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Abstract. Chimera states are an example of intriguing partial synchro-
nization patterns emerging in networks of identical oscillators. They
consist of spatially coexisting domains of coherent (synchronized) and
incoherent (desynchronized) dynamics. We analyze chimera states in
networks of Van der Pol oscillators with hierarchical connectivities,
and elaborate the role of time delay introduced in the coupling term.
In the parameter plane of coupling strength and delay time we find
tongue-like regions of existence of chimera states alternating with re-
gions of existence of coherent travelling waves. We demonstrate that
by varying the time delay one can deliberately stabilize desired spatio-
temporal patterns in the system.

1 Introduction

Systems of coupled oscillators are widely studied in the context of nonlinear dynam-
ics, network science, and statistical physics, with a variety of applications in physics,
biology, and technology [1,2]. Recent increasing interest in such systems is connected
with the phenomenon of chimera states [3,4]. First obtained in systems of phase oscil-
lators [5,6], chimeras can also be found in a large variety of different systems including
time-discrete maps [7–9], time-continuous chaotic models [10], neural systems [11–14],
Boolean networks [15], population dynamics [16,17], quantum oscillators [18], and
in higher spatial dimensions [3,19–21]. Together with the initially reported chimera
states, which consist of one coherent and one incoherent domain, new types of these
peculiar states having multiple [11,22–25] or alternating [26] incoherent regions, as
well as amplitude-mediated [27,28], and pure amplitude chimera and chimera death
states [29,30] were discovered. A universal classification scheme for chimera states
has recently been proposed [31].
Chimera states account for numerous applications in natural and technological

systems, such as uni-hemispheric sleep [32,33], bump states in neural systems [34,35],
epileptic seizures [36,37], power grids [38], or social systems [39]. Experimentally,
chimeras have been found in optical [40], chemical [41,42] systems, mechanical [43,44],
electronic [45,46], optoelectronic delayed-feedback [47] and electrochemical [48,49]
oscillator systems, Boolean networks [15], and optical combs [50].
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Recent studies have shown that not only nonlocal coupling schemes, but also
global [28,51–54], as well as more complex coupling topologies allow for the existence
of chimera states [13,14,16,55,56]. Furthermore, time-varying network structures can
give rise to alternating chimera states [57]. Chimera states have also been shown to
be robust against inhomogeneities of the local dynamics and coupling topology [13],
against noise [58], or they might be even induced by noise [59–61].
An interesting example of complex network topology are networks with hierarchi-

cal connectivities, arising in neuroscience as a result of diffusion tensor magnetic res-
onance imaging analysis, showing that the connectivity of the neuron axons network
represents a hierarchical (quasi-fractal) geometry [62–66]. Such network topology can
be realized using a Cantor algorithm starting from a chosen base pattern [13,56], and
is in the focus of our study in the present manuscript.
Current analysis of chimera states in oscillatory systems has demonstrated possi-

ble ways to control chimera states [67–69], extending their lifetime and fixing their
spatial position. It is well known that time delay can also serve as an instrument for
stabilization/destabilization of complex patterns in networks.
It is worth mentioning here that networks of coupled oscillators with complex

topologies are often characterized by high multistability, which makes the investi-
gation of different complex spatio-temporal patterns a challenging problem. Moving
towards more realistic models should include time delays, however, adding time delay
drastically increases the dimensionality of a system making the analysis more de-
manding. In has been shown that time delay generally results in spatial modulation
of chimera patterns and, therefore, appearance of clustered chimera states [70]. Time
delayed coupling in two-population networks of oscillators can induce a chimera state
in which the two populations alternate between coherence and incoherence out of
phase with each other [71]. One can also observe globally clustered chimera states in
which the coherent and incoherent regions span both populations [72,73]. Chimera
states have been found experimentally in a two-population model of coupled chemical
oscillators with time-delayed coupling [41]. On a ring of oscillators, distance depen-
dent delays induce clustered chimera states in which multiple regions of coherence are
separated by narrow bands of incoherence [24]. An internal delayed feedback loop in
systems of globally coupled phase oscillators can induce chimera-like states [51]. Since
delay differential equations are analogous to space-time systems if the delay interval
is interpreted as pseudo-space, delayed feedback systems also exhibit complex self-
organized partially coherent, partially incoherent dynamics as an analogy to chimera
states [45,47].
In phase oscillator systems, the phase lag parameter strongly affects the system

dynamics and is crucial for the appearance of chimera states. There are two interpre-
tations for the phase lag parameter [3]: this parameter determines a balance between
spontaneous order and permanent disorder [74], or phase lag can be interpreted as
an approximation for a time-delayed coupling when the delay is small [75]. Larger
time delays pertain beyond these possible analogies, and can induce more complex
dynamical phenomena.
In the present manuscript we aim to uncover how the interplay of complex net-

work topology and time delay influences chimera states and other complex spatio-
temporal patterns. Going beyond regular two-population or nonlocally coupled ring
networks, we focus on complex hierarchical (quasi-fractal) connectivities, reflecting
the structure of real-world networks. We analyse the influence of time delay on
chimera states in networks of Van der Pol oscillators with hierarchical connectivity,
and demonstrate how by varying the time delay one can stabilize chimera states in the
network.
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2 The model

We consider a ring of N identical Van der Pol oscillators with different coupling
topologies, which are given by the respective adjacency matrix G. While keeping the
periodicity of the ring, and the circulant structure of the adjacency matrix, we vary the
connectivity pattern of each element. The dynamical equations for the 2-dimensional
phase space variable xk = (uk, u̇k)

T = (uk, vk)
T ∈ R2 are:

ẋi(t) = F (xi(t)) +
σ

g

N∑

j=1

GijH[xj(t− τ)− xi(t)] (1)

with i ∈ {1, ..., N} and the delay time τ . The dynamics of each individual oscillator
is governed by

F (x) =

(
v

ε(1− u2)v − u
)
, (2)

where ε denotes the bifurcation parameter. The uncoupled Van der Pol oscillator has
a stable fixed point at x = 0 for ε < 0 and undergoes an Andronov-Hopf bifurcation
at ε = 0. Here, only ε = 0.1 is considered. The parameter σ denotes the coupling

strength, and g =
∑N
j=1Gij is the number of links for each node (corresponding to

the row sum ofG). The interaction is realized through diffusive coupling with coupling

matrix H =

(
0 0
b1 b2

)
and real interaction parameters b1 and b2. In accordance with

Omelchenko et al. [23], throughout the manuscript we fix the parameters b1 = 1.0
and b2 = 0.1.

2.1 Fractal topology

Fractal topologies can be generated using a classical Cantor construction algorithm
for a fractal set [76,77]. This iterative hierarchical procedure starts from a base pat-
tern or initiation string binit of length b, where each element represents either a link
(‘1’) or a gap (‘0’). The number of links contained in binit is referred to as c1. In
each iterative step, each link is replaced by the initial base pattern, while each gap
is replaced by b gaps. Thus, each iteration increases the size of the final bit pattern,
such that after n iterations the total length is N = bn. We call the resulting pattern
fractal and n the hierarchical level. Using the resulting string as the first row of the
adjacency matrix G, and constructing a circulant adjacency matrix G by applying
this string to each element of the ring, a ring network of N = bn nodes with hierar-
chical connectivity is generated [13,14,16]. Here we slightly modify this procedure by
including an additional zero in the first instance of the sequence, which corresponds
to the delayed self-coupling. Therefore, there is no net effect of the diagonal elements
of the adjacency matrix Gii on the network dynamics, and hence the first link in the
clockwise sense from the reference node is effectively removed from the link pattern.
Without our modification, this would lead to a breaking of the base pattern symme-
try, i.e., if the base pattern is symmetric, the resulting coupling topology would not
be so, since the first link to the right is missing from the final link pattern. As an
example we take a closer look at the base pattern (101). The first row of the circulant
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matrix G is for different hierarchical level n:

n = 0 : G1j = 0101

n = 1 : G1j = 0101000101 (3)

n = 2 : G1j = 0101000101000000000101000101

. . .

Our procedure, in contrast, ensures the preservation of an initial symmetry of binit
in the final link pattern, which is crucial for the observation of chimera states, since
asymmetric coupling leads to a drift of the chimera [68,69]. Thus, a ring network of
N = bn + 1 nodes is generated.

2.2 Chimera states in fractal topologies

Throughout this manuscript, we consider the network generated with base pat-
tern binit = (11011) after four iterative steps. This results in a ring network of
N = 54 + 1 = 626 nodes. Our choice is motivated by previous studies of chimera
states in nonlocally coupled networks [11,23] and networks with hierarchical con-
nectivity [13,56]. In the first case, it has been shown, that an intermediate range
of coupled neighbours is crucial for the observation of chimera states, too large and
too small numbers of connections make this impossible. In the second case, it has
been demonstrated that hierarchical networks with higher clustering coefficient pro-
mote chimera states. Exploiting the clustering coefficient C introduced by Watts and
Strogatz [78], we obtain for the fractal topology a value of C = 0.428.

3 Influence of time delay

Figure 1 demonstrates chimera states in the system (1) for binit = (11011), n = 4,
N = 626, ε = 0.1, and σ = 0.35, without time delay τ = 0, obtained numerically for
symmetric chimera-like initial conditions. We analyze space-time plot (upper panel),
the final snapshot of variables ui at t = 1000 (middle panel), and frequencies of os-
cillators averaged over time window ΔT = 10000 (bottom panel). Oscillators from
coherent domains are phase-locked and have equal mean frequencies. Arc-like profiles
of mean frequencies for oscillators from incoherent domain are typical for chimera
states.
To uncover the influence of time delay introduced in the coupling term in

system (1), we analyze numerically the parameter plane of coupling strength σ and de-
lay time τ . Fixing network parameters binit = (11011), n = 4, N = 626, and ε = 0.1,
we choose the chimera pattern of the undelayed system (shown in Fig. 1) as an ini-
tial condition, and vary the values of σ and τ . In numerical simulations of chimera
states, the choice of initial conditions often plays a very important role. Usually,
chimera states coexist with the fully synchronized state or coherent traveling waves,
and random initial conditions rarely result in chimera patterns. In contrast, specially
prepared initial conditions which combine coherent and incoherent spatial domains,
increase the probability of observing chimeras. Nevertheless, it is remarkable that the
asymmetric structure in Figure 1 evolves from symmetric initial conditions.
Figure 2 demonstrates the map of regimes in the parameter plane (τ, σ). In the

undelayed case τ = 0 we observe the chimera state shown in Figure 1. The introduc-
tion of small time delay for weak coupling strength (σ < 0.3) immediately destroys
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Fig. 1. Chimera state in the undelayed case τ = 0 for binit = (11011), n = 4, N = 626,
ε = 0.1, and σ = 0.35. Note the nonidentical sizes of incoherent domains. The three panels
correspond to the same simulation: Space-time plot of u (upper panels), snapshots of vari-
ables uk at t = 1000 (middle panels), and mean phase velocity profile ωk (bottom panels).
This asymmetric pattern is used as initial condition for further simulations with τ �= 0.

the chimera pattern and the incoherent domains characterized by chaotic dynam-
ics appear (gray dotted region). Nevertheless, for larger values of coupling strength
(σ > 0.3) chimera states are still present. With increasing delay τ we observe a se-
quence of tongue-like regions (shown red) for chimera states. These regions appear in
between large areas of alternating coherent structures: fully synchronized states (yel-
low regions with horizontal stripes) and traveling waves (yellow regions with diagonal
stripes). Closer inspection of the chimera tongues shows that increasing τ reduces the
size of the tongues, and also decreases the maximal σ values, for which chimera states
are observed. Moreover, one can easily see that chimera regions appear at τ values
close to integer multiples of π.
The sequence of tongues for chimera states in the (τ, σ) parameter plane of sys-

tem (1) shown in Figure 2 can be understood as a resonance effect in τ . The intrinsic
angular frequency of the uncoupled system for small ε is ω = 1 which corresponds to
a period of 2π. In many delay systems one expects resonance effects if the delay is
an integer or half-integer multiple of this period [79,80]. The undelayed part of the
coupling term in equation (1) can be rewritten as −σu, neglecting b2 = 0.1� b1 = 1.
This amounts to a rescaling of the uncoupled angular frequency ω = 1 to

√
1 + σ for

small ε in the limit of the harmonic oscillator equation ü+ (1 + σ)u = 0. Thus the
intrinsic period of the coupled system can be roughly approximated by 2π/

√
1 + σ.

Therefore, chimera tongues are shifted to the left for increasing coupling strength σ.
Let us take a closer look at the dynamics inside the tongues. For the parameter

values chosen inside the first, leftmost and largest, tongue we find chimera states
similar to the initial condition in Figure 1. In the second and the forth tongue nested
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Fig. 2. Chimera tongues (red), in-phase synchronization (horizontally striped yellow region)
and coherent traveling waves (diagonally striped yellow region) in the parameter plane (τ, σ)
for binit = (11011), n = 4, N = 626, ε = 0.1. At the transition to a chimera region we can
observe chaos (dotted gray region at small τ, σ). The coherent regions were detected by
analyzing the mean phase velocity and a snapshot of variables uk: In the case of equal mean
phase velocities and variables uk we obtain in-phase synchronization, for equal mean phase
velocities but unequal variables uk we obtain coherent traveling waves. The boundary of these
regions are fitted by Bézier curves after the (σ, τ) plane was sampled in steps Δσ = 0.05 and
Δτ = 0.05− 0.15.

chimera structures can be observed (see Figs. 3b and 3d). In the third tongue for
τ ≈ 2π multichimera states can be observed, e.g., a 20-chimera in Figure 3c. Therefore,
the appropriate choice of time delay τ in the system allows one to achieve the desired
chimera pattern.
In the parameter plane of delay time and coupling strength the region corre-

sponding to coherent states is dominating (yellow regions in Fig. 2). On one hand,
we observe the in-phase synchronization regime (see Fig. 4b) which is enlarged for
increasing coupling strength. On the other hand, we also detect a region of coherent
traveling waves with wavenumber k > 1 (see Fig. 4a). Varying the delay time τ al-
lows not only for switching between these states, but also for controlling the speed of
traveling waves: in the diagonal striped region in Figure 2 the mean phase velocity
decreases for increasing delay times. The pyramidal structure of the mean phase ve-
locity profile in Figures 3b and 3d is due to the fact that the whole chimera structure
is travelling. The speed of travelling is sensitive to the coupling strength and delay
time. For a pronounced profile of the mean phase velocity this speed must be small.
Otherwise it is smeared out over time.

4 Discussion

In the current study, we have analyzed chimera states in ring networks of Van der
Pol oscillators with hierarchical connectivities. For a fixed base pattern, we have
constructed a hierarchical connectivity, and provided a numerical study of complex
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(a) (b)

(c) (d)

Fig. 3. Patterns taken from the chimera tongues in Figure 2 with binit = (11011), n = 4,
N = 626, ε = 0.1: Space-time plot of u (upper panels), snapshots of variables uk (mid-
dle panels), and mean phase velocity profile ωk (bottom panels) for (a) τ = 0.1 and
σ = 0.45 (point A), (b) τ = 2.55 and σ = 0.35 (point C), (c) τ = 6.15 and σ = 0.20
(point E), and (d) τ = 8.1 and σ = 0.25 (point F).

(a) (b)

Fig. 4. Patterns taken from the coherent (yellow) regions in Figure 2 with binit =
(11011), n = 4, N = 626, ε = 0.1: Space-time plot of u (upper panels), snapshots of
variables uk (middle panels), and mean phase velocity profile ωk (bottom panels) for
(a) τ = 1.20 and σ = 0.4 (point B), and (b) τ = 4.35 and σ = 0.3 (point D).

spatio-temporal patterns in the network. Our study was focused on the role of time
delay in the coupling term and its influence on the chimera states.
In the parameter plane of time delay τ and coupling strength σ, we have de-

termined the stability regimes for different types of chimera states, alternating with
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regions of coherent states. An appropriate choice of time delay allows us to stabi-
lize several types of chimera states. The interplay of complex hierarchical network
topology and time delay results in a plethora of patterns going beyond regular two-
population or nonlocally coupled ring networks: we observe chimera states with coher-
ent and incoherent domains of non-identical sizes and non-equidistantly distributed
in space. Moreover, traveling and non-traveling chimera states can be obtained for a
proper choice of time delay. We also demonstrate that time delay can induce patterns
which are not observed in the undelayed case.
Our analysis has shown that networks with complex hierarchical topologies, as

arising in neuroscience, can demonstrate many nontrivial patterns. Time delay can
play the role of a powerful control mechanism which allows either to promote or to
destroy chimera patterns.

This work was supported by DFG in the framework of SFB 910.
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18. V. Bastidas, I. Omelchenko, A. Zakharova, E. Schöll, T. Brandes, Phys. Rev. E 92,
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Mathematics and Statistics, arXiv:1611.03432v1 (2017)

62. P. Katsaloulis, D.A. Verganelakis, A. Provata, Fractals 17, 181 (2009)
63. P. Expert, T.S. Evans, V.D. Blondel, R. Lambiotte, PNAS 108, 7663 (2011)
64. P. Katsaloulis, A. Ghosh, A.C. Philippe, A. Provata, R. Deriche, Eur. Phys. J. B 85,
150 (2012)

65. P. Katsaloulis, J. Hizanidis, D.A. Verganelakis, A. Provata, Fluct. Noise Lett. 11,
1250032 (2012)

66. A. Provata, P. Katsaloulis, D.A. Verganelakis, Chaos Solitons Fractals 45, 174 (2012)
67. J. Sieber, O.E. Omel’chenko, M. Wolfrum, Phys. Rev. Lett. 112, 054102 (2014)
68. C. Bick, E.A. Martens, New J. Phys. 17, 033030 (2015)

http://arxiv.org/abs/1611.03432v1


1892 The European Physical Journal Special Topics

69. I. Omelchenko, O.E. Omel’chenko, A. Zakharova, M. Wolfrum, E. Schöll, Phys. Rev.
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