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Abstract. The quantum tunneling of correlated atoms in an optical
lattice is investigated in the presence of ac-driving fields. The effective
Hamiltonian with density-dependent hopping rates are deduced. The
migration of a correlated atoms in 1D and 2D lattices can be realized.
Based on this mechanism, we propose a method to create two-partite
entanglement. Our model may provide applications in quantum com-
puting and quantum information in ultracold atoms.

1 Introduction

Quantum simulation is a potential area for exploring fundamental many-body physics.
Ultracold quantum gases in optical lattices have become one of the most powerful
quantum simulators due to the high level of controllability and cleanness [1,2]. The lat-
tice system prevails since the experimental techniques has enabled single-site resolved
detection with high fidelity [3–5]. Thus paradigm models, such as the tight-binding
Hubbard models [6–9], the Harper Hamiltonians with artificial gauge fields [10,11], are
now achievable. At the same time, significant phenomena were demonstrated, rang-
ing from the basic superfluid-Mott insulator (SF-MI) transition [7], to the (fractional)
quantum Hall effects [12–15].
The accurate controllability of the parameters in lattice system leads to the

investigation of many-body coherent dynamics [16,17]. With static quantum con-
trol like a potential gradient, a wave packet in the lattice undergoes the Bloch
oscillations (BOs) [18]. Whereas a periodically driving problem can often be
described with the aid of Floquet theory, resulting in an effective time-independent
Hamiltonian [19]. Novel phenomena such as photon-assisted tunneling [20], dynamical
localization (DL) [21,22], (selective) coherent destruction of tunneling (CDT) [23–27],
and others [28–30], were also revealed in various driving systems. These results provide
a better understanding of the solid state physics and pave the way to the exploration
of the Floquet engineering [31,32]. Tunneling controls of single particle were proposed
in refernce [33], where the directed CDT were realized through bipartite super-lattices
and periodic driving. For strongly correlated systems, researches are focused on spe-
cific regimes like the coherent transport [34,35] and correlated BOs [36,37].
We have previously showed possible schemes of migrating correlated particle

pair [38,39], where the directed CDT stems from breaking the mirror-symmetry
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of tunneling. In a 1D optical lattice, the lattice shaking combined with a periodic
modulation of the on-site interaction, i.e., a double modulation (DM), is considered
to generate an unconventional Hubbard model [40]. Whereas for strongly correlated
system, the driving resonate to the on-site interaction can lead to photon-assisted
tunneling, which reveals the possibility of controlled tunneling. The other scheme
is proposed in a tilted lattice with lattice shaking. An effective time-independent
Hamiltonian can be deduced by re-normalizing the hopping rates. The density evolu-
tions of the correlated pair are simulated by applying the Schrodinger equation with
the original Hamiltonian. We make use of the resulting density-dependent hoppings
to generate CDT and realize directed migration. Our proposals apply to both 1D and
2D systems. Beyond the bipartite problem, such modulations can generate quantum
entanglement in systems with higher population.
In this paper, we propose a new scheme to generating entanglement in the optical

lattices. In Section 2 we demonstrate the driving models and corresponding effective
hoppings. The 1D and 2D migration schemes are presented in Section 3 and Section 4,
respectively. In Section 5, we show the control schemes to generate entanglement in
3- and 4-particle system. A summary is presented in Section 6.

2 Model

Within the framework of the Bose-Hubbard model, the bosonic atoms in a 1D deep
lattice with periodic modulations can be described by the Hamiltonian,

Ĥ = −J
∑

j

(b̂†j b̂j+1 + h.c.) +
U(t)

2

∑

j

n̂j(n̂j − 1) +K(t)
∑

j

j · n̂j , (1)

where we assume that the on-site interaction is time-dependent because
of the modulation of an external magnetic field in the vicinity of a
Feshbach resonance [41,42], i.e. U(t) = U0 + U1 cos(ωt). The shaking lat-
tice is represented by the last term in equation (1), where K(t) = K0 +
K1 cos(ωt) describes a dc-ac field. The two driving frequencies are assumed
to be the same for convenience. All parameters in such Hamiltonian are
independently tunable in experiments. To apply the Floquet analysis, ω � J has
to be satisfied. In such condition, K0 = 0 and U1 = 0 with a weak interaction (small
U0) lead to the standard renormalization of the hopping rates [43]. In a resonate case
with strong interaction and U0 = nω (with n the integer) and U1 = 0, photon-assisted
tunneling occurs, which is analogous to the case with K0 = nω and U1 = 0 [20,44].
Pioneering works on two-particle behaviors have revealed the dynamics of correlated
quantum walks in a uniform lattice [45] and fractional BO in a tilted lattice [36].
These feasible manipulations provide a new test bed for engineering the relevant
lattice models [10,11,20,25].
We focus on the resonate conditions, thus an energy quanta ω, provided by the

lattice shaking or on-site modulation, serves as the compensation to the energy cost
of multi-particle on-site occupations. A general result from the Floquet theory gives
an effective Hamiltonian,

Ĥeff = −
∑

〈i,j〉
b̂†iJeff(n̂i, n̂j)b̂j , (2)

where the effective hopping rate Jeff depends on the nearest on-site occupations and
the formula varies in different situations [38,39].
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3 Controlled migration in 1D

For the DM model in a 1D uniform lattice, i.e., K0 = 0 while K1 �= 0 and U1 �= 0, the
resonate condition U0/ω = m (with m an integer) results in an occupation-dependent
hopping rate

J(nj ,nj+1)↔(nj+1,nj+1−1) = JJμ
(
K1

ω
− U1
ω
(nj − nj+1 + 1)

)
,

μ = (nj − nj+1 + 1)m,

J(nj ,nj+1)↔(nj−1,nj+1+1) = JJν
(
K1

ω
− U1
ω
(nj − nj+1 − 1)

)
,

ν = (nj − nj+1 − 1)m,
with Jμ(ν) the μ(ν)-th order Bessel function of the first kind. This formula also works
when K1 = 0 or U1 = 0 and even m ∼ 0. DM can break the mirror symmetry of
tunneling without altering the lattice symmetry. For instance, the tunneling rates of
the two process:

|2, 0〉j,j+1 A↔|1, 1〉j,j+1 B↔|0, 2〉j,j+1 (3)

are JA = JJm(K1ω − U1ω ) and JB = JJm(K1ω + U1ω ), which are generally unequal. To
realize the directed tunneling control, the mirror-symmetry breaking is necessary.
Thus by setting the driving amplitude K1 and U1 appropriately, it is possible to
achieve J(1,1)→(0,2) = 0 while J(1,1)←(2,0) �= 0, and vice versa.
Such selective tunneling also arise in a 1D tilted lattice with lattice shaking (U1 = 0

while K0 �= 0 and K1 �= 0). However, an usual resonate condition cannot localize a
single particle. We consider the specific conditions U0,K0 = mω/2 and ω � J . With
m an odd integer, such conditions ensure the suppression of single-particle tunneling,
which can be verified from the effective hopping rates:

J(nj ,nj+1)↔(nj+1,nj+1−1) =

⎧
⎨

⎩
JJn+(

K1

ω
), n+ ∈ Z;

0, otherwise,

J(nj ,nj+1)↔(nj−1,nj+1+1) =

⎧
⎨

⎩
JJn−(

K1

ω
), n− ∈ Z;

0, otherwise,

n± = (nj − nj+1 ± 1)U0
ω
− K0
ω
, (4)

where Z represents the integer set. Applying equation (4) to the two-particle system
and we assume

U0 −K0 = μω, U0 +K0 = νω, (5)

with μ, ν integers, the effective tunneling rates in formula (3) are JA = JJμ(K1ω ) and
JB = (−1)νJJν(K1ω ). Analogous to the DM case, by tuning the value of K1, JA and
JB can be restrained to zero independently. When JB = 0, a two particle system
undergoes the Rabi-like oscillation labeled by A in the formula (3) with frequency

ωAosc =
√
2JA [46]. When JA = 0, the oscillation B occurs with ω

B
osc =

√
2JB .

The controlled migration of the particle pair is a result of allowing oscillation
A and B to occur alternatively. The condition JB = 0 is held for T = π/2ω

A
osc to

achieve a complete tunneling process |2, 0〉j,j+1 A→|1, 1〉j,j+1. Then the parameters
are switched to set JA = 0, leading to a subsequent process |1, 1〉j,j+1 B→|0, 2〉j,j+1.
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Fig. 1. (a) A realization of a zigzag pattern via combination of the leftward and rightward
migration processes. The turning points are t = 3(TA + TB) and t = 9(TA + TB). (b) The
corresponding modulation scheme of the lattice driving amplitude. K1/ω = 3.8317 in the
time interval TA and K1/ω = 2.4048 in the time interval TB . The time is in the unit of
T = 2π/ω.

Thus the correlated pair on site j migrate to site j + 1, which fulfill a complete cycle.
The direction of migration by the two-step manipulation depends on the preliminary
occupation condition and the choice of the initial tunneling process.
To show the controllability of two-particle migration, we simulate the dynamical

evolution of a bipartite system from the full time-dependent Hamiltonian equation (1).
The tilted shaking lattice scheme is adopted in the present paper, which comes at
a similar result from the DM scheme [38]. The relevant parameters are taken as
U0 = K0 = ω/2 = 20 (in the unit of J ). Starting from a doublon state |2, 0〉j,j+1
(j = 6), we setK1/ω = K

B
1 /ω = 2.4048 in the time interval TB = π/2ω

B
osc to meet the

condition JA = 0. K1 is then switched to K1/ω = K
A
1 /ω = 3.8317 to ensure JB = 0

in the time interval TA = π/2ω
A
osc. Repeating the two processes gives rise to a leftward

migration of the correlated pair. We label the above controlling process as TB − TA
mode, thus a rightward motion can be simply realized through a TA-TB mode. As
shown in Figure 1a, a forth and back motion is achieved by alternatively switching
from TB − TA to TA − TB mode at t = 3(TA + TB) and vice visa at t = 9(TA + TB).
The corresponding modulation scheme of the amplitude K1 is shown in Figure 1b.
The periodically driving Hubbard model in our consideration is within exper-

imental realization with cold atoms in optical lattices [20,47,48]. With ultracold
rubidium atoms, the relevant parameters, such as the tunneling rate J, the on-site
interaction U and the lattice tilting K0, can be tuned to J/� ∼ 1kHz, J/U ∼ 0.2 and
K0 ∼ nω [20,47]. The controlling parameter K1 can be tuned up to 4�ω [48]. To fit
the high-frequency limit, we will consider the driving frequency to be ω ∼ 40 kHz. All
parameters are highly controllable and can vary in a wide range, making it possible
to reach the conditions in our concern.

4 Controlled migration in 2D

The researches on 2D quantum control have been stimulated by the rapid progresses
of the site-resolved probing techniques [49] and 2D simulations in quantum comput-
ing [50,51]. The present particle pair quantum control through the modulated driving
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Fig. 2. 2D migration of the correlated pair on a 8× 8 lattice. (a) The density peaks at
discrete times tn = n · (TA + TB), n = 0, 1, 2, · · · , with n labeled by colors. The route of
motion is guided by the arrows, along which the sites are labeled by “A,B, · · · , J”. (b) The
density evolution along the anticipated route shown in (a).

scheme in a tilted lattice can be naturally extended to the 2D case. While implement-
ing the controlling scheme in the tunneling direction (TD), we need to suppress all
possible tunnelings in the direction perpendicular to the TD. All possible tunneling
channels in the latter direction include |2, 0〉〈i,j〉 → |1, 1〉〈i,j〉, |0, 2〉〈i,j〉 → |1, 1〉〈i,j〉 and
|1, 0〉〈i,j〉 ↔ |0, 1〉〈i,j〉, where 〈i, j〉 indicate the nearest neighboring sites i, j. Referring
to the 1D effective hopping rates shown in equation (2) and equation. (4), we propose

the suppression scheme in the damping direction (DD) as U/ω(DD) = 1/2, K
(DD)
0 = 0,

which closes the first two channels, andK
(DD)
1 /ω(DD) = 2.4048 which reduces the hop-

ping rate in the third channel to zero. Whereas in the tunneling direction, the directed
migration is achieved through our previous modulation scheme of periodically altering

K
(TD)
1 to KA1 and K

B
1 .

In Figure 2, we demonstrate the pair migration along the anticipated route. The
results are from the numerical evolution for a 8× 8 lattice system. The parameters
in the damping directions have been set as described above with ω(DD) = ω(TD) =
40 (in units of J ). In the other direction, we have properly arranged the tunneling
scheme proposed in the Section 3. When the correlated pair reaches a particular
site, exchanging the conditions for each individual directions can lead to the further
migration in the other direction. In Figure 2a, we plotted the density peaks in a 3D
histogram at times tn = n · (TA + TB), n = 0, 1, 2, · · · , with n labeled by the color bar.
The density evolution along the route is shown in Figure 2b. The density evolves to a
maximum value at tn located at one of the sites, which is consistent with Figure 2a.

5 Generating entanglement

The driving scheme with tilted lattice highly localize a single isolated particle in the
1D space. We can make use of this to realize a interacting process between a single
particle and a particle pair. As shown in Figure 3a, two single particles locate at site
3 and site 8, whereas a pair of particles is placed between them. The corresponding
modulation shown in Figure 1b leads to the migration of the particle pair. The hopping
of the isolated particles can only occur with the assistance of other particles. When
the state |1〉8 ⊗ |102〉3,4,5 is formed at time t = TA + TB , we set K1 = KB1 to suppress
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Fig. 3. 4-particle modulation scheme. (a) The density evolutions revealing the migrating,
tripartite oscillating and separating processes. After time t = TA + TB + 3TC + 3TD, the
pair undergoes the oscillation |0, 2〉〈5,6〉 ↔ |1, 1〉〈5,6〉. (b) The corresponding modulations of
the shaking amplitude between the values KA1 /ω = 3.8317 and K

B
1 /ω = 2.4048.

all tunneling processes except

|102〉〈i,j,k〉↔|111〉〈i,j,k〉↔|021〉〈i,j,k〉, (6)

with the same hopping rate J̃ = JJ1(KB1 /ω). The state |ni, nj , nk〉 represents the
one with ni, nj , nk particles on site i, j, k, respectively, and 〈i, j, k〉 indicate three
neighboring sites i,j,k. Since the particle on site 8 remains unaffected, we concentrate
on the lower tripartite system which can be described by

|Φ(t)〉 = c1(t)|102〉〈i,j,k〉 + c2(t)|111〉〈i,j,k〉 + c3(t)|021〉〈i,j,k〉. (7)

By setting c1(t = 0) = 1, we have the analytical results

c1(t) =
1

2
cos(2J̃ t) +

1

2
,

c2(t) = − i√
2
sin(2J̃ t), (8)

c3(t) =
1

2
cos(2J̃ t)− 1

2
,

with the oscillation periods TC = π/J̃ for both |c1(t)|2 and |c3(t)|2 and TC/2 for
|c2(t)|2. The initial state |102〉〈4,5,6〉 recovers at time t = TA + TB + nTC (n = 3 in
our case). Then a TA − TB mode modulation separates the three particles into a pair
and an isolated one. When the pair interact with the upper particle, the shaking
amplitude is set to K1 = K

A
1 . Equation (8) also applies with altering the hopping

rate to J̃ = JJ0(KA1 /ω) and the oscillation period to TD = π/J̃ . After time t = 2TA +
2TB + nTC +mTD (n = m = 3), K1 = KB is remained to separate four particles into
two isolated particles and an oscillating particle pair.
However, the subtle states remains unclear if we consider distinguishable particles.

By studying the internal details, we may be able to realize quantum entanglement
within the lattice system. Now we assume the two isolated particles shown in Figure 3a
to be a-type atoms, whereas the particles in migrating pair, initially located at site 6,
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Fig. 4. (a) The probabilities of the internal states with |c1c00|2 indicated by the black real
curve, |c1c01|2 by the blue dashed curve, |c1c10|2 by the red dotted curve and |c1c11|2 by
the green dash-dotted curve. The summation of the four quantities gives the possibility of
the state |102〉〈i,j,k〉. (b) The bipartite concurrence calculated from (a). The valid nonzero
values of the concurrence are labeled by crosses at times t = 2TA + 2TB + 3TC +mTD
(m = 1,2,3).

are b-type atoms. a,b atoms are distinguishable particles such as neutron bosons of
different hyperfine states. We focus on the system composed of two localized particles
on site 3 and site 8, which are labeled by system I and system II, respectively. Thus
|Φ〉 ∈ HI ⊗HII, where HI = {|a〉 ≡ |0〉, |b〉 ≡ |1〉}I , HI = {|a〉 ≡ |0〉, |b〉 ≡ |1〉}II. Such
definitions are suitable only when the three parts (two isolated particles and the
pair) separate. A two-partite system with two internal states can be decomposed
by |Φ〉 =∑i,j=0,1 ci,j |i〉I ⊗ |j〉II, and the degree of entanglement for such system is
generally measured by the concurrence [52]

C(Φ) = 2|c00c11 − c01c10|. (9)

C = 1 indicate a maximal entanglement, such as for the two-qubit Bell states.
Whereas C = 0 means the two-partite wave function can be factorized.
In our case for the systems I and II, the values of concurrence are valid at time

t = 2TA + 2TB + nTC +mTD (with n,m integers), i.e., when c1(t) in equation (7)
equals one. The concurrence with site-resolved two parts I and II depends on discrete
n and m. A simulation has been carried out to show the evolutions of the concurrence.
In Figure 4a, we show the probabilities of the internal states: |c1c00|2 (the black real
curve), |c1c01|2 (the blue dashed curve), |c1c10|2 (the red dotted curve), |c1c11|2 (the
green dash-dotted curve). The concurrence multiplied by |c1|2 is shown in Figure 4b,
where three possible values of C(Φ) are marked by crosses. Before time t = 2TA +
2TB + 3TC , the migrating pair only interact with system I, resulting in nonzero c00
and c10, whereas c01 = c11 = 0 and thus C(Φ) = 0. When the oscillation between the
pair and system II occurs, c01, c11 and C(Φ) rises. Nonzero concurrence indicate
the entanglement of the system I and II, which is produced through successively
interacting with the migrating pair.
Since the entanglement is built at the end of the interacting oscillation and subse-

quent modulations can then be carried out, we arrive at a quantum gate controlled by
the modulations of optical lattice. Further applications including parallel processing
and higher dimensional operation in this model are available.
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6 Summary

In summary, we have investigated correlated atoms in a fast driving Hubbard model.
We focus on two cases: the tilted shaking lattice and the DM in a uniform lattice. Both
cases can break the mirror symmetry of tunneling, which is the key to realize directed
migration of a correlated particle pair. Taking the latter case as an example and in
conditions U0 = K0 = ω/2� J , we have shown the specific scheme to achieve the
migration in 1D and 2D with utilizing the CDTs and the photon-assisted tunneling
effects. Further manipulation with isolated particles and the migrating pair were
proposed to generate two-partite entanglement.
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