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Abstract. In this paper, we describe a periodically-forced oscillator
with spatially-periodic damping. This system has an infinite number of
coexisting nested attractors, including limit cycles, attracting tori, and
strange attractors. We are aware of no similar example in the literature.

1 Introduction

Recently there has been an increasing effort in constructing new chaotic attractors
with pre-designed types of equilibria [1–12]. These systems include dynamical systems
with no equilibrium points [13–21], with only stable equilibria [22–27], with curves of
equilibria [28–30], with surfaces of equilibria [8,9], and with non-hyperbolic equilib-
ria [31,32]. Many of these examples belong to a new category of dynamical systems
with hidden attractors [33–42]. That may be the reason such systems were rarely
found in the past, and only recently have such examples been reported in the litera-
ture. However, all the mentioned efforts have focused on the structure and character-
istics of their equilibria, while there are other important features in chaotic systems
such as the shape and topology of the strange attractor [43–45]. Designing chaotic
systems with desired properties unrelated to equilibria has progressed recently with
the help of fast computers. Some examples are chaotic systems with different kinds of
symmetry [46–48], with multi-scroll attractors [17,49–56], and with the algebraically
simplest equations [57–61].
One important category of chaotic systems includes periodically-forced nonlinear

oscillators [62], of which the van der Pol system in one of the oldest [63–66]. This sys-
tem is actually a linear oscillator but with a spatially-dependent nonlinear damping.
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Fig. 1. The first four limit cycles of System (1) for initial conditions (x0, v0) = (nπ, 0) with
n = 1, 3, 5, 7.

Multistability is one of the most important phenomena in dynamical systems
[67–76] since it occurs in many areas of science including physics, chemistry, biol-
ogy, economics, and nature. The attracting state of a multistable system depends
on the initial conditions in addition to the usual sensitive dependence on initial con-
ditions that characterizes a chaotic system and precludes long-term predictability.
Multistability can be undesirable, for example, in the design of a commercial device
with specific characteristics where it is necessary to stabilize the desired state in the
presence of noise [72]. On the other hand, multistability allows flexibility in the sys-
tem performance without changing parameters, and that can be used with the right
control strategies to induce a switching between different coexisting states [72].
In this paper, we describe a chaotic system similar to the forced van der Pol

oscillator but with a spatially-periodic damping. It has an infinite number of nested
coexisting hidden attractors of different types including limit cycles, tori, and strange
attractors. These coexisting attractors form a layered structure similar to cabbage.
We use the term megastability for such a system with an infinite number of attractors.

2 The proposed system

Consider the following (2-D) system which is discussed in [77],

ẋ = v

v̇ = −x+ v cosx. (1)

For small values of x, System (1) reduces to the van der Pol equation since cosx can

be Taylor expanded as cosx = 1− x22 + . . .. However, larger values of x give regions
of damping and antidumping that are periodic in x with period 2π, creating an
infinite set of nested limit cycles, the first four of which are shown in Figure 1. These
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Fig. 2. First four coexisting attractors of System (3) for initial conditions (x0, v0) = (nπ, 0)
with n = 5, 7, 9, 11.

attractors are accessed by choosing initial values of x0 that are odd multiples of π
with an initial velocity of v0 = 0 with the result that the orbit is trapped in regions
of antidamping bounded by regions of damping. The innermost of these limit cycles
resembles the solution of the familiar van der Pol equation.

System (1) has a single equilibrium at the origin (0, 0) with eigenvalues of 1±i
√
3

2
which means it is an unstable focus. Initial conditions in its vicinity spiral outward to
the first limit cycle, making that attractor self-excited. However, all the other limit
cycles are hidden since their basins of attraction do not include the neighborhood of
any equilibria.
As with the van der Pol equation, a temporally-periodic forcing function can be

added to System (1), giving a system whose most general form is

ẋ = v

v̇ = −ω2x+ v cosx+A sin(Ωt). (2)

It was earlier noted that this system can have chaotic solutions for an appropriate
choice of parameters [62]. Here we take ω = 0.33, A = 1, and Ω = 0.73, which is one
of many islands of chaos in the 3-D parameter space with dynamics typical of the
other such regions but with an especially large Kaplan-Yorke dimension. The resulting
system is given by

ẋ = v

v̇ = −(0.33)2x+ v cosx+ sin(0.73t). (3)

Figure 2 shows the coexisting attractors for System (3). The innermost attractor
is chaotic with Lyapunov exponents of (0.0063, 0,−0.0573) and a Kaplan-Yorke
dimension of 2.1100. The next one is weakly chaotic with Lyapunov exponents
of (0.0005, 0,−0.0162) and a Kaplan-Yorke dimension of 2.0317, and the rest are
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Fig. 3. Poincaré section of the first five coexisting attractors of System (3) in the plane
(tmod2π) = π with their respective basins of attraction in color.

attracting tori with two zero Lyapunov exponents and one negative one. The nega-
tive exponent is given by the time average of cosx along the orbit and approaches zero
as the orbit approaches a circle for large values of x. The layered structure resembles
a red cabbage.
Another way to visualize the nested attractors is through a plot of their basins of

attraction as shown in Figure 3. This plot shows a Poincaré section the first five
attractors at values of time given by (tmod 2π) = π with cross sections of their
respective basins in color. The basin boundaries for the tori are relatively smooth, but
the basin boundary for the two inner strange attractors appear to have some fractal
structure.
Yet another way to visualize the multiple attractors is through a plot of the

Lyapunov exponents (LEs), Kaplan-Yorke dimension (DKY ), and maximum values
of x(xm) as a function of the initial value of x(x0) for v0 = 0 as shown in Figure 4a.
Five attractors of successive larger size are clearly indicated with an abrupt transi-
tion between them as the basin boundaries are crossed. The positive largest LE and
DKY > 2 confirm that the first two are chaotic, while the others are quasiperiodic as
indicated by the two zero Lyapunov exponents and the Kaplan-Yorke dimension of 2.0.

3 Bifurcation analysis

It is instructive to examine the transition from System (1) to System (3) by
using the forcing amplitude A in equation (2) as a bifurcation parameter with initial
conditions (x0, v0) = (π, 0). Figure 4b shows such a plot. For A > 0 but small, the
limit cycle nearest the origin becomes a thin torus that grows in size until the two
frequencies suddenly lock around A = 0.209 forming a limit cycle. The limit cycle
increases in size and period until it collides with the surrounding torus and becomes
chaotic around A = 0.65. The resulting strange attractor continues to increase in
size, but with quasiperiodic windows until it merges with the next larger torus around
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Fig. 4. (a) Lyapunov exponents, Kaplan-Yorke dimension, and maximum values of x versus
initial value of x for System (3) with v0 = 0. (b) Lyapunov exponents, Kaplan-Yorke dimen-
sion, and maximum values of x versus forcing amplitude A for the innermost attractor of
System (2) with ω = 0.33 and Ω = 0.73.

A = 0.723 giving birth to a larger strange attractor that persists to A = 1 and beyond
with quasiperiodic windows.

4 Conclusion

Unlike the recent effort in constructing new chaotic attractors with pre-designed types
of equilibria, designing chaotic systems with other desired properties has attracted
less attention. Fortunately, there is still some limited research on designing chaotic
systems with other features unrelated to their equilibria. In this paper, we described
a megastable, chaotic, periodically-forced, nonlinear oscillator and showed that it can
have an infinite number of coexisting attractors, including limit cycles, attracting
tori, and strange attractors with a topology not previously reported. Most of these
attractors are hidden. A more detailed analysis including exploration of the (ω,Ω)
plane would be a worthy extension of the work.

One of us (TK) has been supported by the Polish National Science Centre, MAESTRO
Programme – Project No 2013/08/A/ST8/00/780.
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