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Abstract. Electronic circuits are useful tools for studying potential dy-
namical behaviors of synthetic genetic networks. The circuit models are
complementary to numerical simulations of the networks, especially
providing a framework for verification of dynamical behaviors in the
presence of intrinsic and extrinsic noise of the electrical systems. Here
we present an improved version of our previous design of an electronic
analog of genetic networks that includes the 3-gene Repressilator and
we show conversions between model parameters and real circuit compo-
nent values to mimic the numerical results in experiments. Important
features of the circuit design include the incorporation of chemical ki-
netics representing Hill function inhibition, quorum sensing coupling,
and additive noise. Especially, we make a circuit design for a systematic
change of initial conditions in experiment, which is critically important
for studies of dynamical systems’ behavior, particularly, when it shows
multistability. This improved electronic analog of the synthetic genetic
network allows us to extend our investigations from an isolated Repres-
silator to coupled Repressilators and to reveal the dynamical behavior’s
complexity.

1 Introduction

Synthetic genetic networks (SGN) provide a potential tool to design useful biologi-
cally based circuitry targeted to perform specific tasks [1–3]. In principle, such circuits
can be incorporated into natural cellular machinery or used in an entirely synthetic
environment. The early stages of research in this direction were to envision and un-
derstand simple networks which provided the basic components for building more
complex functional devices. Emphasis was first given to the design of a genetic tog-
gle switch [4] and an oscillator known as the Repressilator consisting of a 3-gene
inhibitory ring that has been expressed in E. coli [5]. Later, electronic circuits
were suggested and used to study the dynamics of synthetic genetic networks [6–9].
Electronic circuits, in general, allow precise control of system parameters and provide
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a minimal set-up for experimenting with a dynamical behavior in the presence of in-
trinsic and extrinsic noises. This option is useful, to predict various desired functional
behaviors in electronic analogs of synthetic genetic networks which are difficult to
control in real biological experiments.
We have designed electronic circuits, in the past, to model genetic networks con-

figured to investigate dynamical behaviors of the Repressilator [10,11] and to perform
noise-aided logic operations [12]. In the Repressilator studies, we first considered
an isolated Repressilator and verified the functional form of the predicted oscilla-
tions [10]. Then we incorporated a bacterial-inspired method of quorum sensing (QS)
coupling [13] into our Repressilator circuit by adding a feedback chain to the 3-gene
inhibitory ring. This additional pathway led to a rich variety of dynamical behavior,
including multistability, for the QS-modified isolated Repressilator [11]. Simulations
of this single Repressilator system have even demonstrated period doubling chao-
tization [14]. The next step of allowing the QS mechanism to couple Repressilators
together as has been done in simulation [13,15,16] proved difficult using our previous
circuit models. This difficulty lead us to make improvements of the circuit including a
complete redesign of the QS circuitry, which we present here in detail. The improved
design allowed us to investigate the more complex dynamics that exist for coupled
Repressilators [17] and to access the full QS-parameter range of the mathematical
model. Apart from their potential use in synthetic biological devices, coupled Repres-
silators are of interest because they belong to the field of coupled nonlinear oscillators
which is essential for the understanding of a wide variety of biological phenomena [18].
For two QS-coupled repressilators using “repressive” coupling [15], the improved

circuit demonstrates a variety of states: homogeneous and inhomogeneous steady-
states, homogeneous and inhomogeneous limit cycles, and a rich variety of complex
oscillations heavily influenced by the existence of asymmetric and symmetric high-
period limit cycles [17]. The dominant homogeneous limit cycle is an anti-phase oscil-
lation (180◦ between the two repressilator oscillations) which exists over a broad range
of coupling strength. In-phase limit cycle exists only in a narrow parameter range.
In the range of coupling strength where torus bifurcation makes the anti-phase LC
unstable, it is replaced by a rich variety of complex dynamics and stable symmetric
and asymmetric high period limit cycles. Multi-stability is found over broad ranges of
coupling strength in both the stable and unstable regions of the anti-phase limit cycle.
It is crucial to have a precise control of the initial conditions when study-

ing a multistable system like the QS-coupled Repressilators so that all of the co-
existing attractors for a given set of parameters can be captured. We describe
the use of an analog switch to set the initial conditions by initializing capacitor
voltages to the desired values. Multistability also opens the possibility of noise-
induced transitions from one attractor to another. Therefore we use our previous
noise circuit [12] and the genetic network circuit as a test-bed to demonstrate
noise-induced transitions between attractors within the QS-coupled Repressilator
system. We begin with the mathematical model and the analog circuit for the ge-
netic network of Repressilators coupled via QS. Then we present our circuit analysis
which relates the circuit to the mathematical model. Next, we use the QS circuit to
verify the numerical predictions, and we show results for QS-coupled Repressilator
circuits. Finally, we describe how to set the initial conditions and incorporate additive
noise in the electronic circuit.

2 Model: repressilator with quorum sensing

We present here the mathematical model and the circuit model for the genetic network
of our interest. The following sections show our analysis which connects the circuits
to the equations.
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Fig. 1. Repressilator with quorum sensing feedback. Genes indicated by their transcribed
mRNA (a, b, c), and their expressed proteins (A, B, C) form the 3-gene inhibitory loop
referred to as the Repressilator. Quorum sensing is provided by the additional feedback loop
of the small auto-inducer molecule which can diffuse through the cell membrane thereby
exchanging with the external medium. In this way gene-b has competing roles of direct
inhibition and indirect activation of gene-c. S is the concentration of the auto-inducer.

Figure 1 shows a Repressilator with a QS feedback loop. Genes expressing mRNA
(a, b, c) and their expressed proteins (A, B, C) form the 3-gene inhibitory loop
referred to as the Repressilator [5]. It is named Repressilator because each gene’s
output“represses” the next gene’s expression, resulting in stable oscillations of protein
concentrations over a very broad interval of parameter values. Thus the Repressilator
works as a genetic oscillator and is an example of a “ring oscillator” which consists of
an odd number of inverters connected in a closed loop. It is a small network comprised
of only three genes. Coupling Repressilators together creates a larger genetic network
with possibilities of interesting and useful collective behaviors.
A natural choice for the coupling mechanism is bacterial QS in which each Re-

pressilator contributes to, and responds to, a shared pool of a “signal” molecule [19].
The QS feedback loop uses a small auto-inducer (AI) molecule to provide an indirect
activation path from B to C to compete with the direct inhibition [16]. This network
structure generally leads to an anti-phase synchronization of two coupled Repressila-
tors, meaning there is a 180◦ phase difference between the protein oscillations of the
two Repressilators. A different network structure placing the feedback loop from A
to C has also been employed [13], which generally leads to in-phase synchrony. Inter-
estingly, the network structure does not fully determine the type of synchronization
observed between coupled Repressilators as both of these structures are birhythmic –
capable of both types of synchrony – depending on the model’s parameter values [20].
This birhythmic property may be of use in the design of task-oriented devices.
We use our reduced mathematical model for QS-coupled Repressilators [11] which

is based on previous models [5,16] and applies to the case of fast mRNA kinetics com-
pared to protein kinetics. The model uses standard chemical kinetics (β, α, κ, n, ki)
including Hill function inhibition, 1/(1 + xn), and is

dA

dt
= β1

(
−A+ α

1 + Cn

)
(1a)

dB

dt
= β2

(
−B + α

1 +An

)
(1b)

dC

dt
= β3

(
−C + α

1 +Bn
+
κS

1 + S

)
(1c)

dS

dt
= −ks0S + ks1B − η (S − Sext) . (1d)



1814 The European Physical Journal Special Topics

U1
U2

B

C

E

10k

68k

R

1k

22k

420 222

2.2k

1k68k

10k

0.1 uf

+5V

V

V
i 1

cth

hill

Vi

C i

R

R

b1

b2

R
E

R
C

Fig. 2. Single-gene circuit. Inhibitory input at Vi−1. Expressed protein concentration is
represented by Vi. Dual op-amp is LF412 supplied by ±5V. The pnp transistor is 2N3906.
Resistor Rhill is adjusted to achieve desired Hill-function n value. Diodes are 1N4148. Ca-
pacitor value Ci = 0.1μf is for β = 1. Reproduced from reference [17].

(A,B,C) are the protein concentrations for the Repressilator, and S is the concen-
tration of the AI molecule. The AI can diffuse (diffusion constant η) through the cell
membrane into the external medium, unlike the proteins which are confined inside
the cell. Sext is the AI concentration in the external medium and is a diluted average
of the contributions from all the Repressilators, Sext = QSave, where Q is the dilu-
tion factor. For results presented here we use ks0 = 1, ks1 = 0.01, and η = 2 as taken
previously [16].
The circuit for a single inhibitory gene shown in Figure 2 is a modification of

the previous one [10]. The transistor current represents the rate of gene expression
and the voltage Vi represents the concentration of expressed protein. Vi−1 represents
the concentration of the inhibitor, and the Vcth adjusts the affinity of the inhibitor
binding to the gene’s DNA. The Hill function inhibition in equation (1) is accounted
for by the dependence of the transistor current on inhibitor concentration voltage
Vi−1. This dependence is derived in the next section.
The circuit for a Repressilator with quorum sensing feedback shown in Figure 3

is a complete redesign of that presented previously [11]. The Repressilator consists
of the closed 3-gene loop with op-amp buffers between the genes. The QS circuitry
takes input from current source I (B) controlled by the repressilator’s B-protein
voltage, and feeds back to the Repressilator’s C-protein via source I(S). The feedback
activation in the mathematical model is through the binding-site occupation term
S/(1 + S). We show below that the circuit accounts for the activation via QS by
using a piece-wise continuous linear behavior, modeled by min(0.8S, 1) and hence we
replace equation (1c) by

dC

dt
= β3

(
−C + α

1 +Bn
+ κ min(0.8S, 1)

)
. (2)

In Figure 3, S1 is the AI concentration belonging to the shown Repressilator.
Coupling this Repressilator to a second Repressilator (not shown) is accomplished
by adding their respective AI concentrations, S1 and S2, thus creating Sext, the
concentration of AI in the external medium. Figure 3 shows the connection of S2 to
the op-amp at the bottom of the figure and the combination with S1 to produce Sext.
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Fig. 3. Circuit for Repressilator with QS feedback. The Repressilator consists of the closed
ring of genes A, B, and C. The quorum sensing loop is from B through S1 to C. Protein B
creates auto-inducer S1 via the voltage-controlled current source I(B), and S1 activates
production of C via I(S). Each “gene” triangle corresponds to the single gene circuit in
Figure 2. S2 is the auto-inducer from a second Repressilator (not shown) and Sext is the
auto-inducer concentration in the external medium. RQ sets the dilution factor, and Rd sets
the diffusion rate through the membrane. Op-amps (LMC6062) powered by ±5V have low
offset voltage (below 0.5mV). Reproduced from reference [17].

2.1 Single gene circuit with Hill-function

We now analyse the circuit for a single gene and show how the inhibitory Hill function
behavior is reproduced. In the process we find how to connect model parameters n and
α to circuit parameters. We improve these connections over previous analyses [10,11]
by incorporating the standard large-signal transistor model. In addition, we find the
minimum accessible value of Hill coefficient n.
Applying current conservation to the capacitor voltage in Figure 2, and normal-

izing by a scaling parameter Vth gives,

RCC0
dxi

dt
=
C0

Ci

(
−xi + ItRC

Vth

)
(3)

where xi = Vi/Vth is the dimensionless protein concentration and It is the transistor’s
current collector. RCC0 is the time-scale which normalizes the time variable, thereby
reassigning t to a dimensionless time. A comparison with equation (1) gives a useful
relation between the model parameters and the circuit values,

βi =
C0

Ci
, α =

ImaxRC

Vth
(4)

where Imax is the maximum transistor current. Its relation to It is defined below in
the analysis of the circuit’s modeling of the Hill function inhibition.
The gene inhibition in equation (1) is controlled by the Hill function

H(x) =
1

1 + xn
(5)
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where x is the dimensionless inhibitory protein concentration. The scaling para-
meter Vth accounts for the inhibitor’s equilibrium binding constant. Comparing
equations (1) and (3) shows that the Hill function behavior must be accounted for
in the circuit by the transistor current’s dependence on input voltage Vi−1. In this
section we derive this current-voltage dependence. The key elements are to get the
correct slope at x = 1 where H(x = 1) = 0.5 and to approximate the Hill function’s
positive curvature as it decays to zero.
The op-amp U2 in Figure 2 has different gains, G−2 when Vi−1 < Vcth, and G+2

when Vi−1 > Vcth. For the selected component values in the circuit, the subtraction
op-amp U1 has a gain G1 = −6.8, and inverting op-amp U2 has G−2 = −22 and G+2
is an amplitude-dependent diminishing gain due to the three diodes in the feedback
for U2. The diodes create the positive curvature decay of the Hill function.
The gene inhibition in the circuit corresponds to Vi−1 surpassing Vcth, which causes

the output of U2 to go positive and thereby turns off the pnp transistor resulting in no
current from the collector. The maximum output voltage of U2 is about 2.0V when
the three diodes are fully conducting in their forward biased state. The resistors Rb1
and Rb2 are chosen such that an output voltage at U2 of 2.0V causes a drop of
(0.42/2.62)(5− 2) = 0.48V across Rb1 which is small enough so that the transistor
current is essentially zero. Maximal protein expression in the circuit corresponds to
Vi−1 = 0 which results in U2 output going negative with a limit at the lower saturation
level V−sat = −3.5V for the dual op-amp LF412 supplied with ±5V. We assume
that the gain G1G−2 is large enough so that the output of U2 reaches V−sat when
Vi−1 = 0. Later we determine a practical restriction on Hill coefficient n imposed by
this assumption.
We predict the transistor’s collector current in Figure 2 when the output of U2

varies between −3.5 and 2.0V. The collector current is essentially the current in RE
since the transistor is in the active region. The voltage acrossRb1 is s(5−GΔV ) where
the fraction s = 0.42/2.62 = 0.160 is the voltage divider gain, ΔV = (Vi−1 − Vcth),
and G is the overall gain of the 2 op-amps. The current in RE , and therefore the
transistor current, is

It =
s(5−GΔV )− Veb

RE
(6)

where Veb is the emitter-base voltage. Veb varies from about 0.5V when there is essen-
tially zero transistor current (GΔV ≈ 2V) to a maximum of about Vebmx = 0.70V at
maximum current (GΔV = V−sat). Maximal protein expression occurs for Vi−1 = 0
(no inhibition) and thus GΔV = V−sat giving the maximum transistor current

Imax =
s(5− V−sat)− Vebmx

RE
. (7)

For our chosen circuit components we measure Imax = 2.95mA and Vebmx = 0.70V.
This agrees well with the prediction using the large-signal transistor model with
saturation current IS = 7 fA (which we measured for the 2N3906 transistors),
Vebmx = VT ln(I/IS) = 0.026 ln(2.95mA/7 fA) = 0.696V. The resulting voltage drop
across RC is easily measured by setting Vi−1 = 0, and agrees with that predicted by
equation (7) flowing into RC = 1 kΩ, ImaxRC = 2.97V.
In the circuit, the Hill function equation (5) corresponds to the normalized tran-

sistor current
It

Imax
=
s(5−GΔV )− Veb
s(5− V−sat)− Vebmx . (8)

As presented previously [10], the circuit approximation of the Hill function is ac-
complished by setting the slope of the normalized current equal to the slope of the
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Fig. 4. Hill inhibition approximation for the single gene circuit in Figure 2. Numerical Hill
inhibition (solid line) and experimentally measured (dots) normalized transistor current;
n = 3.2, α = 218, Rhill = 4kΩ. Data was collected with capacitor Ci removed. Reproduced
from reference [17].

Hill function dH/dx at x = 1. Setting the slopes of equations (5) and (8) equal, us-
ing ΔV = Vth(xi−1 − Vcth/Vth) with xi−1 = 1, gain G = G1G−2, equation (7), and
Vth = ImaxRC/α provides a useful result connecting important model parameters n
and α to circuit parameters:

nα =
4sRCG1G−2

RE
· (9)

Using our circuit values s = 0.160, RC = 1kΩ, and RE = 222Ω, we determine nα =
2.88G1G−2. Equation (9) allows desired model parameters n and α to be achieved in
the circuit by adjusting gains G1 and G−2.
Next we find the relationship between the binding constant scaling voltage Vth and

the circuit value Vcth. At x = 1 the Hill function has a value of 0.5. The corresponding
condition for the circuit is that the normalized transistor current be 0.5 when
Vi−1 = Vth. By setting equation (8) equal to 0.5, letting ΔV = (Vth − Vcth) and solv-
ing gives

Vcth = Vth +
(2Veb − Vebmx − s (5 + V−sat))

2sG1G−2
. (10)

Veb at half the maximal current is predicted by using 1.5mA for the transistor current
resulting in Veb = VT ln(I/IS) = 0.026 ln(1.5mA/7 fA) = 0.678V. For the circuit in
Figure 2, G1G−2 = (−6.8)(−22), s = 0.160, V−sat = −3.5V, and using Veb = 0.68V
and Vebmx = 0.70V gives Vcth = Vth + 8.8mV.
Figure 4 shows the measured approximation of the Hill inhibition for the single

gene circuit of Figure 2 for n = 3.2, α = 218, and Rhill = 4kΩ. The dots are the
normalized output voltage Vi/Vth as a function of normalized input voltage Vi−1/Vth.
It is apparent that as the input voltage surpasses Vth (at x = 1) the transistor current
shuts off, closely following the numerically plotted Hill function (solid line). The
location (at x = 1) and slope of the drop are set by equations (9) and (10), but the
positive curvature decay to zero is controlled by Rhill in Figure 2. The value of Rhill
is varied to match the transistor current’s decay to that of the Hill function. Our
previous circuit model for a single gene [10] used a piecewise-linear approximation to
the Hill function and therefore did not include a positive curvature decay to zero.
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Fig. 5. Time series showing Repressilator protein concentrations A (large amplitude), B (mid
amplitude), and C (small amplitude). Numerical (dashed) and circuit measurements (con-
tinuous lines) for Repressillator with no quorum sensing (κ = 0 in Eq. (1)); n = 3.2, α = 218,
β1 = 0.5, β2 = β3 = 0.1, Rhill = 4kΩ.

The assumption that the output of op-amp U2 is saturated at V−sat when Vi−1 = 0
(no inhibition) means that G1G−2Vcth > −V−sat. Using the relations between Vcth
and Vth (Eq. (10)), between Vth and α (Eq. (4)), and betweenG1G−2 and nα (Eq. (9)),
we find the restriction on the Hill coefficient

n >
2 (s(5− V−sat)− 2Vbe + Vbemx)

s(5− V−sat)− Vbemx . (11)

For our circuit values this gives a minimum Hill coefficient of n = 2.12. This restriction
is generally not a problem since the Repressilator in equation (1) has a stable fixed
point for κ = 0, and therefore is not an oscillator for n < 2 over a wide range of α
and identical β.
The Repressilator consisting of the 3-gene ring in Figure 1 is modeled by connect-

ing three single-gene circuits in a closed loop depicted by the 3 gene-triangles (A,B,C)
in Figure 3. Figure 5 shows the measured time series and simulations (dashed lines)
for a Repressilator demonstrating the stable protein oscillations (A,B,C) with dif-
ferent amplitudes that occur for different protein time-scales β1 = 0.5, β2 = 0.1, and
β3 = 0.1.

2.2 Circuit for Repressilator with quorum sensing

The circuit for a Repressilator with QS feedback shown in Figure 3 is a complete
redesign of that presented previously [11]. The feedback from B through the current
source I(B) to S1, then through I(S) to C corresponds to the AI feedback loop
between B and c in Figure 1. We analyse the circuit to derive relations between the
mathematical model and circuit values. Figures 6 and 7 show the circuits for the
voltage dependent current sources I(B) and I(S) used in Figure 3.
The circuit equation corresponding to equation (1d) comes from circuit analysis

for the voltage representing S1 across the capacitor CS in Figure 3

RSCS
dVS1

dt
= −VS1 +RSI(B)− RS

Rd
(VS1 − Vext) . (12)
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VS1 and Vext correspond to the scaled voltages S1 and Sext in Figure 3. Multiplying
both sides by kS0, setting kS0RSCS to be the same as the time-scale RCC0 defined
for the single-gene circuit, using I(B) = VB/2.2 kΩ from Figure 6, VB = VthB, and
dividing by a scaling factor Vsth gives

dS1

dt
= −kS0S1 + kS0 RS

(2.2 kΩ)

Vth

Vsth
B − kS0RS

Rd
(S1 − Sext) (13)

where VS = VsthS and Vext = VsthSext. Comparison with equation (1d) gives relations
for the activation rate kS1 of auto-inducer and the membrane diffusion parameter η.

kS1 = kS0
RSVth

(2.2 kΩ)Vsth
, η = kS0

RS

Rd
· (14)

Equation (14) sets the scaling factor Vsth.
The equation for the protein C voltage is found in the same way as equation (3)

with the addition of the current I(S) from the feedback loop in Figure 3.

RCC0
dC

dt
=
C0

C3

(
−C + ItRC

Vth
+
I(S)RC
Vth

)
· (15)
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Fig. 8. Measured normalized AI activated current(dots) and models; piece-wise-linear
min(0.8S, 1) (upper line) and hyperbola S/(1 + S) (lower line). For κ = 21, α = 135. Re-
produced from reference [17].

Comparison with equation (2) shows that

I(S)RC
Vth

= κ min(0.8S, 1) (16)

Equation (16) imposes two constraints. First, the maximum value of I(S) must cor-
respond to the right-hand-side maximum κ occurring for S ≥ 1.25, giving

I(S ≥ 1.25) ≡ ISmax = κVth
RC
. (17)

The maximum current is implemented by adjusting the gain GS in Figure 7 so that
the S = 1.25 input voltage VS = 1.25Vsth creates a current of 1 mA in the series
diodes causing V ′ = 3× 0.63 = 1.9V. The required op-amp output is GS(1.25)Vsth ≈
1.9 + (1mA)(300Ω) = 2.2V which provides the appropriate value for GS . Secondly,
for currents below the maximum value, equation (16)’s slopes must be the same.
From Figure 7 the current source is I(S) = GSVS/Rκ. For currents below ISmax we
use equation (16) and the relation for Vsth in equation (14) to find the relation between
model parameter κ and circuit value Rκ,

Rκ = ks0
GSRCRS

0.8(2.2 kΩ)ks1κ
. (18)

All the values on the right-hand-side except κ have been previously determined, there-
fore equation (18) provides a direct link between parameter κ and circuit value Rκ.
For the values used here the result is Rκ = (56.8GS)/κ in kΩ.
Figure 8 shows the measured normalized current I(S)/ISmax from the circuit in

Figure 7, the piece-wise-linear model min(0.8S, 1) (used in Eq. (2)), and the hyperbola
S/(1 + S) (Eq. (1c)) for κ = 21.3, Vth = 0.0219V, and gainGs = 1.76. The piece-wise-
linear function intersects the hyperbola at S = 0 and 0.25.
We now consider the circuit which creates the AI concentration in the external

medium Sext. Each Repressilator circuit contributes its intracellular AI concentration
Si to the external concentration Sext. Figure 3 shows how two Repressilators are
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coupled by concentrations S1 and S2 combining to produce

Sext =
2RQ
4.7 k

Save = QSave (19)

where Save = (S1 + S2)/2. Q = 2RQ/4.7 kΩ is a dilution factor which in a biological
setting ranges from 0 to 1. For purposes of exploring dynamics in the full parameter
range of the mathematical system, we use a 5 kΩ potentiometer for RQ so that we
can vary Q from 0 to 2. Our previous circuit design [11] limited Q variation from 0
to 1.

2.3 Selection of circuit values

Here we summarize the practical results for choosing circuit values in Figures 2
and 3. The model parameters are n, α, β′s, κ, ks1, and η. Some circuit values
are chosen independent of the model parameters. We choose RC = RS = 1kΩ and
C0 = CS = 0.1μf for characteristic time 0.10ms, RE = 222Ω, V−sat = −3.5V (for
the LF412 op-amp powered by ±5V), and the voltage divider fraction (Rb1 and Rb2)
in Figure 2 as s = 420/2620 = 0.160. Resulting measured quantities for the transistor
are Imax = 2.95mA at Vebmx = 0.70V, and 1.5mA at Veb = 0.68V. These currents
were shown to be consistent with predictions using the standard large-signal transistor
model I(Veb) = IS exp(Veb/VT ).
For Figure 2, equation (4) gives Vth and Ci, equation (9) gives overall gain G1G−2,

and equation (10) gives Vcth. For Figure 3, equation (18) gives Rκ, op-amp gain
GS = 0.8× 2.2V/Vsth, where Vsth is given by equation (14). The only circuit value
not determined by the model parameters is Rhill in Figure 2. It is convenient to
incorporate trim-pots into Rhill to adjust the Hill function’s positive curvature decay
to zero.
For many choices of parameters the AI concentration S stays below 1, in which case

the S activation term min(0.8S, 1)→ 0.8S meaning there is no need to amplify VS to
impose saturation of I(S). Thus, the current source I(S) in Figure 7 can be simplified
by leaving out the non-inverting op-amp at the input and the 3 diodes, so that VS
connects directly to the 300 + 3k = 3.3 kΩ. In this case GS = 1 in equation (18).

2.4 Setting initial conditions

The ability to set initial conditions is crucial when studying systems with multista-
bility so that all attractors can be captured. We use the 4066 quad analog switch
to impose initial conditions by momentarily connecting “protein” capacitor voltages
to desired initial values set by trim-pot voltage dividers with op-amp followers. The
4066 is gated by the output of a 555 timer controlled by a push-button momentary
switch (circuit not shown). Improved performance of the 4066 switch is achieved by
powering it with 0 and +15V, compared to the synthetic genetic network circuits
powered by ±5V.

2.5 Other design considerations

The inexpensive 2N3906 pnp transistors used in the gene circuits were selected from a
large batch to have nearly the same saturation current, IS = 7± 1 fA, by performing
in-house measurements.
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(a) Numerical (b) Measured

Fig. 9. Numerical and measured Q-continuation bifurcation diagrams showing amplitude of
protein B for a single Repressilator with quorum sensing. (a) Numerical: stable (thick solid
line) and unstable (thin solid) steady-state. Stable limit cycle (thick dashed). (b) Measured:
data points for stable steady-state (triangles) and stable limit cycle (circles).

For the case of coupled Repressilator circuits, care was taken to distribute the±5V
power rails and ground paths symmetrically to both Repressilators. The measured
voltage difference during operation between respective rails and respective grounds
of the two Repressilators was less than 1mV.

3 Measurments: quorum sensing circuit

We now present experimental results incorporating the new QS circuitry. We begin
with a single Repressilator with QS feedback, followed by two coupled Repressilators.
The case of a single Repressilator with QS feedback corresponds to setting

Sext = Q× S in equation (1d). Measured results from the QS circuit are compared to
predictions from numerical simulations using the XPPAUT software [21]. The desired
goal is that the circuit and the simulations have the same structure of dynamical
behaviors. A convenient way to do this dynamical comparison is to compare their
Q-continuation bifurcation diagrams shown in Figure 9. These diagrams show the
possible amplitudes of protein B for different Q-values. Figure 9a shows numerical
stable (thick line) and unstable (thin) steady-states (SS), and stable limit cycle (LC)
oscillations (dashed). Figure 9b shows data points for stable SS (triangles) and stable
LC (circles). The B-values for the circuit were obtained by normalizing the measured
voltage amplitudes by Vth = 15.5mV which corresponds to the parameter values used
in the simulation; n = 3.0, α = 190, βi = 0.5, 0.1, 0.1, and κ = 10. Rhill = 2.7 kΩ.
In both simulation and circuit measurements Figure 9 shows that increasing Q

causes the LC to decrease in amplitude until reaching the low-B-SS, and there is
coexistence of high-B-SS and LC over a broad range of Q-values from approximately
0.6 to 1.3. Both bifurcation diagrams predict that decreasing Q will cause a transition
to LC for a system starting from the high-B-SS. Figure 10 shows an oscilloscope
screenshot of this Q-induced high-B-SS to LC transition when Q was slowly decreased
by adjusting trim-pot RQ in Figure 3. The transition occurred at a value of 1.5 kΩ
corresponding to Q = 2× 1.5/4.7 = 0.64 agreeing well with the left-side endpoint of
the high-B-SS in the bifurcation diagrams.
The agreement between the circuit and simulation results is not exact in Figure 9,

however, the qualitative structure and relative location of dynamical behaviors are
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Fig. 10. Screenshot (oscilloscope) of high-B-SS to LC transition caused by decreasing Q at
0.64 for a single Repressilator circuit with QS feedback. Protein B voltage shown. Parame-
ters: n = 3, α = 190, κ = 10, Rhill = 2.7 kΩ.

(a) Anti-phase (b) In-phase

Fig. 11. Screenshots of anti-phase and in-phase limit cycles for two QS-coupled Repressilator
circuits. The protein B voltages from each Repressilator circuit are shown. Both screenshots
use the same circuit values, thus demonstrating the coexistence of AP and IP limit cycles.

the same. For the circuit the low-B-SS was stable over a Q-range narrower than the
resolution of Q-values and therefore appears as the single triangle data point at the
end of the LC-branch. We note that the simulations are able to find the unstable
SS (thin lines in Fig. 9a), whereas the circuit, of course, only finds stable dynamics.
We conclude that the quorum sensing circuit achieves the goal of having the same
dynamical behavior as the mathematical model.
The motivation for the circuit improvements presented here is to extend our

previous investigations to coupled Repressilators. Figure 11 shows examples of the
homogeneous limit cycles for two coupled Repressilators. The screen-shots show
the B-protein voltages of the two Repressilator circuits. The “repressive” coupling
scheme in equations (1) produces a multistable system whose stable oscillations are
predominantly anti-phase (AP) [16] like those in Figure 11a. Interestingly, under
appropriate parameter values it is possible to find stable in-phase limit cycles (IP)
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Fig. 12. B-voltages measured from circuit model of two QS-coupled Repressilators exhibit-
ing complex dynamics containing transient pieces of asymmetric period-1:2 and symmetric
period-3 limit cycles. n = 3.2, α = 148.

like those in Figure 11b, which coexist with AP. Both screen-shots use the same
parameters (n = 4, α = 143, βi = 0.5, 0.1, 0.1, κ = 4.8, Rhill = 9 kΩ) and both the
AP and IP can be accessed simply by smoothly varying the coupling strength
Q. AP is the sole stable state at small Q and as Q is increased the amplitude of
the AP decreases until the AP becomes unstable and transitions to a stable steady-
state characterized by both B-proteins being at the high value. When Q is then
decreased there is a transition to IP at the endpoint of the stable steady-state (similar
to the transition induced by decreasing Q for the single Repressilator in Fig. 10).
A rich variety of complex dynamics occurs for Hill coefficients n = 3.0 to 3.2 as

described in reference [17]. Here we show results from the improved circuit demon-
strating how symmetric and asymmetric high period limit cycles influence the complex
dynamics in the regime where the AP limit cycle is unstable. Figure 12 shows complex
dynamics containing transient durations of high period oscillations–symmetric period-
3 and asymmetric period-1:2 limit cycles. The evolution of complex behavior as Q is
varied may be seen in the “sequential period maps” T (n+ 1) versus T (n) where T (n)
are the return times (subperiods) for a given Poincaré section. Figure 13 shows mea-
sured sequential period maps from circuits with various Q-values. Figure 13a is for an
asymmetric-4:4 limit cycle which is stable because the symbols (+ and o) for the two
B-proteins do not mix. Figure 13b is from a stable 3:3 limit cycle which is symmetric
thereby requiring the symbols to mix. Figure 13c is from an unstable asymmetric-1:2
limit cycle in which the two B-proteins are “switching roles” causing mixing. Fig-
ure 13d is from a complex time series, a portion of which is shown in Figure 12,
which contains pieces of the asymmetric-1:2 and the symmetric-3:3 limit cycles. It is
apparent that the locust of points in (d) has contributions from (b) and (c).

4 Incorporation of additive noise

Additive noise may be included using a simple noise circuit shown in Figure 14
based on the breakdown of a reverse biased base-emitter junction as described pre-
viously [12]. Noise is added to a protein by disconnecting its RC from ground in
Figure 2 and connecting it to the noise circuit output as shown in Figure 14. The
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(a) Asymmetric-4:4 limit cycle. (b) 3:3 limit cycle.

(c) Unstable asymmetric-1:2 limit cycle. (d) Unstable with pieces of As-1:2 and 3:3.

Fig. 13. Sequential period maps constructed from time-series circuit measurements for
various Q within the unstable AP regime. Return times for the two B proteins indicated by
+ and o. Q-values for (c) and (d) are within the experimental resolution of 0.9.

potentiometer at the second op-amp adjusts the noise amplitude. Using the same
procedure used to find equation (3), the equation for the gene’s protein voltage Vi is
easily found to be

(1 kΩ)Ci
dVi

dt
= Vi − Vnoise + (1 kΩ)It. (20)

The noise is symmetric about zero and therefore the minus sign is irrelevant, thus
accomplishing the task of adding noise to the protein voltage Vi.
Comparison of the noise-influenced dynamical results from circuit measurements

and numerical predictions requires careful connection of the electronically generated
noise characteristics to the simulated noise. Here we summarize those connections,
which were derived previously [12]. In simulations additive noise is typically repre-
sented by Dη(t) where η(t) is a zero-mean Gaussian noise with unit variance and the
amplitude D is the noise strength. The electronically generated noise is characterized
by its rms amplitude VNrms and its frequency bandwidth fc. The relation between
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Fig. 14. Noise circuit. 2N3904 npn on left has no connection at its collector. 2N3906 pnp
on right is from the gene circuit (Fig. 2). Op-amps are OPA228 powered by ±12V. Noise
is produced by stochastic breakdown of the reverse biased base-emitter pn junction of the
transistor on the left and amplified by two stages of op-amps producing Vnoise which is
connected to the 1 kΩ resistor of the gene circuit.

Fig. 15. Screen-shot of noise-induced transition from anti-phase (AP) to in-phase (IP)
oscillation for two QS-coupled Repressilator circuits. Independent noise (top two traces) was
added to each B-protein voltage.

the simulated noise strength D and the measured strength VNrms is [12]

D =
VNrms

Vth
√
γ(RC)fc

(21)

where RC is the characteristic time of the Repressilator, and π/4 ≤ γ ≤ π/2 de-
pending on the gain of the second amplifier in Figure 14. The noise bandwidth is
determined by the op-amp’s gain-bandwidth product (33MHz for the OPA228) and
the gain of the non-inverting amplifier in Figure 14 (about 20×) resulting in a noise
bandwidth of fc = 33/20 ≈ 1.5MHz.
As a demonstration, we add independent noises to each B-protein for the case of

coexistence of AP and IP states used for Figure 11 (n = 4, α = 143, κ = 4.8). Multiple
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transitions between the states were observed. Figure 15 shows a noise-induced tran-
sition from AP to IP. The top two traces are the added noises with rms-amplitudes
of VNrms = 0.156V. Equation (21) gives the corresponding noise strength for sim-
ulation D ≈ 0.6, found using α = 143 and ImaxRC = 2.95V to give Vth = 20.6mV,
characteristic time RC = 0.1 ms, and taking γ = 1.

5 Conclusion

We presented a revised design for our electronic circuit model of a synthetic genetic
network comprised of Repressilators coupled together by quorum sensing. Two sig-
nificant improvements over previous versions [10,11] were shown: The incorporation
of the large-signal transistor model into the derivation of the circuit’s Hill function
repression yields improved connections between mathematical parameters and circuit
values, and a complete redesign of the quorum sensing circuitry produced superior
modeling of the quorum sensing activation and allowed expansion of the quorum sens-
ing circuit’s parameter range to match that of the mathematical model. In addition,
we describe how to set initial conditions, a feature crucial to investigating multi-
stability. Circuit behavior was verified by comparing bifurcation diagrams obtained
from measurements and numerical simulation. These circuit revisions were important
because they allow us to extend previous investigations to the case of two coupled
Repressilators. Here we demonstrated the coexistence of IP and AP limit cycles, noise-
induced transitions between these states, and the influence of high period limit cycles
on the complex dynamics. Recently, the improved circuit was used to find a rich dy-
namical landscape, including many regimes of multistablilty of a variety of dynamical
states, and a broad regime of unstable AP limit cycle which contains an interesting
evolution of complex behavior including symmetric and asymmetric chaos [17].

S.K.D. acknowledges support by the University Grants Commission (India) Emeritus
Fellowship. The authors thank Evgeny Volkov for valuable contributions.
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15. E. Ullner, A. Zaikin, E. I. Volkov, J. Garćıa-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007)



1828 The European Physical Journal Special Topics

16. E. Ullner, A. Koseska, J. Kurths, E. Volkov, H. Kantz, J. Garćıa-Ojalvo, Phys. Rev. E
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