Test C-9 has a wall thickness of
6.35 mm and test C-13 has a wall thickness of 9.525 mm.

(P0 = 68.95 MPa), times the ratio of the experimental stress to the computed stress,
[σr = P0(εtesthoop)/(εcomputed

hoop )]. After the radial stress is determined the remaining stress
components can also be determined. The hoop stress (σθ) is equal to the radial
stress (σθ = σr), the pressure is equal to the average of the three normal stresses
[P = (σr + σθ + σz)/3], and the von Mises equivalent stress (σ) is equal to the stress
difference (σ = σz − σr). The results of this analysis are shown in Figure 6. Note that
the net (axial) stress (σz) is the experimental data from Figure 2, from which the
other stress components are computed.

The net (axial) stresses are the experimental stresses from tests C-9 and C-13,
and the symbols (dots and crosses) represent the strains (εz) at which the other stress
components are determined. The unloading stresses are not shown for clarity. The
experimental stresses for the two tests are in close agreement, and the other stress
components are also in close agreement for the two tests. This is important because
the two tests were performed with different test fixtures (thinner and thicker walls)
but the analysis procedures provide consistent results – which tends to confirm the
approach. It was noted previously that there did not appear to be significant strain
hardening for the unconfined tests, and this is confirmed with the von Mises stress
changing little under significant strains, between εz = 0.05 and εz = 0.30. Instead,
the von Mises stress appears to be much more dependent on the pressure.

4 Determination of constants for a computational model

It is desirable to put the response into a model such that computations can be
performed for a range of conditions. Figure 7 shows an early model for concrete,
which was developed by Osborn and incorporated into the Hull code [18]. It is a
simple model, but has the features necessary to represent the crushing and pressure-
hardening features of the foam considered here. The strength (maximum allowable
von Mises stress) is dependent on the pressure and the strain rate, and is bounded
by σmax. It is not dependent on the equivalent strain. The pressure is represented by
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Fig. 7. The Osborn model computational model for crushable materials.

a crushable response. The strain-rate effect for the strength was not included in the
original model, but it was subsequently added by the authors. It simply multiplies
the pressure-dependent strength by the factor (1 + C3 lnε̇*).

Before the constants are determined for the conditions in Figure 7, the elastic
constants can be determined, using the data for ε̇≈ 0.001 s−1. The modulus of elas-
ticity is determined from the linear portion of the stress–strain relationship for test
U-01, from Figure 1, and it is E= 870 MPa. The slope of the linear (small strain)
portion of the uniaxial strain data for tests C-09 and C-13 (before crushing occurs,
as shown in Figs. 2, 5 and 6) is K + (4/3)G = 1430 MPa, where K is the bulk mod-
ulus and G is the shear modulus. K and G can both be expressed as a function of
E and ν (Poisson’s ratio) and it is possible to solve for ν. The independent elas-
tic constants are then E= 870 MPa, and ν= 0.355; and the other elastic constants
are G=E/2(1 + ν) = 321 MPa and K =E/3(1− 2ν) = 1000 MPa. It is clear from the
model in Figure 7 that the bulk modulus can change significantly. The shear modulus
may also change, probably bounded by the constant (elastic) shear modulus and a
variable shear modulus with a constant Poisson’s ratio.

The pressure–volume relationships are shown in Figure 8. Here the volumetric
strain is expressed as µ=V0/V −1 = ρ/ρ0−1, as this is the definition most commonly
used for material models that separate the stress into pressure and deviator-stress
components. It can also be determined directly from the engineering strain used to
describe the data, where µ= εz/(1 − εz). The constants in the figure correspond to
the constants described in Figure 7. K and µlock are shown as reference values as
they can be computed from the other constants. There is a good correlation between
the model result and the test data, including the unloading data represented by the
square symbols. After the material is compressed beyond µlock it is confined to the
path along Klock as long as the pressure is in compression. The volumetric strain for
a solid (non-porous) material (under no pressure) is given by µ0 and the volumetric
strain at which all the voids are crushed out of the material (under pressure) is given
by µlock. Note that µ0 and µlock are dependent on one another through Klock. For
µ0 = 0.715 the corresponding density for a solid material is 1.08 g/cm3, which is close
to the handbook values published for solid (non-porous) polystyrene. The minimum
pressure (Pmin) is not shown in this figure, but it is the maximum tensile pressure
that can be achieved. It is also used for the determination of the strength under a
tensile pressure.

The strength is dependent on the pressure and the strain rate, and a comparison
of the test data and the model is provided in Figure 9. The dimensionless strain rate is



Advances in the Characterization, Modeling and Simulation of Materials 69

Fig. 8. Pressure–volume relationships for the test data and the computational model.

ε̇* = ε̇/ε̇0, where ε̇0 = 1.0 s−1, and the confined test data are for ε̇* = 0.001. The maxi-
mum stresses for the unconfined compression tests are shown as black dots for ε̇* = 1.0
(test U-05) and for ε̇* = 0.001 (test U-01). Again, there is good correlation between
the test data and the model, and the strength is highly dependent on the pressure. The
strength for negative (tensile) pressure drops linearly from C1 = 23.4 MPa at P = 0
to σ= 0 at Pmin = 3.5. This is determined from the tensile-test data (test T-01) which
provided a tensile strength of 6.7 MPa at a strain rate of ε̇≈ 0.001 s−1. Note that a
tensile strength of 6.7 MPa has a corresponding pressure of P = −2.23 MPa, and a
straight line through this point (and σ= 18.2 MPa at P = 0 and ε̇* = 0.001) intercepts
the horizontal axis at −3.5 MPa. Also, the model in Figure 7 allows for a maximum
strength (σmax) but that is not included here as the test data (for strength) do not
appear to level off at the pressures for which test data are available.

A few additional comments regarding the strain rate effects should be made.
Generally the pressure–volume relationships for solid materials are not strain rate
sensitive. An example is provided by Holmquist and Johnson [19] for silicon carbide,
where very similar relationships were obtained from both plate-impact tests (at very
high strain rates), and quasi-static diamond-anvil tests. For porous materials, how-
ever, this may not be true. The pressure–volume relationships in Figure 8 (especially
at low strains with high porosity) may produce higher pressures if the experimental
strain rates are increased from the relatively low strain rates (ε̇≈ 0.001 s−1) at which
they were tested.

Another possible issue is that the strain-rate effects that acted on the unconfined
tests (at low pressures) may not have the same effect at high pressures. For a strain
rate constant of C3 = 0.032 the strength at a strain rate of ε̇≈ 0.001 s−1 is increased
by a factor of 1.28 when the strain rate is increased to ε̇≈ 1.0 s−1. Even higher factors
are experienced at higher strain rates. There is a need for experiments to determine
the effects of high strains rates at high pressures.

Some high strain-rate data for a lower-density polystyrene foam (0.4 g/cm3) have
been reported by Song et al. [5]. These data were obtained with a hydraulically driven
test machine for the quasi-static data and a modified split Hopkinson bar apparatus
for the higher strain rates, covering a range of 0.001–950 s−1. Their results did not
include confined tests, so the pressures were limited to a third of the maximum axial
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Fig. 9. Strength as a function of pressure and strain rate, for the test data and the
computational model.

stresses. Their analysis showed the collapse stress to be expressed as Y = Y0 + B
log (ε̇/ε̇0) for ε̇0 = 170 s−1. This can be rewritten as Y = Y0[1 + (B/Y0) log (ε̇/ε̇0)],
which has a similar form to the model considered here. For Y0 = 14.32 MPa and
B = 0.64 [5], and putting their model into the form of the model used here (natu-
ral log and ε̇0 = 1.0 s−1 as shown in Fig. 7) the equivalent strain-rate constant for
the Song et al. data is C3 = 0.084. This is higher than C3 = 0.032 for the present
work, but the density and strength of the Song et al. data are significantly lower.
Their data also showed the modulus (E) to be strain-rate insensitive up to rates
of about 100 s−1, whereas the modulus in the data presented here shows increases
at the higher strain rates (Fig. 1). A final comment is that for materials that are
both strain-rate dependent and pressure dependent, it is necessary to properly dis-
tribute the effects of the strain rates and the pressures. For an unconfined compressive
test, for example, a higher strain rate will provide a higher strength. The higher
strength also has a higher pressure, and that must be considered. This effect is
illustrated in Figure 9. More work is required to determine the effects of strain
rates; both for pressure–volume relationships, and strength at combinations of strain
rates and pressures. Also, a comprehensive computational model should include the
effects of thermal softening and failure, and these effects have not been considered
here.

5 Summary and conclusions

This article has presented experimental data for a polystyrene foam subjected to
large strains and high pressures. The data were obtained from uniaxial stress tests in
compression (at two different strain rates), confined compression tests with compres-
sive strains to almost 50%, and a tension test. The confined test data were analyzed
with a technique that allows for a straightforward determination of all of the stress
components throughout the entire strain range of the tests. The test data were put
into a simple computational model that allows for crushing, loading and unloading,
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and strength that is dependent on the pressure and strain-rate; and it was possible
to provide a good correlation between the data and the model. Additional work is
required to determine strain-rate effects across a range of pressures, and the effects
of thermal softening. Damage and failure must also be addressed.
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