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Abstract. The diffusion dynamics of particles in heterogeneous media
is studied using particle-based simulation techniques. A special focus
is placed on systems where the transport of particles at long times ex-
hibits anomalies such as subdiffusive or superdiffusive behavior. First,
a two-dimensional model system is considered containing gas parti-
cles (tracers) that diffuse through a random arrangement of pinned,
disk-shaped particles. This system is similar to a classical Lorentz gas.
However, different from the original Lorentz model, soft instead of hard
interactions are considered and we also discuss the case where the tracer
particles interact with each other. We show that the modification from
hard to soft interactions strongly affects anomalous-diffusive transport
at high obstacle densities. Second, non-linear active micro-rheology in
a glass-forming binary Yukawa mixture is investigated, pulling single
particles through a deeply supercooled state by applying a constant
force. Here, we observe superdiffusion in force direction and analyze
its origin. Finally, we consider the Brownian dynamics of a particle
which is pulled through a two-dimensional random force field. We dis-
cuss the similarities of this model with the Lorentz gas as well as active
micro-rheology in glass-forming systems.

1 Introduction

The transport of particles through frozen or quasi-frozen host structures is ubiqui-
tous in many condensed matter systems. Examples are the protein motion through
crowded cells [1–3], the flow and diffusion of gas molecules through porous media [4]
and the driven motion of tracer particles through supercooled liquids or glasses [5].
Especially for disordered host structures, one often encounters anomalous transport
phenomena, as indicated by a subdiffusive or superdiffusive motion on intermediate
time scales or even asymptotically in the long-time limit. The origin of anomalous
transport is often not well understood on a microscopic level, except for cases where
the transport properties fall into a universality class and thus can be accurately
studied in terms of simple minimal models [6], analogous to the critical behavior of
Ising models in the framework of the theory of phase transitions. In this review, we
present computer simulation studies of different systems, associated with molecular
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transport through heterogeneous media. A special focus is placed on the question to
what extent anomalous transport phenomena in these systems are universal and can
be understood in terms of minimal models or theoretical approaches such as mode
coupling theory [7].
Section 2 is on dilute soft-sphere fluids confined in a random arrangement of

pinned particles that serve as obstacles for the motion of the fluid particles. This sys-
tem is similar to the classical Lorentz gas [8], with the modification of soft instead of
hard interactions between the fluid particles and the obstacles, and we also consider
the case where the fluid particles interact with each other. We show that especially
the modification to soft interactions has consequences on the transport properties
at high obstacle density. Upon increasing the obstacle density, the original Lorentz
gas exhibits a transition towards a localization of the fluid particles. This transition
happens at a critical density, associated with the percolation transition of the void
space, provided for the motion of the fluid particles. At the transition, the fluid par-
ticles move through the fractal structure of the void space and, as a consequence, the
diffusive motion becomes anomalous. We observe that in the modified Lorentz model
with soft interactions this transition is in general rounded. Anomalous diffusion is
still observed, but it is reflected in effective regimes of subdiffusive behavior on inter-
mediate time scales, different from the original Lorentz gas where at the transition
a non-linear, subdiffusive growth of the mean-squared displacement with a universal
exponent is seen in the long-time limit.
In Section 3, a binary glass-forming fluid in its deeply supercooled state is sim-

ulated, applying a technique that in the context of bio- and soft matter systems is
known as active micro-rheology [5]. To this end, single particles are driven through
the system by the application of a constant force. In this manner, a time-scale separa-
tion between the motion of the pulled particle and the surrounding supercooled “host
matrix” is achieved and the pulled particle probes the local viscoelastic properties of
the host fluid. A striking observation in our system is the occurrence of superdiffusion
of the pulled particle in force direction which is connected to a broad waiting time
distribution in the cages of the host fluid.
The system that we consider in Section 4 shares similarities with those of the

two previous sections. Here, a Langevin equation for a particle pulled through a
two-dimensional quenched random force landscape is solved. In one dimensions this
model is well understood and has been extensively studied by Bouchaud et al. [9,10],
displaying a very rich phase behavior with a creeping as well as a superdiffusive regime,
the latter with similar features as those found for active micro-rheology in glass-
forming fluids. Here, we study the two-dimensional version of the Bouchaud model
in order to see to what extent anomalous transport properties such as superdiffusion
in the long-time limit are also seen in two dimensions and not just a special feature
due to the restriction to one spatial dimension.

2 Two-dimensional fluids with randomly pinned particles

2.1 Partly pinned fluid systems

Recently, there have been numerous attempts to shed light on the nature of the struc-
tural glass transition by studying glass-forming systems where a fraction of particles
is pinned [11–16]. Either the pinned particles form a wall with a similar disordered
structure (“amorphous boundary conditions” [11]) or a fraction of particles in the
bulk system is randomly selected and fixed in space. However, as has been nicely
shown by Krakoviack [17,18] for the latter partly pinned systems, the pinning process
does not only couple to the glassy properties of the system under consideration. Al-
ready for normal fluids, i.e., fluids without any glassy properties, thermodynamics
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and transport properties are strongly affected by the pinning process and thus for
glassy systems these effects interfere with those due to structural relaxation in the
corresponding unpinned bulk systems. Furthermore, also in systems with amorphous
boundary conditions, the free energy of the system is different from the correspond-
ing one with periodic boundary conditions, as has been shown in terms of a simple
argument by Cavagna et al. [11] and via thermodynamic integration techniques in a
simulation study of a glass-forming binary Lennard-Jones mixture [19].
As a paradigm for a system with quenched disorder, the classical Lorentz gas has

been investigated by Götze et al. [20–22] in the framework of a mode-coupling theory
which has been shown to be equivalent to a self-consistent kinetic ring theory [23].
Krakoviack has proposed a mode-coupling theory for partly pinned fluids [24,25].
As shown in these works, depending on the density of the fluid and concentration
of pinning sites, there is a competition between diffusion-localization transitions and
the “usual” glass transition. The former transition occurs in a regime of low fluid
densities and is similar to the delocalization-to-localization transition in the classical
Lorentz gas [8], as described in the Introduction.
Here, we consider two-dimensional modified versions of the Lorentz gas where, in

particular, instead of hard disks, soft obstacle particles are considered. In Section 2.2,
we describe a recent experimental realization of a soft Lorentz gas in terms of a
colloidal system. Then, Section 2.3 is devoted to a simulation study of a similar
system that demonstrates that the Lorentz gas with soft interactions is significantly
different from its counterpart with hard interactions in that the boundaries of the
accessible void space are smeared out and therefore, the percolation network of the
system with hard interactions is replaced by a potential energy landscape with finite
barriers between the pores.

2.2 Experimental realization

Two-dimensional colloidal fluids can be realized by sedimenting colloidal particles
onto a glass plate. Thorneywork et al. [26–29] have used such a quasi-two-dimensional
setup with colloidal hard sphere particles and showed that the radial distribution func-
tion is in quantitative agreement with density functional theory and Monte Carlo sim-
ulations of corresponding hard-disk fluids [26,27]. This also holds for the long-time
self-diffusion constant where the colloidal experiment is in quantitative agreement
with Brownian dynamics simulations, provided that the self-diffusion constant at a
given area fraction Φ of the colloids is scaled by the self-diffusion constant at infinite
dilution [27]. Since in Brownian dynamics simulations hydrodynamic interactions are
not taken into account, the agreement of the long-time self-diffusion constants indi-
cates that they do not affect the long-time diffusion of the colloidal hard-sphere fluid
in a quasi-two-dimensional geometry.
A colloidal realization of a Lorentz gas model has been presented by Skinner

et al. [30,31]. Here, a slightly size-disparate mixture of superparamagnetic colloidal
spheres is used. This system is confined between two glass slides such that the larger
particles, forming the obstacle matrix, are immobilized while the smaller ones, the
fluid particles, are free to move. In the absence of a magnetic field the particles
interact with each other like hard spheres. By applying an external magnetic field B
perpendicular to the plane of motion, a soft-repulsive pair interaction between the
superparamagnetic particles proportional to B2/r3 (with r the distance between two
particles) is induced. Thus, by varying the strength of the magnetic field, the area
fractions of the fluid and matrix particles can be controlled in situ without changing
the matrix configuration.
The main findings of the experiments by Skinner et al. [30,31] can be summarized

as follows: With increasing area fraction of the matrix the fluid particles exhibit a
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crossover from delocalized to localized motion. In the delocalized regime, the dynamics
is always diffusive at long times and subdiffusive at intermediate times, provided that
the matrix area fraction is sufficiently high. In the localized regime, the fluid particles
are trapped in finite pockets. This behavior is reminiscent of the delocalization-to-
localization transition in the hard-disk Lorentz gas. However, this is not anymore a
sharp transition at a critical density but it is instead rounded due to the soft-repulsive
matrix-fluid interactions. The mechanism of this rounding has been elucidated by
simulations, presented in the next section.

2.3 Rounded localization transitions in model porous media

In the original Lorentz gas, hard interactions between the fluid particle and the ob-
stacles are assumed and therefore, the obstacles can be seen as infinite “energy bar-
riers” for the motion of the tracer particle. At the percolation transition of the void
space, the structure of the void space is fractal and the diffusion of the fluid particle
through this fractal structure leads to anomalous diffusion in the long-time limit.
This behavior can be directly seen in the mean-squared displacement (MSD) of the
tracer particle, δr2(t) = 〈(rF(t) – rF(0))2〉 (with rF(t) the position of fluid particle at
time t and the angled brackets being an ensemble average). It grows asymptotically as
δr2(t) ∼ t2/z, where z is a universal dynamic exponent that has the value z ≈ 2/3.036
in the two-dimensional case [32].
If one generalizes the Lorentz model by introducing soft instead of hard inter-

actions, the void space that the fluid particle effectively sees depends on its energy.
Energy barriers due to the obstacles are no longer infinite and thus small channels
in the void space that are impervious for fluid particles with a given energy might
be pervious for a fluid particle with a slightly higher energy. As a consequence, the
location of the percolation transition in a soft Lorentz model depends on the energy
of the tracer particle (which is conserved assuming Newtonian dynamics for its equa-
tion of motion). Moreover, for the case of an ideal gas in a disordered arrangement
of soft obstacles, each fluid particle sees a percolation transition of the void space
at a different obstacle density and, as we demonstrate below, the transition from a
delocalized to a localized motion of the fluid particles is rounded.
Molecular dynamics simulations are performed for a two-dimensional soft-sphere

Lorentz gas where matrix (M) and fluid (F) particles interact via a smoothly
truncated, purely repulsive Weeks-Chandler-Andersen (WCA) potential. The ma-
trix structures are obtained as snapshots of high-temperature fluids at equilibrium
(i.e., structural correlations in the matrix are very weak). The effective sizes of fluid
and matrix particles according to the WCA interactions are given by σF and σM,
respectively. Thus, the interaction range of the matrix with respect to the fluid par-
ticles is σWCA = (σM + σF)/2. One hundred statistically independent matrix struc-
tures with up to N = 16000 particles were generated. The number density is fixed
to n = N/L2 = 0.278/σ2M, with L/σM = 240 the linear dimension of the largest used
system. Note that for a finite-size scaling analysis we also considered systems with
smaller numbers of particles. Below, only the results for the largest systems are shown.
For more details on the Lorentz model with WCA interactions and the simulations,
we refer to references [30,33].
As a control parameter for the study of the delocalization-to-localization transi-

tion of this model, we use the reduced density n∗WCA = nσ
2
WCA which is tuned via

the variation of the interaction range σWCA. Two cases are considered: (i) Systems
where the fluid particles have the same energy (corresponding to a microcanoni-
cal ensemble). Here, the energy was numerically obtained from equilibration runs,
where non-interacting tracers were inserted into the matrix and then equilibrated at
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Fig. 1. Upper panel: MSDs of the WCA system for a canonical ensemble of tracers (solid
lines) and tracers with single energy (dashed lines) for different values of n∗WCA, as indicated.
The straight line ∼ t2/z with the dynamic exponent z = 3.036 of the Lorentz model serves
as guide to the eye. Time t is scaled with the factor vth/σWCA where vth = (kBT/m)

1/2 is
the thermal velocity of the tracers (with kBT the thermal energy and m the mass). Lower
panel: local exponent, γ(t), calculated from the MSDs of the upper panel; again solid lines
correspond to a canonical ensemble of tracers (solid lines) and dashed lines to the single-
energy case. The horizontal line indicates the anomalous exponent 2/z with z = 3.036 of the
Lorentz model. From reference [33].

temperature kBT = 1. The average energy per particle in these runs were then taken
as the energy to be used in production runs. (ii) Systems in a canonical ensemble
where the fluid particles have a distribution of energies. So we just took the equili-
brated samples at temperature kBT = 1 as initial configurations for the production
runs. Note that only the second case applies to the experimental setup, described in
the previous section.
Figure 1a displays the MSDs for the fluid particles forming an ideal gas in the

canonical ensemble (solid lines) and those having exactly the same energy (dashed
lines). For n∗WCA ≤ 0.26, the ideal gas and the single-energy system show a linear
growth of the MSD at long times, indicating normal diffusion, and are in quantitative
agreement with each other. This changes at higher densities. While at long times the
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Fig. 2. Diffusion coefficient D of the WCA system for a canonical ensemble of tracers and
the single-energy case as function of the reduced obstacle density n∗WCA. Connected symbols
are obtained directly from the mean-squared displacements, isolated errorbars at higher
densities from finite-size scaling, see text. The solid black line ∝ (n∗WCA,crit − n∗WCA)µ with
the exponent μ = 1.309 of the Lorentz model serves as guide to the eye. Inset: rectification
plot of the same data. From reference [33].

MSD for the one-energy system shows the predicted power law with the exponent
2/3.036 at n∗WCA = 0.32 over about three orders of magnitude in time, the ideal gas
system becomes diffusive even at a density of n∗WCA = 0.40 and it never matches the
critical subdiffusive behavior of the Lorentz model. However, for n∗WCA > 0.4 both
systems are in a localized state, as indicated by the appearance of a plateau of the
MSD in the long-time limit.
The differences between the two systems become even more evident from the

inspection of the local exponent γ(t) of the MSD in Figure 1b. The local exponent is
defined by the following logarithmic derivative of the MSD with respect to time,

γ(t) =
d log(δr2(t))

d log(t)
. (1)

Figure 1b clearly indicates for both systems a transition from a delocalized state at low
densities with γ(t) = 1 for t→∞ to a localized state at high densities with γ(t) = 0
for t→∞. However, only in the one-energy case the expected anomalous diffusion
with γ(t) = 2/3.036 for t→∞ is seen at a critical density of about n∗WCA,crit = 0.32.
In contrast to that, the ideal gas system exhibits a rounded transition around this
critical density.
The difference between the two systems is also apparent in the long-time diffusion

coefficient,

D = limt→∞
δr2(t)

4t
. (2)

According to the prediction for the Lorentz gas, the diffusion coefficient vanishes with
a power law in the vicinity of the critical density [34,35],D ∝ (n∗WCA,crit − n∗WCA)μ for
n∗WCA ≤ n∗WCA,crit. In two dimensions, the prediction for the exponent is μ = 1.309.
While the single-energy system is consistent with the prediction for the Lorentz gas,
the ideal gas system exhibits a finite diffusion coefficient at n∗WCA,crit and a decay
which is weaker than the predicted power law (Fig. 2). This is particularly evident
from the rectification plot given in the inset of Figure 2.
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The modified Lorentz model with WCA interactions only exhibits the critical
dynamics of the original Lorentz model with hard interactions if one considers it in
a microcanonical ensemble where all the tracer particles are set to the same energy.
In the ideal gas case, the distribution of tracer particle energies leads to a rounding
of the delocalization-to-localization transition. As shown in reference [33], one can
assign to each tracer particle as a function of n∗WCA and its energy E an effective
hard-disk interaction diameter σeff(E). From this diameter, a reduced density can be
defined, n∗eff(E) = nσ

2
eff . Then, when one plots the diffusion coefficient as a function

of n∗eff , agreement with the single-energy case is obtained. This means that also in
the ideal gas case each tracer particle can be fully mapped onto the Lorentz model
as a function of its diameter and its energy.
The situation becomes more complicated in the case of interacting tracer particles.

Here, due to the interaction between the tracer particles, each tracer particle samples
the full energy distribution over time. Via collisions among each other, the tracer
particles can help each other over barriers and therefore the void space is not static
anymore as for the non-interacting tracer particles. As a consequence a rounding of the
delocalization-to-localization transition is seen which surprisingly can be accompanied
by the presence of nonlinear, subdiffusive regimes in the MSD over 3–4 orders of
magnitude. However, the exponents for the subdiffusion in this case are non-universal
and depend on the details of the interactions and the density of the fluid of tracer
particles. More details on the soft-sphere Lorentz gas with interacting tracer particles
can be found in references [36,37].
Particularly the results for the soft-sphere Lorentz gas with interacting tracer par-

ticles provide a challenge for mean-field-like approaches such as the mode coupling
theory for pinned particle systems, as proposed by Krakoviack [17,18]. In the frame-
work of such theories, the “dynamic arrangement” of barriers in the void space due to
the interaction between tracer particles cannot be taken into account and thus there
is always a sharp transition from a delocalized to a localized motion at a critical
density.

3 Active non-linear micro-rheology in a glass-forming mixture

Active micro-rheology (AMR) can be seen as a tool to probe the mechanical response
of bio- and soft matter systems on a local scale [5,38,39]. In a typical AMR experiment
on colloidal systems, one pulls an individual tracer particle through the system with
a constant external force f . In the steady state, the tracer has a constant velocity v
and one can define a friction coefficient ξ via ξ = f/v. In the linear response regime,
i.e., at sufficiently low forces, the friction coefficient is independent of f and directly
related to the self-diffusion coefficient, D, of the tracer by a fluctuation-dissipation
theorem, D = kBT/ξ. Approaching the glass transition in glass-forming systems, the
linear response regime shrinks to a window of very small forces and disappears at
the glass transition [40]. Thus, AMR experiments and simulations on glass-forming
fluids are associated with a strong non-linear response (see, e.g., Refs. [41–51]), as
indicated – analogous to shear-thinning in macro-rheology – by a strong decrease of
the friction coefficient as function of the force f . As we show in the following, the
non-linear response in AMR is linked with anomalous diffusion dynamics.
To this end, we perform molecular dynamics simulation of a three-dimensional

glass-forming binary AB Yukawa mixture [52,53]. This is an equimolar mixture at
the number density n = 0.675/d3 (with d the diameter of A particles). Note that
the reduced critical mode coupling temperature of this model is at T = 0.14. Fully
equilibrated configurations were generated in the temperature range, 1.0 ≤ T ≤ 0.14,
as well as configurations at T = 0.1 where the system is in a glass state. These
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Fig. 3. (a) Mean-squared displacement 〈Δx2(t)〉 – 〈Δx(t)〉2 for pulled A particle at T = 0.14.
The curves correspond to the forces f = 0.0, 0.5, 1.0, 1.5, 2.5, 4.0, 6.0, and 10.0 (from right
to left). Note that for f �= 0, the MSDs are multiplied by a factor of 3 to allow for a direct
comparison with the f = 0 case. (b) Effective exponents α as a function of f for different
temperatures, as indicated. From reference [44].

configurations serve as initial configurations for the AMR runs where single parti-
cles are pulled with a constant external force F = (f, 0, 0) in x-direction, assuming
periodic boundary conditions in all three spatial directions. The force f was varied in
the range 5 ≤ f ≤ 30, with f in units of kBT/d. About 1000 independent trajectories
of pulled particles were simulated at each force and temperature to obtain data with
a reasonable statistics. A dissipative particle dynamics (DPD) thermostat is used to
keep the temperature of the system constant [54]. More details on the Yukawa model
and simulations can be found in reference [44].
Anomalous transport can be inferred from the drift-corrected MSD in x-direction,

i.e., in force direction, which is defined by 〈Δx2(t)〉 − 〈Δx(t)〉2 = 〈(x(t)− x(0))2〉 −
〈(x(t)− x(0))〉2. Figure 3a shows this MSD for the A particles at the temperature
T = 0.14 in the force range 0.0 ≤ f ≤ 10.0. With increasing f , the dynamics be-
comes faster and qualitatively different from the f = 0.0 case; a superlinear behavior
〈Δx2(t)〉 − 〈Δx(t)〉2 ∝ tα with α > 1, is seen at long times and intermediate forces.
This can be more clearly inferred from Figure 3b where the exponent α is plotted as
function of f for different temperatures. At T = 0.14, it first increases from about 1.3
to 1.5 in the interval 0.5 ≤ f ≤ 2.5, then it is constant around 1.5 between f = 2.5
and f = 6, before it decreases to 1.0 for f > 6. At higher temperatures the behavior
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Fig. 4. (a) Typical trajectories, x(t), of pulled A particles at T = 0.14 and f = 1.0.
(b) Typical trajectories, x(t), of pulled A particles at f = 1.0 and different temperatures,
as indicated. From reference [44].

of α is qualitatively similar to this temperature, but the effective exponents are sig-
nificantly lower than for T = 0.14. From this, we can conclude that the superlinear
(or superdiffusive) behavior is directly related to the time scale separation between
the motion of the pulled tracer particle and that of the surrounding host fluid. A pro-
nounced superdiffusive behavior is seen if the surrounding host fluid is quasi-frozen
on the time scale of the tracer particle. However, in the limit of very long times, i.e.,
on time scales where the particles of the host fluid exhibit a diffusive motion, one
would expect a crossover to normal diffusion also for the tracer particle.
The time scale separation between the motion of the pulled tracer particle and

the quasi-frozen host liquid is associated by a hopping motion of the tracer from
cage to cage. This is indicated in Figure 4b which shows typical trajectories for the
force f = 1.0. While at high temperatures, say at T = 0.18, the trajectory is relatively
smooth, at low temperatures one can clearly identify the residence in the cage and
the hop to the next cage. Furthermore, the residence time τ in the cages is rather
heterogeneous at low temperatures (cf. the trajectories at T = 0.14 in Fig. 4a). In
fact, waiting time distributions show broad tails towards large values of τ . Below we
will see that a particle pulled through a two-dimensional random force field displays
similar trajectories in force direction. Note also that for large forces the waiting time
distribution does not exhibit any broad tails anymore and therefore, the diffusion in
force direction becomes normal in this case [44,55], see Figure 3.
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Fig. 5. Static random force field through which a particle is pulled with a constant force.

An interesting finding in references [42,44] concerns the dynamics of the pulled
particle perpendicular to the force direction: One can bring the data for the friction
coefficients of A particles at different temperatures and forces onto one master curve
if one plots them as a function of an effective temperature, given by Teff = T + Cf

2

(with C a constant). This also holds for the friction coefficients of B particles as well
as the diffusion coefficients of A and B particles in the direction perpendicular to
the force. However, in each case a different constant C is found [44]. We note that
a similar f2 dependence of the effective temperature is predicted in the framework
of a mean-field theory for Brownian particles in the presence of a strong external
force [56,57]. Further insight on the meaning of the effective temperature for AMR
of glass-forming fluids in the framework of a potential energy landscape picture has
been recently provided by Schroer and Heuer [47].

4 A particle pulled through a two-dimensional random force field

A simple model for a particle pulled through a random environment by a constant drift
force Fdrag has been introduced by Bouchaud et al. [9,10]. Here, a one-dimensional
Langevin equation for a single particle in a spatially random force field Frand(x) is
considered

ξẋ = Frand(x) + η(t) + Fdrag, (3)

with x the position of the particle, ξ a friction coefficient, and η(t) white noise with
zero mean, 〈η(t)〉 = 0, with respect to time t, and delta correlations 〈η(t)η(t′)〉 =
2kBTδ(t− t′) for different times t and t′. The random force field Frand(x) is spatially
delta-correlated as

〈Frand(x)Frand(x′)〉 = σδ(x− x′). (4)

In the following, we refer to the model, defined by equations (3) and (4) as the
Bouchaud model.
The diffusion dynamics of the Bouchaud model can be described in terms of one

control parameter which is given by

μ =
2D0Fdrag
σ

, (5)

with D0 = kBT/ξ the diffusion coefficient of the particle in absence of the random
force field and the pulling force.
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Fig. 6. Sketch that shows how the force on the tracer particle due to the quenched random
force field is computed.

In the long-time limit, the Bouchaud model can be mapped onto a directed walk
among traps with a broad release time distribution, given by a master equation for
a one-dimensional lattice model with a random distribution of asymmetric transition
rates at each lattice site. A remarkable feature of the Bouchaud model is a regime
of asymptotic superdiffusion in the parameter range 1 ≤ μ ≤ 2, correponding to a
regime where the drag force of the walker is sufficiently large such that the walker
sees only very high potential barriers that are associated with the tails of the release
time distribution.
It is tempting to consider the Bouchaud model as a minimal model for the occur-

rence of superdiffusion in connection with the driven transport through heterogeneous
media. However, one has to keep in mind that up to now the Bouchaud model has
only been solved in one dimension and in particular the appearance of superdiffusion
might be a special feature of a driven system in one dimension. Therefore, here we
extend the Bouchaud model to two dimensions and investigate the diffusion dynamics
of this model numerically.
Thus, we solve the two-dimensional version of equations (3) and (4) in terms of a

Brownian dynamics simulation. To this end, equation (3) is integrated using a first-
order Euler algorithm with time step δt = 10−3. The thermal energy kBT and the
friction coefficient ξ are set to unity. To implement the quenched random force field,
the system is divided into a square regular grid of size 1 and at each grid point (i, j)
a random force Frand(i, j) is assigned via a uniformly distributed random number.
Then, at each time step we identify in which cell of the above mentioned lattice the
particle is located; the force exerted on that particle is calculated by a (bi-linear)
interpolation of the four force values on the corners of that cell (see Fig. 6).
As in the one-dimensional case, the transport properties of the two-dimensional

model are controlled by one parameter μ, see equation (5). The characteristic length
scale of the system is x0 = 4D

2
0/σ and the time scale is t0 = x

2
0/4D0. All the results

presented below are given in units of x0 and t0.
To analyze the diffusion dynamics in force direction (x-direction), we compute the

mean-squared displacement in x direction and subtract the drift motion. So as in the
previous Section for AMR, we define

Varx = 〈(x(t)− x(0))2〉 − (〈(x(t)− x(0))〉)2 . (6)

This quantity and the corresponding local exponent γ(t), as defined by equation (1),
are plotted in Figure 7 for different values of μ. Note that at short times Varx grows
linearly with time since we now consider overdamped Brownian dynamics and not
Newtonian dynamics as in the case of AMR in the previous chapter. At μ = 0, normal
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Fig. 7. (a) Varx and (b) the corresponding local exponent γ(t), see equation (1), for different
values of μ.

diffusion is obtained at long times, preceeded by a subdiffusive regime at intermediate
times. For finite values of μ, a superdiffusive regime can be inferred at intermediate
times which might even control the long-time behavior for μ > 1, as in the one-
dimensional Bouchaud model. However, here our simulation results are preliminary
and not conclusive yet. Longer runs are required the results of which will be presented
in forthcoming studies. Nevertheless, similar to the one-dimensional Bouchaud mode
for μ > 2 the dynamics becomes diffusive again.
Although in our simulations Fdrag is aligned with the x-direction, it affects the

transport along the y-direction in a non-trivial manner. Figure 8 shows the mean-
squared displacement in y-direction, δy2(t) = 〈(y(t)− y(0))2〉, as well as the corre-
sponding γ(t). Although for all values of μ, δy2(t) increases linearly in the long-time
limit, it also exhibits a superlinear regime at intermediate times. While we do not yet
understand this feature, we would like to mention that a similar behavior has been
also recently observed in a lattice model of a pulled tracer particle in the presence
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Fig. 8. (a) Mean-squared displacement in y-direction, δy2(t) and (b) the corresponding local
exponent γ(t) for different values of μ.

of obstacles [58]. Note that a superlinear regime in the direction orthogonal to the
driving is not seen for the AMR of glassforming fluids.
Figure 9 shows different trajectories in force direction for different values of μ.

Especially at μ = 0.4 the trajectories look similar to those found in the AMR of the
binary Yukawa mixture (cf. Fig. 4). Fast hops from one minimum in the random
force landscape to the next minimum can be interrupted by long residence times in a
minimum. The trajectories also indicate that the distribution of these residence times,
P (τ), is very heterogeneous and one expects the occurrence of broad tails in P (τ) for
large residence times τ , as in the case of the aforementioned AMR. The analysis of
residence time distributions is the subject of forthcoming studies. Such an analysis is
the key for the understanding of the superdiffusive behavior in both Varx and δy

2 and
will also clarify whether there are ranges of μ values where the superlinear increase
of Varx is seen in the long-time limit.
More information about the dynamics of the pulled tracer particle in the random

force landscape can be obtained from the van Hove correlation functions (displacement
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Fig. 9. The trajectory of a particle which is pulled in the system. The pulling direction is
from left to right but as the particle gets trapped, its motion along the neutral direction is
also impeded.

Fig. 10. The displacement distributions P (Δx) and P (Δy) for μ = 0.4 and different times
in the long-time regime are shown in (a) and (b), respectively.

distribution functions) in both directions, P (Δx) and P (Δy). Here, the displacements
in x and y direction are given by Δx = x(t)− x(0) and Δy = y(t)− y(0), respectively.
The functions P (Δx) and P (Δy) are displayed in Figure 10 for μ = 0.4 and several
times for t ≥ 103, which corresponds to the long-time regime with superdiffusive be-
havior in x-direction. It is remarkable that although the distributions in Figure 10
correspond to the long-time regime, they indicate a significant fraction of particles
that have only moved over short distances and they are still trapped in a minimum
in the random force landscape in which they have already been at time t = 0. Other
particles have meanwhile moved over large distances (note the logarithmic x axis in
Fig. 10). This also reflects the broad distribution of residence times in traps, which
could explain the superdiffusive behavior.
Superdiffusion has also been observed in other model systems, considering the

driven transport of single particles through a heterogeneous medium. Recently, Leit-
mann and Franosch [58] presented an analytical calculation (combined with com-
puter simulations) of a tracer particle on a lattice pulled by a constant force in the
presence of immobile obstacles. For the variance in force direction, Varx, they find
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superdiffusive regimes on intermediate time scales that become more pronounced
with increasing pulling force. In a different lattice model proposed by Bénichou
et al. [59] superdiffusion of driven tracer particles in the long-time limit is induced by
geometrical confinement.
It would be nice to realize simple driven model systems also experimentally. For

colloidal systems, light fields can be used to generate two-dimensional random-energy
landscapes [60,61]. However, it is an open question how these light fields could be
used to obtain a random force field. This is also a subject of forthcoming studies.

5 Summary

In this review, we have studied anomalous transport phenomena that occur with re-
spect to the single-particle dynamics in heterogeneous media. Three different cases
have been considered: (1) two-dimensional fluids diffusing through a medium of ran-
domly pinned particles, (2) active micro-rheology in a three-dimensional glass-forming
binary mixture, and (3) a simple model for a particle pulled through a two-dimensional
random force field. A central question that we addressed in this review was whether
the anomalous transport in these systems is apparent as an effective feature on inter-
mediate time scales or as a universal behavior that is seen asymptotically in the long
time limit. In all three cases, non-universal behavior seems to dominate the diffusion
dynamics in the long-time limit. However, the phenomena that we see can be only
understood with reference to simple minimal models that exhibit universality.
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and David Winter for fruitful collaborations in the framework of the FOR 1394 and Andreas
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33. S.K. Schnyder, M. Spanner, F. Höfling, T. Franosch, J. Horbach, Soft Matter 11, 701
(2015)

34. Y. Gefen, A. Aharony, S. Alexander, Phys. Rev. Lett. 50, 77 (1983)
35. D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems
(Cambridge University Press, Cambridge, 2000)

36. S.K. Schnyder, Anomalous Transport in Heterogeneous Media, Ph.D. thesis, Düsseldorf,
2014

37. S.K. Schnyder, J. Horbach, Unpublished
38. L.G. Wilson, W.C.K. Poon, Phys. Chem. Chem. Phys. 13, 10617 (2011)
39. A.M. Puertas, T. Voigtmann, J. Phys.: Condens. Matter 26, 243101 (2014)
40. S.R. Williams, D.J. Evans, Phys. Rev. Lett. 96, 015701 (2006)
41. P. Habdas, D. Schaar, A.C. Levitt, E.R. Weeks, Europhys. Lett. 67, 477 (2004)
42. D. Winter, J. Horbach, P. Virnau, K. Binder, Phys. Rev. Lett. 108, 028303 (2012)
43. C.J. Harrer, D. Winter, J. Horbach, M. Fuchs, T. Voigtmann, J. Phys.: Condens. Matter
24, 464105 (2012)

44. D. Winter, J. Horbach, J. Chem. Phys. 138, 12 A512 (2013)
45. C.F.E. Schroer, A. Heuer, Phys. Rev. Lett. 110, 067801 (2013)
46. C.F.E. Schroer, A. Heuer, J. Chem. Phys. 138, 12 A518 (2013)
47. C.F.E. Schroer, A. Heuer, J. Chem. Phys. 143, 224501 (2015)
48. R. Wulfert, U. Seifert, T. Speck, Phys. Rev. E 94, 062610 (2016)
49. A. Fiege, M. Grob, A. Zippelius, Granular Matter 14, 247 (2012)
50. T. Wang, M. Grob, A. Zippelius, M. Sperl, Phys. Rev. E 89, 042209 (2014)
51. T. Wang, M. Sperl, Phys. Rev. E 93, 022606 (2016)
52. J. Zausch, J. Horbach, M. Laurati, S.U. Egelhaaf, J.M. Brader, T. Voigtmann,
M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008)

53. J. Zausch, J. Horbach, EPL 88, 60001 (2009)
54. E.A.J.F. Peters, Europhys. Lett. 66, 311 (2004)
55. R.L. Jack, D. Kelsey, J.P. Garrahan, D. Chandler, Phys. Rev. E 78, 011506 (2008)
56. I. Santamaria-Holek, A. Perez-Madrid, J. Phys. Chem. B 115, 9439 (2011)
57. I. Santamaria-Holek, A. Perez-Madrid, J. Chem. Phys. 145, 134905 (2016)
58. S. Leitmann, T. Franosch, Phys. Rev. Lett. 118, 018001 (2017)
59. O. Bénichou, A. Bodrova, D. Chakraborty, P. Illien, A. Law, C. Mej́ıa-Monasterio,
G. Oshanin, R. Voituriez, Phys. Rev. Lett. 111, 260601 (2013)

60. F. Evers, C. Zunke, R.D.L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer,
S.U. Egelhaaf, Phys. Rev. E 88, 022125 (2013)

61. R.D.L. Hanes, S.U. Egelhaaf, J. Phys.: Condens. Matter 24, 464116 (2012)


	1 Introduction
	2 Two-dimensional fluids with randomly pinned particles
	2.1 Partly pinned fluid systems
	2.2 Experimental realization
	2.3 Rounded localization transitions in model porous media

	3 Active non-linear micro-rheology in a glass-forming mixture
	4 A particle pulled through a two-dimensional random force field
	5 Summary
	References

