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Abstract. The paper has considered the fractal flow in a dual media
with fractal properties, where the media could be elastic, heterogeneous
and visco-elastic. We argued that, the fractal flow within a geological
formation with elastic property cannot be accurately described with
the concept of differentiation with local operator, as this operator is
unable to include into mathematical formulation the effect of elasticity.
Thus to include into mathematical formula the observed facts, we have
modified the model by replacing the local derivative with the non-local
operator with power. A more complex problem was considered where
the geological formation is considered to have visco-elastic and hetero-
geneity properties. We argued that, the flow within a matrix rock with
these two properties cannot either be described with local derivative
nor a non-local derivative with power law. In this case two non-local
operators were considered, an operator with Mittag-Leffler kernel and
Mittag-Leffler-Power law kernel [F. Ali et al., J. Magn. Magn. Mater.
423, 327 (2017); F. Ali et al., Eur. Phys. J. Plus 131, 310 (2016); F.
Ali et al., Eur. Phys. J. Plus 131, 377 (2016); F. Ali et al., Nonlinear
Sci. Lett. A 8, 101 (2017); N.A. Sheikh et al., Neural Comput. Appl.
(2016) https://doi.org/10.1007/s00521-016-2815-5]. For each model, a
detailed study of existence and uniqueness of the system solutions was
presented using the fixed point theorem. We solved numerically each
model using a more acculturate numerical scheme known as Upwind.
Some numerical simulations are presented to underpin the effect of the
suggested fractional differentiation.

1 Introduction

Many simple analytical models of groundwater flowing within a geological formation
also known as aquifers were developed for the interpretation of drawdown curves
and had been proven to yield values that are easily comparable to each other [1–4].
They provide quality criteria for the management of portion of the reservoir. Most
are however based on the statement that a non-integer dimension prevails for flow,
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and flow takes place in a single homogenous/fractal medium. Originally introduced
by Barenblatt et al. (1960) and Warren and Root (1963), the concept of dual media
assumes homogenized flow (and transport) in a fracture field and accounts for the
relationships with the porous matrix [5,6]. At relatively large scale (greater than
matrix block), the aquifer is mostly drained by connected fractures. Dershowitz and
Miller (1995) demonstrated the concept on dual porosity fracture flow and transport,
using fracture networks models [7,8]. Quintard and Whitaker (1998) applied the con-
cept in the spatial averaging of the macroscopic behaviour of heterogeneous/fractured
porous media. But it is only in 2006 that Frederick et al. proposed a consistence tool
for interpreting interference pumping tests based on the dual-medium approach. Con-
sidering the couple of equations at the Darcy scale describing flow in a dual medium
as [9]: 

SSf
∂hf
∂t

= ∇ · (kf · ∇hf ) + α(hm − hf ) + qf

SSm
∂hm
∂t

= α(hm − hf ),

(1)

where h (in m) is the hydraulic head, kf (in m/day) is the hydraulic conductivity
(which is basically a tensor in multidimensional flow) of fracture continuum, Ss (in
m−1) is the specific storage capacity, α (in m−1 day−1) the exchange rate coefficient
between fractures and the matrix, and qf (in m3 day−1) a sink–source term from a
pumping well that is located in the fracture continuum. The hydraulic conductivity
within the matrix (km) is considered negligible compared to kf and is dropped. The
application of power laws concept in space (fractal) on the hydrodynamic parameters
of both the matrix and fractures is not new, and assumes that the parameters decrease
with the lag distance r between the pumped well (SSf0 , kf0 , SSm0

, α0) and the

observed ones. Many authors including Acuna and Yortsos (1995) and Delay and
Porel (2004) have used this type of scaling laws (O’Shaughnessy and Procaccia, 1985)
in interpreting interference pumping tests for single media [10–12]. However only few
(Frederick and others in 1996), attend of its application to dual media has been
recorded in the literature, as the application involves 8 parameters as follows:

SSf (r) = SSf0 r
−b, kf (r) = kf0r

−a, SSm(r) = SSm0
r−c and α(r) = α0r

−d, (2)

where a, b, c and d power-law exponents, and considered to be positive. The above
model does not account for the heterogeneity, elasticity, visco-elasticity of the geo-
logical formation within which the flow has taken place. The flow of water within
the fractures system does not needs the heterogeneity effect to be included into
mathematical formulation, this is also true for the elasticity and visco-elasticity as
the fracture system is homogeneous everywhere in the aquifers. Nevertheless the
flow within the matrix rock will encounter natural obstacles and those need to be
included into mathematical formulation to obtain better prediction. Therefore, in
order to include the physical properties into mathematical formulation the local clas-
sical operator of differentiation will be replaced in this paper with a non-local operator
able to account for the heterogeneity, elasticity, visco-elasticity of the geological for-
mation within which the flow has taken place. The non-local operator can be the
convolution of the power law and the unknown function to account for elasticity, or
it could be a convolution of exponential decay law to account for heterogeneity, or
could be replaced by a convolution of the generalized Mittag-Leffler function and the
unknown function. A more complex model will be adjusted where the classical local
time derivative will be replaced by a fractional differential operator with two orders.
Before all, we shall present some useful information about the concept of fractional
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differentiation with power, exponential decay, Mittag-Leffler law and also the concept
of fractional derivative with two orders. These three new concepts of fractional dif-
ferentiation have been introduced and used in many research papers and have been
proved to be very efficient mathematical tools for modelling real world problems.

2 Fractional differentiation

We present in this section some useful information about the new trend of fractional
differentiation [13–17,21–25]. However, we must first present the definition of existing
fractional operator namely the Riemann-Liouville. The Riemann-Liouville fractional
integral of a non-differentiable function f is given as:

RL
0 Dα

x (f(x)) =
1

Γ (1− α)

d

dx

∫ x

0

(x− t)−αf(t)dt. (3)

The Caputo-Fabrizio derivative in Riemann-Liouville sense of non-differentiable
function f is given as:

CF
0 Dα

x (f(x)) =
M(α)

(1− α)

d

dx

∫ x

0

exp

[
− α

1− α
(x− t)

]
f(t)dt. (4)

The Atangana-Baleanu fractional derivative in Riemann-Liouville sense of a non-
differentiable function f is given as:

ABR
0 Dα

x (f(x)) =
M(α)

(1− α)

d

dx

∫ x

0

Eα

[
− α

1− α
(x− t)α

]
f(t)dt. (5)

The Riemann-Liouville fractional integral of a given continuous function f is given
as:

RL
0 Jαx (f(x)) =

1

Γ (α)

∫ x

0

(x− t)α−1f(t)dt. (6)

The Caputo-Fabrizio fractional integral of a continuous function f is given as:

CF
0 Jαx (f(x)) =

1− α
M(α)

f(x) +
α

M(α)

∫ x

0

f(t)dt. (7)

The Atangana-Baleanu fractional integral of a continuous function f is given as:

AB
0 Jαx (f(x)) =

1− α
AB(α)

f(x) +
α

AB(α)Γ (α)

∫ x

0

(x− t)α−1f(t)dt. (8)

The Atangana fractional derivative with two orders of a continuous function f is
given as:

AR
0 Dα,β

x (f(x)) =
A(α)

1− α
1

Γ (1− β)

d

dx

∫ x

0

(x− t)−βEα
(
− α

1− α
(x− t)α+β

)
f(t)dt.

(9)
The above nonlinear operators will be used in the following sections as mathematical
tools to model the fractal flow within a dual media with inclusion of heterogeneity,
elasticity, visco-elasticity and memory effect.
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3 Model of fractal flow in dual media accounting for elasticity

In a dual media the water flows within the fracture network and also within the matrix
soils. Within the matrix rock, it is without doubt that the media is non-viscous,
homogeneous and but there is a memory effect. However the water flowing within the
matrix rock flow within a geological formation that can have elastic property, this elas-
ticity cannot be described with the time classical derivative but can efficiently being
described with the non-local operator with a power law kernel known as Riemann-
Liouville or Caputo fractional derivative. Thus in order to include into mathematical
formula the effect of elasticity of the matrix rock, the time local derivative will be
replaced by the Caputo fractional derivative to obtain:

{
SSf

C
0 D

α
t (hf (r, t)) = ∇.(kf .∇hf (r, t)) + η(hm(r, t)− hf (r, t)) + qf

SSm
C
0 D

α
t (hm(r, t)) = η(hm(r, t)− hf (r, t)).

(10)

We shall first present the existence and uniqueness of the above system.

3.1 Existence of system solutions

The existence of a positive solution for a given fractional differential equation is a big
concern to mathematician, because sometimes there exist some complex differential
equations that cannot be solved analytically but the proof of existence helps us know
that there exists a solution under some conditions within a well-constructed Sobolev
space. In this paper, we consider the following Sobolev space:

H1(0, T ) = {u ∈ L2(a, b)/u′ ∈ L2(a, b)}.

We also consider the following Hilbert space where

H ∈
{
u, v/

∫ t

0

(t− y)αvu dy <∞
}
.

To prove the existence of equation (10), we express the change of hydraulic head
within the matrix soil in terms of the change of hydraulic head within the fracture.
To achieve this we employ the Laplace transform in time to obtain:

SSmp
αhm(r, p) = η(hm(r, p)− hf (r, p))

(SSmp
α − η)hm(r, p) = −ηhf (r, p),

hm(r, p) =
−ηhf (r, p)

SSm

(
pα − η

SSm

) ,
hm(r, t) = L−1

 −ηhf (r, p)

SSm

(
pα − η

SSm

)
 ,

hm(r, t) = − η

SSm

∫ t

0

hf (r, y)Eα

(
η

SSm
(t− y)

)
dy. (11)
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Equation (11) can now be replaced in system (10) to obtain

SSf
C
0 D

α
0 (hf (r, t)) = ∇.(kf .∇hf (r, t))

+η

(
− η

SSm

∫ t

0

hf (r, y)Eα

(
η

SSm
(t− y)

)
dy − hf (r, t)

)
+ qf .

Let

Γ1 : H1(0, T )→ H1(0, T )

h→ Γ1h =RL
0 Iαt

∇.(kf .∇hf (r, t))

+η

{
−η
Ssm

∫ t

0

hf (r, y)Eα

(
η

Ssm
(t− y)dy

)
− hf (r, t)

}
+ qf

 ,

(12)

where

RL
0 Iαt f(t) =

1

Γ (α)

∫ t

0

(t− τ)α−1f(τ)dτ. (13)

We aim to prove that Γ possesses Lipchitz condition.
Let

K(r, t, h) = ∇.(kf .∇hf (r, t))− −η
2

Ssm

∫ t

0

hf (r, y)Eα

(
η

Ssm
(t− y)dy

)
. (14)

Let h1, h2 ∈ H1(0, T ) then

‖K(r, t, h1)−K(r, t, h2)‖H1(0,T ) ≤ ‖∇.(kf .∇hf (r, t))−∇(kf∇h2(r, t))‖+

∥∥∥∥ η2

Ssm

∥∥∥∥ ,
×
∫ t

0

|h1(r, y)− h2(r, y)|Eα
(

η

SSm
(t− y)

)
dy

≤ θ1θ2 ‖kf‖ ‖h1 − h2‖+

∥∥∥∥ η2

SSm

∥∥∥∥ ‖h1 − h2‖H1(0,T )M

+ ‖η‖ ‖h1 − h2‖

≤
(
θ1θ2 ‖kf‖+

∥∥∥∥ η2

SSm

∥∥∥∥M + ‖η‖
)
‖h1 − h2‖H1(0,T )

≤ l ‖h1 − h2‖ . (15)

With the definition of K, we define the following function

Γh =
1

Γ (α)

∫ t

0

K(r, τ, h)(t− τα−1)dτ.
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Let h1 and h2 be elements of H1(0, T )

‖Γ1h1 − Γ1h2‖H1(0,T ) =

∥∥∥∥ 1

Γ (α)

∫ t

0

(K(r, τ, h1)−K(r, τ, h2)(t− τ)α−1dτ

∥∥∥∥
H1(0,T )

≤ 1

Γ (α)

∫ t

0

‖K(r, τ, h1)−K(r, τ, h2)‖(t− τ)α−1dτ

≤ 1

Γ (α)

∫ t

0

l ‖h1 − h2‖ (t− τ)α−1dτ

≤ 1

Γ (α)
‖h1 − h2‖H1(0,T )

Tα−1

α

≤ lTα

Γ (α+ 1)
‖h1 − h2‖H1(0,T )

≤ β ‖h1 − h2‖H1(0,T ) . (16)

Let us consider the following recursive formula

hn+1
f (r, t) = Γ1h

n
f = hf (r, 0) +

1

Γ (α)

∫ t

0

K(hnf , r, τ)(t− τ)α−1dτ∥∥∥Γ1h
n
f − Γ1h

n−1
f

∥∥∥
H1(0,T )

=
∥∥∥hn+1

f − hnf
∥∥∥
H1(0,T )

=
1

Γ (α)

∥∥∥∥∫ t

0

{K(hnf , r, τ)−K(hn−1
f , r, τ)}(t− τ)α−1dτ

∥∥∥∥
≤ l

Γ (α)

∥∥∥hn−1
f − hnf

∥∥∥
H1(0,T )

Tα

α

=
lTα

Γ (α+ 1)

∥∥∥hn−1
f − hnf

∥∥∥
H1(0,T )

. (17)

Recursively on n, we obtain∥∥∥Γ1h
n
f − Γ1h

n−1
f

∥∥∥ ≤ ( lTα

Γ (α+ 1)

)n ∥∥h1
f (r, t)

∥∥ . (18)

We chose lTα

Γ (α+1) such that lTα

Γ (α+1) < 1 then for n→∞,
∥∥∥Γ1h

n
f − Γ1h

n−1
f

∥∥∥→ 0, thus

(hnf )n∈∞ to a Cauchy sequence in a Banch space therefore converge toward hf . Taking
the limit on both sides, we obtain

lim
x→∞

hn+1
f = Γ1h

n
f ⇔ hf = Γhf .

This shows that Γ has a solution and is unique.

4 Numerical solution

In this section, we argue the fact that the storativity coefficients within the aquifer
follow the power decay law as suggested in the equation. Here we suggest that the
storativity coefficient may follow the exponential law with an upper boundary. With
this in mind, we present the numerical solution of the system of equations using the
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upwind numerical scheme in space and the Crank-Nicholson in space. We, first, for
each non-local operator, present its numerical approximation for time derivative.

We present first the numerical approximation of Caputo fractional derivative in
time. Let tn+1 − tn = ∆t, u(tn, xi) = uni

c
0D

α
t u(xi, tn) =

1

Γ (1− α)

∫ tn

0

∂u(xi, τ)

∂t
(tn − τ)−αdτ

=
1

Γ (1− α)

n∑
j=0

∫ tj+1

tj

uj+1
i − uji

∆t
(tn − τ)−αdτ

=
1

Γ (1− α)

n∑
j=0

uj+1
i − uji

∆t

∫ tj+1

tj

(tn − τ)−αdτ

=
1

Γ (1− α)

n∑
j=0

uj+1
i − uji

∆t

(
−Y

−α+1

1− α

∣∣∣tn−tj+1

tn−tj

)

=
1

Γ (2− α)

n∑
j=0

uj+1
i − uji

∆t

{
((n− j)∆t)1−α − ((n− j − 1)∆t)1−α}

=
1

Γ (2− α)

n∑
j=0

uj+1
i − uji

{
((n− j)∆t)1−α − ((n− j − 1)∆t)1−α} .

(19)

We consider the second order upwind scheme for first order space derivative

u−x =
3uni − 4uni−1 + 3uni−2

2(∆x)
,

u+
x =

−uni+2 − 4uni+1 + 3uni
2(∆x)

. (20)

This numerical scheme has been recognized as a powerful mathematical scheme able
to have less diffusive compared to the classical first order accurate scheme also it is rec-
ognized as a linear upwind differencing scheme. However one can have the third order.
With the third order upwind numerical scheme, we have the following discretization.

u−x =
2uni + 3uni−1 − 6uni−2 + uni−3

6(∆x)
,

u+
x =

−2uni+3 + 6uni+2 − 3uni+1 − 2uni
6(∆x)

. (21)

It is argued in the literature that this numerical scheme is less diffusive compared to
the second-order scheme [18–20]. We shall note that, it is also known to introduce
slight dispersive errors in the region where the gradient is elevated. Thus with second
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order upwind scheme, we have the following numerical formulas
n∑
j=0

hj+1
fi − h

j
fi

(∆t)αΓ (2− α)

{
(n− j)1−α − (n− j − 1)1−α}Ssf (ri)

=
kj+1
f − kjf

(∆r)
·

3hnfi − 4hnf(i−1) + 3hnf(i−2)

2(∆r)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i−1)

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1)

2(∆r)2

}
+η{hnni − hnfi},

n∑
j=0

hj+1
mi − h

j
mi

(∆t)αΓ (2− α)

{
(n− j)1−α − (n− j − 1)1−α}Ssm(ri) = η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
> 0 (22)

and
n∑
j=0

hj+1
fi − h

j
fi

(∆t)αΓ (2− α)
{(n− j)1−α − (n− j − 1)1−α}SSf (ri)

=
kj+1
f − kjf

(∆r)
·
−hnf(i+2) − 4hnf(i+1) + 3hnfi

2(∆x)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i−1)

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1)

2(∆r)2

}
+η{hnmi + hnf1},

n∑
j=0

hj+1
mi − h

j
mi

(∆t)αΓ (2− α)
{(n− j)1−α − (n− j − 1)1−α}SSm(ri) = η{hnmi + hnf1}

if
kj+1
f − kjf

(∆r)
< 0. (23)

Thus with the third order upwind numerical scheme, we obtain
n∑
j=0

hj+1
fi − h

j
fi

(∆t)αΓ (2− α)
{(n− j)1−α − (n− j − 1)1−α}Ssf (ri)

=
kj+1
f − kjf

(∆r)
·
−hnf(i+2) − 4hnf(i+1) + 3hnfi

2(∆x)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i+1))

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i+1))

2(∆r)2

}
+η{hnmi − hnfi},

n∑
j=0

hj+1
mi − h

j
mi

(∆t)αΓ (2− α)
{(n− j)1−α − (n− j − 1)1−α}Ssm(ri) = η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
< 0 (24)
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and

n∑
j=0

hj+1
fi − h

j
fi

(∆t)αΓ (2− α)
{(n− j)1−α − (n− j − 1)1−α}Ssf (ri)

=
kj+1
f − kjf

(∆r)
·
−2hnf(i+3) + 6hnf(i+2) − 3hnf(i+1) − 2hnfi

6(∆r)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i+1))

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1))

2(∆r)2

}
+η{hnmi − hnfi},

n∑
j=0

hj+1
mi − h

j
mi

(∆t)αΓ (2− α)
{(n− j)1−α − (n− j − 1)1−α}Ssm(ri) = η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
< 0. (25)

5 Model of fractal flow in dual media accounting
for visco-elasticity

In a dual media the water flows within the fracture network and also within the
matrix rock as we said before. These matrix rocks possess different characteristics,
in this section, we consider the matrix soil with the property of visco-elasticity. We
shall note that a suitable or realistic representation of the subsurface may be achieved
by putting together the mechanical properties of the elastic solids and that of the
viscous fluids. In the resulting medium or material the stress depends both on the
strain and the rate of strain together, as well as higher time derivatives of the strain.
Such geological formation which combines solid-like and liquid-like behaviour is called
visco-elastic. This section considers fractal dual flow simulation in a general hetero-
geneous inelastic geological formation within the framework of the theory of linear
visco-elasticity. In this case, it is assumed that, water flowing within the matrix rock
which has visco-elastic property. It is well documented that this real world observation
cannot be described with the time classical derivative but can efficiently be described
with the non-local operator with a Mittag-Leffler kernel known as Atangana-Baleanu
fractional derivative in Caputo and Riemann-Liouville sense. Thus in order to include
into mathematical formula the effect of elasticity of the matrix rock, the time local
derivative will be replaced by the Atangana-Baleanu fractional derivative to obtain:{

SSf
ABC
0 Dα

t (hf (r, t)) = ∇.(kf .∇hf (r, t)) + η(hm(r, t)− hf (r, t)) + qf

SSm
ABC
0 Dα

t (hm(r, t)) = η(hm(r, t)− hf (r, t)).
(26)

We shall first present the existence and uniqueness of the above system.

5.1 Existence of system solutions

In this section, the well-constructed Sobolev space is considered. In this paper, we
consider the following Sobolev space

H1(0, T ) = {u ∈ L2(a, b)/u′ ∈ L2(a, b)}.
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We also consider the following Hilbert space where

H ∈
{
u, v/

∫ t

0

Eα

[
− α

1− α
(t− y)α

]
vudy <∞

}
. (27)

To prove the existence of equation (26), we express the change of hydraulic head
within the matrix soil in terms of the change of hydraulic head within the fracture
as presented earlier in the case of power law. To achieve this we employ the Laplace
transform in time to obtain:

SSm(r, α)pαhm(r, p)

pα + α
1−α

= η(hm(r, p)− hf (r, p))(
SSm(r, α)pα

pα + α
1−α

− η

)
hm(r, p) = −ηhf (r, p),

hm(r, p) =
−ηhf (r, p)

SSm (r,α)pα

pα+ α
1−α

− η
,

hm(r, t) = L−1

 −ηhf (r, p)
SSm (r,α)pα

pα+ α
1−α

− η

 ,

hm(r, t) =
η

η − SSm(r, α)

∫ t

0

hf (r, y)Eα

(
αη

(η − SSm(r, α))(1− α)
(t− y)α

)
dy

+
ηα

(1− α)(η − SSm(r, α))

∫ t

0

hf (r, y)Eα

(
αη

(η − SSm(r, α))(1− α)
(t− y)

)
dy. (28)

Equation (28) can now be replaced in system (26) to obtain

SSf
ABC
0 Dα

t (hf (r, t)) = ∇.(kf .∇hf (r, t))

+η




η
η−SSm (r,α)

∫ t
0
hf (r, y)Eα

(
αη

(η−SSm (r,α))(1−α) (t− y)α
)
dy

+ ηα
(1−α)(η−SSm (r,α))

∫ t
0
hf (r, y)Eα

(
αη

(η−SSm (r,α))(1−α) (t− y)
)
dy


−hf (r, t)

+ qf .

(29)

Let us consider the following function

T1 : H1(0, T )→ H1(0, T )

v → T1v

=AB
0 Iαt



∇.(kf .∇v(r, t))

+η




η

η−SSm (r,α)

∫ t
0
hf (r, y)Eα

(
αη

(η−SSm (r,α))(1−α) (t− y)α
)
dy

+ ηα
(1−α)(η−SSm (r,α))

×
∫ t

0
hf (r, y)Eα

(
αη

(η−SSm (r,α))(1−α) (t− y)
)
dy


−hf (r, t)

+ qf


.

(30)
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The fractional integral used here is known as Atangana-Baleanu fractional integral
and is given as:

AB
0 Iαt f(t) =

1− α
AB(α)

f(t) +
α

AB(α)Γ (α)

∫ t

0

(t− τ)α−1f(τ)dτ. (31)

We aim to prove that T1 possesses Lipschitz condition.
Let us consider the following operator:

B(r, t, v) = ∇.(kf .∇v(r, t))

+η




η
η−SSm (r,α)

∫ t
0
v(r, y)Eα

(
αη

(η−SSm (r,α))(1−α) (t− y)α
)
dy

+ ηα
(1−α)(η−SSm (r,α))

∫ t
0
v(r, y)Eα

(
αη

(η−SSm (r,α))(1−α) (t− y)
)
dy


−v(r, t)

 . (32)

Let h1, h2 ∈ H1(0, T ) then

‖B(r, t, h1)−B(r, t, h2)‖H1(0,T )

≤ ‖∇.(kf .∇h1(r, t))−∇.(kf .∇h2(r, t))‖

+

∥∥∥∥ η

η − SSm(r, α)

∥∥∥∥∫ t

0

‖h1(r, y)− h2(r, y)‖Eα
(

αη

(η − SSm(r, α))(1− α)
(t− y)α

)
dy

+

∥∥∥∥ ηα

(η − SSm(r, α))(1− α)

∥∥∥∥
×
∫ t

0

‖h1(r, y)− h2(r, y)‖Eα
(

αη

(η − SSm(r, α))(1− α)
(t− y)

)
dy

≤ θ1θ2 ‖kf‖ ‖h1 − h2‖

+

∥∥∥∥ ηM2

η − SSm(r, α)
+

ηαM1

(η − SSm(r, α))(1− α)

∥∥∥∥ ‖h1 − h2‖H1(0,T ) + ‖η‖ ‖h1 − h2‖

≤
(
θ1θ2 ‖kf‖+

∥∥∥∥ ηM2

η − SSm(r, α)
+

ηαM1

(η − SSm(r, α))(1− α)

∥∥∥∥+ ‖η‖
)
‖h1 − h2‖H1(0,T )

≤ l1 ‖h1 − h2‖ . (33)

Using the definition of B presented previously, we consider the following operator

Ph =
1− α
AB(α)

B(r, τ, h) +
α

AB(α)Γ (α)

∫ t

0

K(r, τ, h)(t− τ)α−1dτ. (34)

Let h1 and h2 be elements of H1(0, T )

‖Ph1 − Ph2‖H1(0,T ) =

∥∥∥∥∥
1−α
AB(α) {(B(r, τ, h1)−B(r, τ, h2))}
+ α
AB(α)Γ (α)

∫ t
0
(B(r, τ, h1)−B(r, τ, h2))(t−τ)α−1dτ

∥∥∥∥∥
H1(0,T )

≤ 1− α
AB(α)

‖{(B(r, τ, h1)−B(r, τ, h2))}‖H1(0,T )

+
α

AB(α)Γ (α)

∫ t

0

‖B(r, τ, h1)−B(r, τ, h2)‖(t− τ)α−1dτ
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≤ (1− α)l1
AB(α)

+
α

AB(α)Γ 2(α)

∫ t

0

l1 ‖h1 − h2‖ (t− τ)α−1dτ

≤
{

(1− α)l1
AB(α)

+
l1T

α

AB(α)Γ (α)

}
‖h1 − h2‖H1(0,T )

≤
{

(1− α)l1
AB(α)

+
l1T

α

AB(α)Γ 2(α)

}
‖h1 − h2‖H1(0,T )

≤ β1 ‖h1 − h2‖H1(0,T ) . (35)

In this section, the establishment of the existence of the system solutions will be
achieved using the Picard iterative approach. Thus let us consider the following
Volterra equation based on Atangana-Baleanu fractional integral.

hn+1
f (r, t) = Phnf =

1− α
AB(α)

B(hnf , r, τ) +
α

AB(α)Γ (α)

∫ t

0

B(hnf , r, τ)(t− τ)α−1dτ.

(36)
Thus,∥∥∥Phnf − Phn−1

f

∥∥∥
H1(0,T )

=
∥∥∥hn+1

f − hnf
∥∥∥
H1(0,T )

=
1− α
AB(α)

(B(hnf , r, τ)−B(hn−1
f , r, τ))

+
α

AB(α)Γ (α)

∥∥∥∥∫ t

0

{B(hnf , r, τ)−B(hn−1
f , r, τ)}(t−τ)α−1dτ

∥∥∥∥
≤
{

(1− α)l1
AB(α)

+
l1T

α

AB(α)Γ (α)

}∥∥∥hn−1
f − hnf

∥∥∥
H1(0,T )

. (37)

Recursively on n, we obtain∥∥∥Phnf − Phn−1
f

∥∥∥ ≤ { (1− α)l1
AB(α)

+
l1T

α

AB(α)Γ (α)

}n ∥∥h1
f

∥∥
H1(0,T )

. (38)

The choice of l1 such that, for a very large n{
(1− α)l1
AB(α)

+
l1T

α

AB(α)Γ (α)

}n
→ 0. (39)

∥∥∥Phnf − Phn−1
f

∥∥∥ → 0, thus (hnf )n∈∞ to a Cauchy sequence in a Banach space

therefore converge toward hf . Taking the limit on both sides, we obtain

lim
x→∞

hn+1
f = Phnf ⇔ hf = Phf .

This shows that B has a solution and is unique and the unique solution is the solution
of equation (26).

6 Numerical solution with Mittag-Leffler law

We present the numerical solution of the system of equation using the upwind numeri-
cal scheme in space and the Crank-Nicholson in space. We present first the numerical
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approximation of the Atangana-Baleanu fractional derivative in Caputo sense. Let
tn+1 − tn = ∆t, u(tn, xi) = uni .

Then the Atangana-Baleanu fractional derivative in Caputo sense is approximated
as:

ABC
0 Dα

t u(xi, tn) =
AB(α)

(1− α)

∫ tn

0

∂u(xi, T )

∂t
Eα

{
− α

1− α
(tn − τ)α

}
dτ

=
AB(α)

(1− α)

n∑
j=0

∫ tj+1

tj

uj+1
i − uji

∆t
Eα

{
− α

1− α
(tn − τ)α

}
dτ

=
AB(α)

(1− α)

n∑
j=0

uj+1
i − uji

∆t

∫ tj+1

tj

Eα

{
− α

1− α
(tn − τ)α

}
dτ

=
AB(α)

(1− α)

n∑
j=0

uj+1
i − uji

∆t

{
−(tn − tj+1)Eα,2

(
− α

1− α
(tn − tj+1)

)

+(tn − tj)Eα,2
(
− α

1− α
(tn − tj)

)}
=
AB(α)

(1− α)

n∑
j=0

uj+1
i − uji

∆t

{
−∆t(n− j − 1)Eα,2

(
− α∆t

1− α
(n− j − 1)

)

+∆t(n− j)Eα,2
(
− α∆t

1− α
(n− j)

)}
=
AB(α)

(1− α)

n∑
j=0

(
uj+1
i − uji

){
(n− j)Eα,2

(
− α∆t

1− α
(n− j)

)

−(n− j − 1)Eα,2

(
− α∆t

1− α
(n− j − 1)

)}
. (40)

Using the above numerical approximation and the Upwind second order in space, we
obtain the below numerical formula

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)Ssf (ri)

=
kj+1
f − kjf

(∆r)
·

3hnfi − 4hnf(i−1) + 3hnf(i−2)

2(∆r)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i−1)

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1)

2(∆r)2

}
+η{hnmi − hnfi},

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)SSm(ri)

= η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
> 0 (41)
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and

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)Ssf (ri)

=
kj+1
f − kjf

(∆r)
·
−hnf(i+2) − 4hnf(i+1) + 3hnfi

2(∆r)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i−1)

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1)

2(∆r)2

}
+η{hnmi − hnfi},

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)SSm(ri)

= η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
> 0. (42)

Thus with the third order upwind numerical scheme, we obtain

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)Ssf (ri)

=
kj+1
f − kjf

(∆r)
·

2hnfi + 3hnf(i−1) − 6hnf(i−2) + hnf(i−3)

6(∆r)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i−1)

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1)

2(∆r)2

}
+η{hnmi − hnfi},

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)SSm(ri)

= η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
> 0 (43)

and

AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)Ssf (ri)

=
kj+1
f − kjf

(∆r)
·
−2hnf(i+3) + 6hnf(i+2) − 3hnf(i+1) − 2hnfi

6(∆r)

+kif

{
hn+1
f1(i+1) − 2hn+1

f1(i) + hn+1
f1(i−1)

2(∆r)2
+
hnf1(i+1) − 2hnf1(i) + hnf1(i−1)

2(∆r)2

}
+η{hnmi − hnfi},
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AB(α)

(1− α)

n∑
j=0

(hj+1
fi − h

j
fi)

 (n− j)Eα,2
(
−α∆t

1−α (n− j)
)

−(n− j − 1)Eα,2

(
−α∆t

1−α (n− j − 1)
)SSm(ri)

= η(hnmi − hnfi)

if
kj+1
f − kjf

(∆r)
> 0. (44)

7 Model of fractal flow in dual media with heterogeneity
and visco-elasticity properties

In this section, we consider the model with a more complex non-local operator. The
considered operator here is a convolution of power-Mittag-Leffler with the unknown
function. This non-local operator was recently proposed by Atangana on his paper
with title “Derivative with two fractional orders: A new avenue of investigation toward
revolution in fractional calculus” [21]. Therefore using the new established non-local
fractional operator suggested by Atangana, the modified model is given as follows:

{
SSf

AC
0 Dα

t (hf (r, t)) = ∇.(kf .∇hf (r, t)) + η(hm(r, t)− hf (r, t)) + qf
SSm

AC
0 Dα

t (hm(r, t)) = η(hm(r, t)− hf (r, t)).
(45)

The discussion regarding the analysis of existence and uniqueness of exact solution
will not be presented in this section. Rather, the model will be solved numerically.
To do this we present first the numerical approximation of the Atangana fractional
derivative with two order.

AC
0 Dα,β

t (f(x, t))

=
A (β)

1− β
1

Γ (1− α)

∫ t

0

∂tf(x, y) (t− y)
−α

Eβ

(
− β

1− β
(t− y)

α+β

)
dy,

=
A (β)

1− β
1

Γ (1− α)

∫ t

0

f(x, y + ∆y)− f(x, y)

∆t
(t− y)

−α
Eβ

(
− β

1− β
(t− y)

α+β

)
dy,

=
A (β)

1− β
1

Γ (1− α)

n∑
j=0

∫ tj+1

tj

f j+1
i − f ji

∆t
(tn − y)

−α
Eβ

(
− β

1− β
(tn − y)

α+β

)
dy,

=
A (β)

1− β
1

Γ (1− α)

n∑
j=0

(
f j+1
i − f ji

∆t

)∫ tj+1

tj

(tn − y)
−α

Eβ

(
− β

1− β
(tn − y)

α+β

)
dy.

(46)

In the above expression, the integral is given as follows:∫ tj+1

tj

(tn − y)
−α

Eβ

(
− β

1− β
(tn − y)

α+β

)
dy

= (tn − tj+1)
1−α

Eβ,2−α

(
− β

1− β
(tn − tj+1)

β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1− β
(tn − tj)β+α

)
. (47)
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Replacing (47) in (46) we obtain the following numerical approximation

AC
0 Dα,β

t f(xi, tn) =
A (β)

(1− β)Γ (1− α)

n∑
j=1

(
f j+1
i − f ji

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
)  . (48)

Coupling the upwind for second order with the above the numerical solution of
equation (45) is given as:

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
fi − h

j
fi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSf (ri)

=
ki+1
f − kif

∆r

3hnf(i) − 4hnf(i−1) + 3hnf(i−2)

2(∆r)

+kif

{
hn+1
f(i+1) − 2hn+1

fi + hn+1
f(i−1)

2 (∆r)
2 +

hnf(i+1) − 2hnfi + hnf(i−1)

2 (∆r)
2

}
+η
(
hnfi − hnmi

)
,

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
mi − h

j
mi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSm(ri)

= η
(
hnfi − hnmi

)
if

ki+1
f − kif

∆r
> 0. (49)

Otherwise we have the following

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
fi − h

j
fi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSf (ri)

=
ki+1
f − kif

∆r

−hnf(i+2) − 4hnf(i+1) + 3hnf(i)

2(∆r)

+kif

{
hn+1
f(i+1) − 2hn+1

fi + hn+1
f(i−1)

2 (∆r)
2 +

hnf(i+1) − 2hnfi + hnf(i−1)

2 (∆r)
2

}
+η
(
hnfi − hnmi

)
,
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A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
mi − h

j
mi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+

(tn − tj)1−α
Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSm(ri)

= η
(
hnfi − hnmi

)
if

ki+1
f − kif

∆r
< 0. (50)

Coupling the derived numerical approximation with the upwind for third order then
the numerical solution of equation (45) is given as

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
fi − h

j
fi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSf (ri)

=
ki+1
f − kif

∆r

2hnf(i) + 6hnf(i−1) − 6hnf(i−2) + 6hnf(i−3)

6(∆r)

+kif

{
hn+1
f(i+1) − 2hn+1

fi + hn+1
f(i−1)

2 (∆r)
2 +

hnf(i+1) − 2hnfi + hnf(i−1)

2 (∆r)
2

}
+η
(
hnfi − hnmi

)
,

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
mi − h

j
mi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSm(ri)

= η
(
hnfi − hnmi

)
if

ki+1
f − kif

∆r
> 0. (51)

Otherwise we have the following

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
fi − h

j
fi

∆t

)

×

 (tn − tj+1)
1−α

Eβ,2−α

(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSf (ri)

=
ki+1
f − kif

∆r

−hnf(i+3) + 6hnf(i+2) − 3hnf(i+1) − 2hnf(i)

2(∆r)

+kif

{
hn+1
f(i+1) − 2hn+1

fi + hn+1
f(i−1)

2 (∆r)
2 +

hnf(i+1) − 2hnfi + hnf(i−1)

2 (∆r)
2

}
+η
(
hnfi − hnmi

)
,
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Fig. 1. Numerical simulation of system solution with red the quantity of water in a fracture
system and blue in a matrix rock α = 0.5.

Fig. 2. Numerical simulation of water in the fracture network for α = 0.5.

A (β)

(1− β)Γ (1− α)

n∑
j=1

(
hj+1
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j
mi

∆t

)

×
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(
− β

1−β (tn − tj+1)
β+α

)
+ (tn − tj)1−α

Eβ,2−α

(
− β

1−β (tn − tj)β+α
) SSm(ri)

= η
(
hnfi − hnmi

)
if

ki+1
f − kif

∆r
< 0. (52)
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Fig. 3. Numerical simulation of water within the matrix rock for α = 0.5.

Fig. 4. Numerical simulation of system solution with red the quantity of water in a fracture
system and blue in a matrix rock α = 0.75.

8 Numerical simulation for different values of fractional order

In this section, the numerical simulations of the modified groundwater fractal flow
in dual media are presented for different values of fractional order. We consider the
contour plot of the solutions to see the solution in space and time for a given value of
alpha and beta. The aquifer parameters used here are theoretical not measured from
the field however, this section is designed to show readers more scenarios that can be
described using the concept of fractional differentiation. In these simulations, we will
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Fig. 5. Numerical simulation of water in the fracture network for α = 0.75.

Fig. 6. Numerical simulation of water within the matrix rock for α = 0.75.
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Fig. 7. Numerical simulation of system solution with red the quantity of water in a fracture
system and blue in a matrix rock α = 1.

Fig. 8. Numerical simulation of water in the fracture network for α = 1.

not only consider the aquifer parameters in power decay law form, we will suggest
other form and see the effect. The numerical simulations are depicted in Figures 1–9.
The numerical graphics show some interesting real world observations. The numerical
simulation is generated based on the non-local operator with Mittag-Leffler kernel.
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Fig. 9. Numerical simulation of water within the matrix rock for α = 1.

It is important to notice that, the numerical simulation of hydraulic head of water
within the matrix rock and fracture network depend on the fractional order. When
the fractional order is one that is we are dealing with the classical model the hydraulic
change within the fracture network and matrix rock are homogeneous which is correct
because the classical derivative is unable to portray a non-homogeneous scenario. The
numerical simulation when the fractional order is less than 1 show new features that
could not have been pointed out with the classical differentiation. In Figures 1–6 we
can see the flow within a visco-elastic media. More importantly we observe that when
using the fractional differentiation, the total amount of water within the matrix rock
is less than in the fracture network. In addition, one can observe that the water within
the matrix rock is moving toward the fracture and this scenario is always observed
in the real world problem.

9 Conclusion

The flow of groundwater within a given geological formation has been a focus of many
researchers in the last decades due to the importance of the groundwater which is
in many countries a source of fresh water on one hand, in another hand this water
is estimated to constitute about twenty percent of the world’s fresh water supply,
which is about 0.61% of the entire world’s water, including oceans and permanent
ice. One of the top challenge is the geological formation via which this water is
moving. To monitor the flow of these water, one need to construct a mathematical
equation that accounts for some parameters and properties of these aquifers. The
fractal flow model in dual media is perhaps one of the most complex groundwater
flow model as its account for the flow within the fractures network and also the flow
within the matrix rock. One can easily conclude that the flow within a fractional
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does not require more complex mathematical formulas as the medium is considered
to be homogeneous, non-elastic and non-viscoelastic. Nevertheless, the flow within the
matrix rock needs to be modelled with care as the matrix rock may be heterogeneous,
elastic or visco-elastic. The mathematical tools used to construct the partial differen-
tial equation (1) cannot account for heterogeneous, elastic or visco-elastic therefore
a suitable operator of differentiation needs to be used. Thus to include into math-
ematical formula the observed facts, we modified the classical model by replacing
the local derivative with the non-local operator with power kernel, Mittag-Leffler law
and finally with combined both law to obtain power-Mittag-Leffler law. The modi-
fied models were analysed numerically using the upwind for second and third order
approximation in space. Some numerical simulations are presented to see the effect
of power, Mittag-Leffler and Mittag-Leffler-Power laws.
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