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Abstract. We are concerned with the dynamical description of the mo-
tion of a stochastic micro-swimmer with constant speed and fluctuating
orientation in the long time limit by adiabatic elimination of the orien-
tational variable. Starting with the corresponding full set of Langevin
equations, we eliminate the memory in the stochastic orientation and
obtain a stochastic equation for the position alone in the overdamped
limit. An equivalent procedure based on the Fokker-Planck equation is
presented as well.

1 Introduction

Recently, there has been an increasing interest in biology, physics and chemistry in
so-called active particles [1–5]. These units are equipped with some kind of propulsive
mechanism which enables them to transform energy into motion, and therefore rep-
resent systems far from thermodynamic equilibrium. Active particles are extensively
studied from the experimental as well as from the theoretical point of view. Examples
of corresponding studies range from investigations of the dynamical behavior of in-
dividual units like motile cells [6–13], over macroscopic animals [14,15] and artificial
self-propelled particles [16–23], to many-body interactions and collective phenomena
in many-particle systems [2,24–33].
We will concentrate on models describing the stochastic motion of an individual

active particle. Such particles are often called Active Brownian Particles (ABP) be-
cause of their similarities to normal Brownian motion [3,34,35]. Thus, at large time
scales both exhibit diffusive behavior, as calculations of the mean square displacement
confirm [36]. Moreover, a crossover from an initial, ballistic to the final, diffusive be-
havior have been reported [3,36,37] as it is known for passive particles [38] and for
correlated random walks [39,40]. Differences occur since an ABP is an object out of
equilibrium contrary to a normal Brownian particle whose motion corresponds to an
equilibrium situation [41,42]. The fluctuating forces acting on ABP originate from
the active nature of the system, such as fluctuations of the propulsion, and not from
thermal noise [43,44].
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More precisely, we will report on a stochastic micro-swimmer moving with con-
stant speed which is a special ABP [3]. Fluctuating forces act only perpendicular
to the instantaneous direction of motion. If these can be described by white noise,
the swimmer performs persistent ballistic motion at small time scales and diffusive
motion at larger scales, similarly to a Brownian particle [36]. For a Brownian particle
as well as for an ABP including the micro-swimmer under consideration, the ballistic
regime is caused by the inertia of the object. Therefore, the description of these two
regimes, and of the transition between them requires a formulation of the equations
of motion in phase space, including coordinates and velocity components, or of the
corresponding kinetic equations for joint probability densities thereof. By contrast, as
well known, if only the diffusive regime is of interest, the system can be modeled by a
much simpler overdamped dynamics [45,46] for coordinates alone, and the effects of
inertia, describing the memory in the velocity variable, can be eliminated. Then, the
velocity as a variable follows instantaneously and without memory the forces acting
on the particle.
We will elaborate on such a procedure for the stochastic micro-swimmer with

constant speed. The variable introducing inertia in this model, which has to be elim-
inated, is the orientation of the velocity. The latter creates the persistent ballistic
motion at small time scales but does not have relevance for the diffusive regime ob-
served at larger time scales. The consistent procedure of adiabatic elimination of this
orientational variable is the main topic of the present work.
First, in Section 2, we review the adiabatic elimination of the velocity in the

description of the normal Brownian particle [46]. It is presented for the Langevin
equation as well as on the level of a kinetic approach, which is similar to the transport
theory in gas dynamics [47]. A similar systematic reduction procedure in case of ABPs
is nowadays still missing. Here, we fill this gap for the simple case of a micro-swimmer
with constant speed as studied in [48–59] and in many other applications. We will
proceed in a similar way as it is presented in Section 2 for a passive Brownian particle.
The corresponding new procedure is presented in Section 3 again on the level of the
Langevin equation and also for the kinetic approach. In Section 4 we summarize our
findings.

2 Adiabatic elimination for Brownian particles

The theory of Brownian motion is connected with such famous names as Einstein [60],
Langevin [38] and Smoluchowski [61]. It was a great success of the developing statis-
tical physics at the beginning of the 20th century being one of the first descriptions
of dynamical fluctuations using stochastic methods. Starting point of the descrip-
tion was the formulation of a Chapman-Kolmogorov-like relation for the probability
density of the particle by Einstein. Soon later, Langevin claimed to have found an
infinitely simpler approach based on a stochastic differential equation. Both, together
with Smoluchowski, can thus be identified as being pioneers in developing tools for
stochastic dynamical problems.

2.1 Adiabatic elimination I: Langevin equation

Langevin’s approach started from Newtonian dynamics in the presence of friction
and impacts described as noise force. Therefore, he explicitly took into account inertia
leading to the persistence of the motion. Einstein, by contrast, obtained results for the
overdamped regime with high damping of the fluid or small masses of the particles,
where inertia can be neglected.
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For the two-dimensional position vector r(t) = (x, y) and the velocity v(t) =
(vx. vy) of the particle, the Langevin approach corresponds to equations of motion
(in the nowadays accepted notation) [62]

d r

d t
= v, m

dv

d t
= −γ v +

√
2γkBT ξ(t), (1)

where m is the mass of the particles and kBT is the thermal energy. The two terms at
the r.h.s. of the second equation describe the interaction with the surrounding liquid.
The first one stands for the Stokes friction with coefficient γ and the second one
models molecular agitation wherein ξ = (ξx, ξy) is a Gaussian noise with vanishing
mean, having independent components ξi and is δ-correlated in time, i.e.,

〈ξ(t)〉 = 0, 〈ξi(t) ξj(t′)〉 = δi,jδ (t− t′) , i, j = x, y. (2)

The prefactor of the noise term is called the noise intensity. It was selected such that
the particle’s velocity obeys a Maxwellian distribution in equilibrium. The latter is
established for t� τγ = m/γ where τγ is the relaxation time of the particle in the
fluid. Hence, the mean squared velocity fulfills the equipartition requirementmv2i /2 =
kBT/2, (i = x, y). The connection of the noise intensity with the friction coefficient
is a static version of the fluctuation-dissipation relation.
Integration of this system of equations yields the well known mean squared dis-

placement (MSD). In detail, for the initial condition r(t = 0) = r0 = 0, it reads in d
dimensions [38]

〈
r2(t)

〉
= 2 d

kBT

γ

[
t +

m

γ

(
exp
(
− γ
m
t
)
− 1
)]
. (3)

For times t � τγ ballistic behavior is found. Oppositely, for t � τγ diffusive behavior
with a linear growth of the MSD with respect to time is observed. The corresponding
time domains can be translated into distances traveled: at distances smaller than
lγ the behavior is ballistic, and crosses over to diffusion at distances larger lγ . The
crossover time is given by the relaxation time τγ , and lγ is known as the brake path,

lγ = τγ
√
kBT/m [46,63]. In the long-time limit, t � τγ , when displacements are

larger than the brake path lγ , this result coincides with Einstein’s finding [60] and
the diffusion coefficient reads approximately

Deff =
1

2 d t

〈
r2(t)

〉 ≈ kBT
γ
. (4)

The approximation is valid by assuming either the mass being small or the friction
being large. Therefore, this limit is called nowadays “overdamped”.
Being interested only in this coarse-grained long-time limit t� τγ and |r| � lγ ,

one might reduce the integration scenario by neglecting the inertia term in (1). To do
this, one usually processes by collecting the large terms at the r.h.s. of the differential
equation, i.e., one formulates [62–69]

dv

d t
= − 1

τγ

(

v −
√

2
kBT

γ
ξ(t)

)

. (5)

Since τγ shall be small the items on the r.h.s. are large supposed that the value of
kBT/γ remains finite. Then, the l.h.s. of equation (5) becomes negligible compared
to each of the two items at the r.h.s. which therefore have to compensate each other.
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Thus effectively it holds that

v =

√

2
kBT

γ
ξ(t). (6)

The validity is also proven since all higher moments of this expression exist. Hence,
as seen in equation (6), for time scales larger than τγ and with the assumed coarse-
graining, the velocity does not change smoothly but becomes irregular white noise
v(t) ∝ ξ(t). In consequence, the autocorrelation function (ACF) of the velocity be-
comes δ-like reading

Kv,v(t − t′) = 〈v(t) · v(t′)〉 = 2 d kBT
γ
δ(t− t′) . (7)

Eventually, insertion of this velocity vector into the first equation of equation (1)
defines the well-known overdamped dynamics for the position of a Brownian particle
[62]

d r

d t
=

√

2
kBT

γ
ξ(t) , (8)

with ξ(t) being a Gaussian white noise with properties defined in (2).
Since the noise is additive we can simply integrate this equation and obtain, after

averaging over different realizations of the noise, for the MSD

〈
r2(t)

〉
=

∫ t

0

∫ t

0

dtdt′Kv,v(t− t′). (9)

After taking the integral over the ACF Kv,v using (7) one finds for the effective
diffusion coefficient exactly the r.h.s. of (4).

2.2 Adiabatic elimination II: Kinetic approach

Elimination of velocities is also possible when starting from the Fokker-Planck equa-
tion (FPE) for the conditional probability density function P (r,v, t|r0 = 0,v0, t0),
which is the transition probability density to find the position and velocity in an in-
finitesimal element drdv around r and v of the phase space at time t having started at
t0 = 0 at the origin and with the initial velocity v0, for simplicity. The corresponding
FPE reads

∂ P

∂ t
= −v · ∂ P

∂ r
+
γ

m

∂

∂ v
·
(
vP +

kBT

m

∂ P

∂ v

)
. (10)

We would like to mention that already Kramers in his seminal work [45] found an
elegant way to eliminate the velocity. Using the factorizing properties of the Fokker-
Planck operator, he was able to derive the diffusion equation for the marginal proba-
bility density ρ(r, t) of the position of the Brownian particle by integrating the FPE
(10) over the velocity along an inclined straight line (see also the discussion in the
excellent book by Becker [46]). Later, many other approaches have been formulated,
including projection operator formalism [64–66]. To our best knowledge none of these
approaches has been applied successfully to the problems of ABP so far. Therefore
here we use a kinetic approach which is based on transport equations for the first
three moments of the velocity. We first demonstrate this approach in application to
a Brownian particle. Later on, the approach is successfully applied to the situation
of the stochastic micro-swimmer with constant speed.
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The asymptotic solution for the marginal distribution of v is a Gaussian corre-
sponding to the Maxwell distribution of velocities. In correspondence to the kinetic
theory of gases, the space- and time-dependent zeroth, first and second moments of
the velocity are introduced. These are the marginal probability density for the position
ρ(r, t), the mean velocity with components ui(r, t), and the variances 〈δvi δvj〉 (r, t)
of the deviations from the mean velocity δvi = vi − ui. In detail, they are defined
as1

ρ(r, t) =

∫
P (r,v, t)dv , ρ(r, t)ui(r, t) =

∫
viP (r,v, t)dv , (11)

ρ(r, t) 〈δvi δvj〉 (r, t) =
∫
(vi − ui(r, t)) (vj − uj(r, t))P (r,v, t)dv , i, j = x, y.

In kinetics these moments obey the transport equations which are balance equations
for the marginal density, momentum and temperature [47]. In our notation starting
from the FPE (10) and by corresponding multiplications and integrations we derive:

∂ ρ

∂ t
+
∂

∂ xk
ρ uk = 0,

∂ ui

∂ t
+ uk

∂ ui

∂ xk
= − γ
m
ui−1
ρ

∂ ρ 〈δvi δvk〉
∂ xk

, (12)

∂ 〈δvi δvj〉
∂ t

+ uk
∂ 〈δvi δvj〉
∂ xk

= 2
γ

m

(
kBT

m
δi,j − 〈δvi δvj〉

)
(13)

−〈δvi δvk〉 ∂ uj
∂ xk

− 〈δvj δvk〉 ∂ ui
∂ xk

with i, j, k = x, y; the summation over the repeating indices is assumed. We closed
the equations by neglecting third moments of deviations from the mean velocity, i.e.,
by assuming 〈δviδvjδvk〉 ≈ 0.
We now examine the asymptotic behavior of these quantities at times longer than

the relaxation time t � τγ . In this limit, the first bracket on the r.h.s. of the equation
for the variances becomes dominant since γ/m = τ−1γ is a large parameter. Therefore,
we can neglect the substantial derivative on the l.h.s. of the dynamics and the remain-
ing items on the r.h.s. yielding in zeroth order of small τγ

〈δvi δvj〉 (r, t) ≈ kBT
m
δi,j + O(τγ) . (14)

The cross-correlations disappear, and the standard deviations for both directions
coincide, become homogeneous, and are time-independent.
Similarly, we proceed for the mean velocity. The substantial derivative can be

assumed to be small compared to the two terms on the r.h.s. of the equation for the
mean velocity at large time scales. The mean velocity will follow the evolution of
the slowly developing density. In consequence, after insertion of (14) the mean flux
in the position space becomes

ρ(r, t)ui(r, t) =
m

γ

∂

∂ xk
ρ 〈δvi δvk〉 ≈ − kBT

γ

∂ ρ

∂ xi
. (15)

The latter is a kind of Fick’s law for the density flux ρ(r, t)ui(r, t). Thus, what remains
as a result of the adiabatic elimination of the mean velocity and of the variances is

1 Strictly speaking, these expressions are moments conditioned by initial values. But, fur-
ther on, we will omit for simplicity these conditions in the arguments of the pdf and of the
moments, and include them via corresponding initial conditions of the moments.
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the resulting continuity equation for the density which reads

∂ ρ

∂ t
=
kBT

γ

(
∂2

∂x2
+
∂2

∂y2

)
ρ(r, t). (16)

Equation (16) describes the normal diffusion of the Brownian particles, and is the
equation derived by Einstein in 1905 [60]. It includes the effective diffusion coefficient
as defined in (4). Hence, by making effectively the same approximation as in the
Langevin approach, we derived the well-know equation for the probability density
ρ(r, t) describing the diffusive behavior in the overdamped regime. Both approaches,
the overdamped Langevin dynamics (8) and the diffusion equation for the probability
density (16) are equivalent models for the description of the probabilistic motion of
a Brownian particle. In the next section we introduce the stochastic micro-swimmer
with constant speed. For the latter we will apply the same approach to formulate an
effective overdamped dynamics for the individual equation of motion as well as for
the kinetic equation for the probability density.

3 Stochastic micro-swimmer

3.1 Active Brownian particle with constant speed

The new physics, making the particle to an active one, can be best formulated on
the level of the Newtonian law for a self-propelled object. Here we consider the two-
dimensional case of an ABP; the point particle is described by its position r(t) and
velocity v(t) at time t. Particles have a polarity which points always along the current
velocity and is represented by an unit vector ev(t) in the direction of velocity. In polar
coordinates (with the polar axis coinciding with the abscissa of the Cartesian system)
we have

ev(t) = (cosφ(t), sinφ(t)) , eφ(t) = (− sinφ(t), cosφ(t)) (17)

whereby the orientation φ(t) ∈ [0, 2π] is the angle from the abscissa to the velocity
vector. In consequence, the velocity vector reads v(t) = v(t) ev(t), where v(t) denotes
the projection of the velocity onto the polarity axes of the particle. Note, that the
value of v(t) does not have a definite sign, it can also move backwards with negative
v(t). The second vector eφ(t) defined in (17) is the unit vector in the direction normal
to the velocity, i.e., with angle shifted by +π/2.
First, we consider the mean deterministic part of the propulsive force which acts

in the direction of the polarity axis, i.e., in the direction ev of the instantaneous
velocity. For simplicity, we assume a constant force γ v0 as reported in [6]. The second
ingredient is given by the stochastic forces. In contrast to normal Brownian motion
in equilibrium, we assume that these are generated by the propulsive mechanism
itself and act in both directions: parallel and perpendicular to the polarity of the
swimmer which coincides with the instantaneous velocity. Complementing this model
with Stokes friction we get the equations of motion in the form

d r

d t
= v = v ev,

dv

d t
= γ v0 ev − γ v +

√
2Dv ξv(t) ev +

√
2Dφ ξφ(t)eφ, (18)

which is a simple model of an ABP. Here and later on the mass m of the particle is
set to unity and omitted. The dependence on the mass can be easily reestablished by
rescaling the noise intensity as Di → Di/m2 , i = v, φ and γ → γ/m. The noise
sources ξv and ξφ are independent with intensities Dv and Dφ; the corresponding
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forces act along the polarity axis and perpendicular to it, respectively. We assume
white Gaussian noises with vanishing mean:

〈ξi(t)〉 = 0, 〈ξi(t) ξi(t′)〉 = δi,j δ(t− t′), i, j = v, φ. (19)

It is important to point out that in contrast to normal Brownian motion the stochastic
forces are multiplicative being dependent on the orientation. We also mention that
more complex settings are discussed in the literature, see [15,43].
The acceleration on the l.h.s. can be decomposed along the two unit vectors as

dv

d t
=
d v

d t
ev + v

dφ

d t
eφ. (20)

Comparison of the r.h.s. of (18) and (20) leads to the equations of motion in the two
perpendicular directions:

d v

d t
= γ (v0 − v) +

√
2Dv ξv(t),

dφ

d t
=
1

v

√
2Dφ ξφ(t). (21)

Notably, the dynamics of the v(t) is independent of the orientation.
Further on, we will consider the model with constant speed, which corresponds

to the assumption Dv = 0. Moreover, we assume γ →∞ which allows to adiabati-
cally eliminate the velocity component v(t) along the polarity axis. Making these two
assumptions we obtain

ṙ = v = v0 ev, φ̇ =
1

v0

√
2Dφ ξφ(t). (22)

This is a frequently-used model for a micro-swimmer moving at a constant speed [31,
33,49,50,52–55,57]. As demonstrated in this section, the stochastic micro-swimmer
with constant speed is a special kind of an ABP [3]. The dynamics is given by the
variation of the orientation which is due to the action of a stochastic force. We em-
phasize that this dynamics is not overdamped since it still has inertia, which is here
expressed by the memory in the orientation φ(t).

3.2 Adiabatic elimination in one dimension

Let us first consider the motion in projection on the x-axis of the Cartesian system.
The velocity of this projection is not a constant since it changes with the orientation
φ(t). The corresponding system of stochastic differential equations reads

ẋ = vx = v0 cosφ, φ̇ =
1

v0

√
2Dφξφ(t). (23)

Taking the derivative of the velocity in (23) results in the compact representation

v̇x = − sinφ
√
2Dφ ξφ(t) . (24)

With multiplicative noise we have to declare the stochastic integration rule which will
be used. In our physical model we interpret white noise as the limit of a short time
correlated noise, i.e., the noise correlation time is small compared to all relevant time
scales of the model. Then it is straightforward to formulate the problem by means of
the Stratonovich calculus [69–73]. Therein, variable transformations can be performed
also without additional Ito-terms.
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This yields the stochastic differential for the velocity increment

dvx = −v0 sin
(
φ+
dφ

2

)
dφ (25)

where the angular increment is a scaled Wiener-process:

dφ =
1

v0

√
2Dφ dWt (26)

with first and second moments given by 〈dWt〉 = 0, 〈dWt dWt′〉 = 0, for t �= t′, and
〈(dWt)2〉 = dt.
Using trigonometric theorems, equation (25) can be rewritten as

dvx = − v0
[
sinφ cos

(
dφ

2

)
+ cosφ sin

(
dφ

2

)]
dφ . (27)

Since the angular increment is infinitesimal, dφ� 1, insertion of equation (26) gives

dvx = −
√
2Dφ sinφdWt − Dφ

v0
cosφ (dWt)

2 . (28)

Note that the orientation φ(t) in this expression is statistically independent of the in-
crement of the Wiener process dWt being generated after t. Then we use the fact that
cosφ = vx/v0 and the property of the Wiener process that the non-averaged squared
increment behaves as (dWt)

2 = dt + O(dt3/2) [74]. This yields for the stochastic
differential in first order of dt and second of dWt

dvx = −
√
2Dφ sinφdWt − vx

v20
Dφ dt . (29)

From this differential form we can return to the stochastic differential equation which
results in the Ito equation within the Stratonovich calculus reading

v̇x = −Dφ
v20
vx − sinφ

√
2Dφ ξφ(t) . (30)

This equation will allow for an adiabatic elimination of the velocity components vx.
The characteristic time scale τφ = v

2
0/Dφ describes the crossover between the ballistic

and the diffusive behavior. On longer time scales t � τφ the parameter τφ acts as a
small parameter. Rewriting (30) as

v̇x = − 1
τφ

(

vx + sinφ

√

2
v40
Dφ
ξφ(t)

)

, (31)

the r.h.s is much larger and one can expect a fast relaxation of the velocity component
by setting effectively v̇x = 0. Just like for the Brownian motion, see equation (8), the
two items on the r.h.s. compensate. Therefore, the velocity becomes white noise

ẋ = vx = − sinφ
√

2
v40
Dφ
ξφ(t) . (32)

This equation formulates the overdamped dynamics of the x- components of a micro-
swimmer with constant speed. It links the velocity component to an instantaneous



Recent Advances in Nonlinear Dynamics and Complex Structures 2047

orientation φ(t). It has to be noticed that this random orientation is independent
from the instantaneous value of the noise ξφ(t) at the present time t arising from the
increment of the Wiener process dWt generated after t.
By setting v̇x = 0 at times t� τφ the angular velocity φ̇ consequently van-

ishes as well. This is seen in equation (25). Hence the history of the orientation
φ(t) as given by equation (26) is lost. The value of φ in equation (32) is given
by a series of independent random numbers generated from the probability density
of P (φ, t). The latter, as shown in Appendix A, becomes stationary and homoge-
neously distributed in [ 0 , 2π ] at the considered time scales t � τφ, i.e., P (φ, t)→
P 0(φ) = 1/2π.
From equation (32) one also sees that there is no motion for φ = 0 ;π. This results

from the fact that the angular noise acts perpendicular to the current orientation. Cor-
respondingly, the increments of horizontal position become largest for φ = π/2 ; 3π/2.
This is confirmed by the velocity ACF given by

〈vx(t)vx(t′)〉 = 2v
4
0

Dφ
sin2(φ) δ(t− t′) (33)

as a function of φ. It vanishes along the x-axis and becomes maximal with perpen-
dicular orientation.

3.3 Adiabatic elimination in two dimensions

Now we elaborate on the effective overdamped dynamics in two dimensions. We pro-
ceed in a similar way as in the previous section. However, the situation is a bit more
complicated since the motion in projections on both axes is correlated due to the
action of a single noise source.
Taking the derivatives of the vector v = v0ev one gets the equations of motion

which read
v̇ = v0eφ φ̇ = eφ

√
2Dφ ξφ(t), (34)

where we have inserted the corresponding dynamics for the orientation φ as in
equation (23). Thus, as assumed in the model, the acceleration acts perpendicular
to the velocity. We note that both vector components have the same acting noise at
time t [49,50,52]. Applying the Stratonovich calculus gives for the increments of both
velocity components vx(t) = v0 cos(φ(t)) and vy(t) = v0 sin(φ(t)) in lowest order in
dWt and dt

dvx = −vx
v20
Dφ dt − sinφ

√
2Dφ dWt , dvy = −vy

v20
Dφ dt + cosφ

√
2Dφ dWt .

(35)
Returning to the stochastic differential equations and assigning again τφ = v

2
0/Dφ,

we get:

v̇ = − 1
τφ

(

v −
√

2
v40
Dφ
eφ ξφ(t)

)

. (36)

First, we underline that in (36) the noise ξφ(t) and the orientation φ are independent
from each other since the increment of the Wiener process in the interval [t, t+ dt]
is independent from its value at time t. Secondly, it is worth pointing out that the
noise ξφ(t) and the current orientation φ(t) have identical values for both vector
components.
Equation (36) allows again for the adiabatic elimination of the velocity as a vari-

able for t � τφ and for spatial increments larger than lφ. Under those assumptions
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τφ is again a small parameter forcing a fast relaxation of the velocity vector. We put
the l.h.s. of the equation (36) to zero and solve the r.h.s. for the velocity v(t). Just
like in our previous discussion this assumption has as a consequence that, according
to equation (34), any history of φ(t) disappears, and the values of φ(t) become inde-
pendent. As shown in Appendix A, the wrapped φ is homogeneously distributed in
the interval between 0 and 2π.
Hence, for times t � τφ the velocity transforms into scaled white noise

ṙ = v =

√
2 v40
Dφ
eφ ξφ(t) . (37)

This vector equation is the sought-after overdamped dynamics of the two-dimensional
micro-swimmer2. Both components of the velocity are correlated due to the same
random orientation eφ(t) given by the value of φ at time t and due to the same noise
ξφ(t) defining the strength of the torque acting on the particle. The x-component
vanishes if the random orientation φ(t) points along the x-direction. Respectively,
the y-component vanishes if the orientation is parallel to the y-direction. The reason
is that in the model no change in the speed is allowed, and the noise is perpendicular
to the polarity axis showing in the velocity direction.
Scalar multiplication of the r.h.s. of (36) with itself and averaging over different

realizations of noise gives the memoryless velocity ACF:

〈v(t) · v(t′)〉 = 2v
4
0

Dφ
δ(t− t′) . (38)

This expression is independent of the current value of the orientation φ(t) which
expresses the homogeneous distribution of the orientation. Nevertheless, the contri-
butions of the different components still depend on the random orientation.

〈vx(t) vx(t′)〉 = 2v
4
0

Dφ
sin2(φ) δ(t− t′) , 〈vy(t) vy(t′)〉 = 2v

4
0

Dφ
cos2(φ) δ(t− t′) . (39)

For the cross-correlation function of the two velocity components we get

〈vx(t) vy(t′)〉 = − 2v
4
0

Dφ
sin(φ(t)) cos(φ(t′)) δ(t− t′). (40)

Properties of (39) and (40) define the mean squared increments per unit time. From
these one can derive the corresponding two-dimensional Smoluchowski equation for
the probability density ρ(x, y, t) corresponding to (37). It reads

∂ ρ

∂ t
=
v40
Dφ

(
− ∂
∂ x
sinφ+

∂

∂ y
cosφ

)2
ρ. (41)

Alternatively, the mean square displacement can be easily calculated by using the
connection between the MSD and the ACF (9). Insertion of (38) and taking the initial
condition again in the origin r0 = 0 results in

〈r2(t)〉 = 2 v
4
0

Dφ
t . (42)

2 We acknowledge the unknown referee for giving the hint that the found overdamped
dynamics of a micro-swimmer with constant speed is independent of the dimensionality of
the motion.
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The effective diffusion coefficient defined in (4) becomes for the two dimensional case
of an overdamped stochastic micro-swimmer with constant speed

Deff =
v40
2Dφ

. (43)

It is the awaited result in the long time limit as first obtained by Mikhailov and
Meinköhn [36].

3.4 Average over random orientations

We derived a memoryless description for the stochastic micro-swimmer with constant
speed and obtained normal diffusive behavior with the awaited diffusion coefficient.
Some remarkable differences from the case of an overdamped Brownian particle must
however be stressed. For example, displacements along the x and y-axes are still
correlated, as expressed by the cross-correlation function (40).
To describe the uncorrelated diffusive behavior one can make another reductive

step using the fact that the orientations are homogeneously distributed at large time
scales t� τφ as mentioned several times before. When averaging over the uniformly
distributed orientations, both velocity components become uncorrelated. Averaging
equation (40) results in

〈〈vx(t)vy(t′)〉〉φ = 0 . (44)

If we assume the distributions of vx and vy at t� τφ to be Gaussian, the components
of velocity get to be statistically independent and identically distributed:

〈〈vx(t)vx(t′)〉〉φ = 〈〈vy(t)vy(t′)〉〉φ =
v40
Dφ
δ(t− t′) . (45)

Therefore, as a consequence of the elimination procedure and of the averaging over
the orientation, both components of the velocity can be modeled as being forced by
two independent white noise sources

ẋ =
v20√
Dφ
ξx(t) , ẏ =

v20√
Dφ
ξy(t) (46)

as defined in (2). Resulting trajectories, as presented in Figure 1c are statistically
indistinguishable from the description in Section 3.3 which sample paths are shown
in Figure 1b. The independence of the components of the velocity also follows imme-
diately from the following discussion: The stochastic process (46) can be described by
the probability density ρ(x, y, t|x0, y0, t0) which obeys the two-dimensional diffusion
equation

∂

∂t
ρ =

v40
2Dφ

(
∂2

∂x2
+
∂2

∂y2

)
ρ , (47)

which can be obtained by averaging (41) over the random orientation. From (47),
we can read again the effective diffusion coefficient as presented in (43). The inde-
pendence of velocity components follows from variables’ separation in this equation
under which the PDF factorizes. We underline, that the crossover time to the dif-
fusive motion with an effectively overdamped dynamics coincides with relaxation
time of the velocity components which is τφ = v

2
0/Dφ. It is just the time where

the initially inhomogeneous orientations are forgotten, and the orientation becomes
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Fig. 1. Trajectories of N = 1000 simulated particles in two dimensions (t = 10 τφ). left:
Micro-swimmer with inertia, equation (22); middle: Swimmer with random orientation
and one stochastic force, equation (37); right: Swimmer with two independent stochastic
forces, equation (46). Different colors show different trajectories. Parameters: N = 1000;
v0 = 1;Dφ = 0.1; dt = 0.02.

Fig. 2. Simulated MSD in two dimensions: Comparison of the three different dynamics as
labeled. The dashed line indicates the crossover time between the ballistic and the diffusive
motion. Parameters are: N = 10000; v0 = 1;Dφ = 0.1; dt = 0.02.

homogeneously distributed. Beyond this time the motion of the micro-swimmer with
constant speed becomes statistically indistinguishable from the motion of a Brownian
particle. The difference is that the diffusion coefficient scales counter-intuitively with
the intensity of the applied angular noise behaving as Deff ∝ 1/Dφ and decreasing
when this intensity increases, whereas the normal diffusion enhances with increasing
noise.
In Figure 1 we show sample paths for the two dimensional stochastic micro-

swimmer with constant speed. The left graph shows the micro-swimmer with inertia
(22), the middle graph the memoryless dynamics with random orientations accord-
ing to (37). In the right graph trajectories are presented with two independent noise
sources, corresponding to (46). Both approximations exhibit the same diffusive be-
havior where the diffusion coefficients converges to the asymptotic value of the case
with inertia as presented in Figure 2. The mean square displacement of the latter one
is smaller compared to the overdamped dynamics due to the initial ballistic growth.

3.5 Adiabatic elimination: kinetic approach

In this section we derive the Smoluchowski equation for the micro-swimmer with
constant speed following the kinetic approach in Section 2.2. The starting FPE for
the joint transition probability density P (r, φ, t|r0 = 0, φ0, t0) of the position r and
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orientation φ at time t of the micro-swimmer with constant speed which has been
started at t0 in r0 with orientation φ0. It reads

3:

∂ P

∂ t
= − v0 ∂

∂ r
· ev P + Dφ

v20

∂2

∂φ2
P. (48)

We derive again transport equations for the zeroth, first and second moments of the
orientation which are

ρ(r, t) =

∫
P (r, φ, t) dφ , ρ(r, t)ui(r, t) = v0

∫
evi P (r, φ, t) dφ , (49)

ρ(r, t) 〈δvi δvj〉 (r, t) =
∫
(v0 evi − ui(x, t))(v0 evj − uj(x, t))P (r, φ, t) dφ.

Multiplication with zeroth, first and second powers of cos(φ) and sin(φ) and integra-
tion over φ results in the three transport equations

∂ ρ

∂ t
+
∂

∂ xk
ρ uk = 0,

∂ ui

∂ t
+ uk

∂ ui

∂ xk
= −Dφ

v20
ui − 1

ρ

∂ ρ 〈δvi δvk〉
∂ xk

, (50)

∂ 〈δvi δvj〉
∂ t

+ uk
∂ 〈δvi δvj〉
∂ xk

= 2
Dφ

v20

(
v20δi,j − ui uj − 2 〈δvi δvj〉

)
(51)

− 〈δvi δvk〉 ∂ uj
∂ xk

− 〈δvj δvk〉 ∂ ui
∂ xk

.

In these equations we can eliminate the first and second moments at times larger
than the relaxation time t � τφ assuming large noise Dφ or small velocities v0. Since
in this case the terms on the r.h.s. of the corresponding balance equations are large,
the substantial derivatives in their l.h.s. can be set to zero. From the equation for the
variance 〈δvi δvj〉 we get

〈δvi δvj〉 ≈ 1
2

(
v20δi,j − ui uj

)
+ O(τφ) , i, j = x, y, (52)

where we assumed small variations of the mean velocities ∂ui/∂xk which would con-
tribute to the variances in O(τφ). The fact that the variance depends on the compo-
nents of the mean velocity expresses the conservation of the mean kinetic energy (the
kinetic energy of a particle moving at a constant speed is constant). This is clearly
expressed by

u2x + u
2
y + 〈(δvx)2〉+ 〈δvy)2〉 = v20 . (53)

The approximation (52) obeys this conservation law on the average. It represents a
kind of equipartition of the kinetic energy between both degrees of freedom: each de-
gree on the average obtains v20/2. For the mixed components one gets correspondingly
on the average ux uy + 〈δvx δvy〉 ≈ 0.
Setting the l.h.s. to zero in the balance for the mean velocity results in

ρ ui ≈ − v
2
0

Dφ

∂

∂ xk
〈δvi δvk〉 ρ. (54)

Insertion of equation (52) into equation (54) and of the resulting expression into the
continuity equation finally gives

∂ ρ

∂ t
=
τφ

2
v20

(
∂2

∂x2
+
∂2

∂y2

)
ρ− τφ

2

(
∂

∂ x
ux +

∂

∂ y
uy

)2
ρ. (55)

3 Again we omit the condition in the transition pdf and formulate corresponding initial
conditions for the moments.
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Eventually, we obtained the equation for the marginal probability density of the
position ρ(r, t) which is a valid approximation to characterize the dynamics of the
micro-swimmer. So far still containing the mean velocity, it is not a closed description.
Both terms are of linear order in τφ. However, we have to point out that the first one is
multiplied by v20 whereas the second one contains the components of the mean velocity
ux, uy. Though the mean velocities scale with the speed v0, their values are much
smaller than the constant speed if a sufficiently strong noise acts on the orientation.
Neglecting in this situation consequently the second term in equation (55) yields the
two-dimensional diffusion equation (47) with the constant diffusion coefficient (43). Its
solution gives the expected approximation for ρ(r, t). Otherwise, as always in cases
where the motion is bounded by a maximal velocity, the diffusion approximation
breaks down at the wings of the distribution. It happens in our case, when the mean
velocity gets of the order of v0.

4 Conclusions

We have been concerned with a stochastic micro-swimmer with constant speed and
random orientation. This special type of an ABP performs ballistic motion at time
scales smaller than the crossover time τφ and exhibits normal diffusion at larger time
scales. Our main purpose was to find an approach to an adiabatic elimination of the
orientation of the velocity as a persistent variable, and to formulate a memoryless dy-
namics for the position of the particle in the diffusive regime. In analogy to the known
theory of a normal Brownian particle which was revisited in Section 2, we have derived
in Section 3 the overdamped dynamics of the projection of the motion onto a given
direction (32) and also for the full two-dimensional case, equation (37). On the basis
of stochastic differential equations we elaborated systematic elimination procedure.
In addtion we propose a kinetic approach where we eliminate systematically the first
and second spatio-temporal moments of the velocity and remain with the marginal
density ρ(r, t) to find the particle at time t at position r. In both approaches resulting
equations still reflect important microscopic properties of the micro-swimmer as, for
instance, the conservation of kinetic energy. Only after averaging over random orien-
tations the particles loses this property and the description becomes similar to that
of a normal overdamped Brownian particle.

The authors cordially congratulate Ulrike Feudel on occasion of her birthday and thank for
a long-lasting friendship. This work was supported by the Deutsche Forschungsgemeinschaft
via IRTG 1740.

Appendix A: Angular probability density function

The marginal probability density P (φ, t|φ0, t0) of the orientation of active Brownian
particles obeys the Smoluchowski equation. The latter can be obtained by integrating
the FPE (48) over the position vector r which results in

∂P (φ, t|φ0, t0)
∂t

=
Dφ

v20

∂2P (φ, t|φ0, t0)
∂φ2

. (A.1)

For this parabolic equation the time-dependent solution for 2π-periodic boundaries
is known [75]

P (φ, t|φ0, 0) = 1
π

(
1

2
+
∞∑

n=1

cos[n(φ− φ0)]e−n
2 Dφ

v20
t

)

. (A.2)
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For t � τφ= v20/Dφ the probability spreads homogeneously over the [0, 2π] interval:

P 0(φ) =
1

2π
. (A.3)

The characteristic time scale of the system is the relaxation time τφ after which the
first Fourier mode decays.

Appendix B: Mean squared displacement of the stochastic micro-
swimmer with constant speed

In 1997 Mikhailov and Meinköhn [36] derived the effective diffusion constant for the
micro-swimmer with constant speed using the relation between the MSD and ACF
(9) and using the solution of the Smoluchowski equation for the orientations given
above in Appendix A. Here we review their results shortly. The discussion is valid
both in the ballistic and in the diffusive regime.
The mean square displacement can be calculated using (9) which for the micro-

swimmer with constant speed explicitly reads

〈r2(t)〉 = v20
∫ t

0

∫ t

0

dt1dt2〈cos(φ(t1) − φ(t2))〉. (B.1)

Here φ(t1), φ(t2) are the orientations of motion at the two times t1 and t2, respectively,
and the average has to be taken over their probability distribution, equation (A.2).
Calculating the integrals leads to the result for the mean square displacement found
by Mikhailov and Meinköhn:

〈r2(t)〉 = 2v
4
0

Dφ
t +

2 v60
D2φ

[
exp

(
− Dφt
v20

)
− 1
]

(B.2)

Similarly to equation (3), it describes the ballistic and the diffusive behavior. For
times t � τφ the second term can be neglected and the MSD scales linearly in time
with the diffusion coefficient given by equation (43). Linear growth in time is obtained
at a coarse grained scale |r| � lφ = v0τφ = v30/Dφ.
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27. E. Bertin, M. Droz, and G. Grègoire, Phys. Rev. E 74, 0222101 (2006)
28. T. Ihle, Phys. Rev. E 83, 030901 (2011)
29. T. Ihle, Phys. Rev. E 88, 040303 (2013)
30. R. Großmann, L. Schimansky-Geier, P. Romanczuk, Phys. Rev. Lett. 113, 258104 (2014)
31. R. Großmann, F. Peruani, M. Bär, New J. Phys. 18, 043009 (2016)
32. H. Seyed-Allaei, L. Schimansky-Geier, M.R. Ejtehadi, Phys. Rev. E 94, 062603 (2016)
33. A. Patch, D. Yllanes, M.C. Marchetti, Phys. Rev. E 95, 012601 (2017)
34. F. Schweitzer, W. Ebeling, B. Tilch, Phys. Rev. Lett. 80, 5044 (1998)
35. F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural
and Social Sciences, Synergetics (Springer, 2003)
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