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Abstract. We study (nonconserved) phase ordering dynamics in
the three-dimensional nearest-neighbor Ising model, following rapid
quenches from infinite to zero temperature. Results on various aspects,
viz., domain growth, persistence, aging and pattern, have been obtained
via Monte Carlo simulations of the model on simple cubic lattice. These
are analyzed via state-of-the-art methods, including the finite-size scal-
ing, and compared with those for quenches to a temperature above
the roughening transition. Each of these properties exhibit remarkably
different behavior at the above mentioned final temperatures. Such a
temperature dependence is absent in the two-dimensional case.

1 Introduction

When a paramagnetic system is quenched inside the ferromagnetic region, by a change
of the temperature from Ti (> Tc) to Tf (< Tc), Tc being the critical temperature,
it becomes unstable to fluctuations [1–5]. Such an out-of-equilibrium system moves
towards the new equilibrium via the formation and growth of domains [1–3]. These
domains are rich in atomic magnets aligned in the same direction and grow with time
(t) via the curvature driven motion of the interfaces [2,3,6]. The interface velocity
scales with �, the average domain size, as [2,6]

d�

dt
∼ 1
�
. (1)

This provides a power-law growth [2,6]

� ∼ tα, (2)

with α = 1/2. Depending upon the order-parameter symmetry and system dimen-
sionality (d), there may exist corrections to this growth law [2].
Apart from the above mentioned change in the characteristic length scale,

the domain patterns at different times, during the growth process, are statistically
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self-similar [2,3]. This is reflected in the scaling property [2],

C(r, t) ≡ C̃(r/�), (3)

of the two-point equal-time correlation function C, where r (= |r1 − r2|) is the scalar
distance between two space points and C̃ is a master function, independent of time.
A more general correlation function involves two space points and two times, and is
defined as [3]

C(r1, tw; r2, t) = 〈ψ(r1, tw)ψ(r2, t)〉 − 〈ψ(r1, tw)〉〈ψ(r2, t)〉, (4)

where ψ is a space and time dependent order parameter. The total value of the order
parameter, obtained by integrating ψ over the whole system, is not time invariant
for a ferromagnetic ordering [2]. Thus, the coarsening in this case belongs to the
category of “nonconserved” order parameter dynamics [2]. For r1 = r2, the definition
in equation (4) corresponds to the two-time autocorrelation function, frequently used
for the study of aging properties [3,7,8] of an out-of-equilibrium system, tw(≤ t) being
referred to as the waiting time or the age of the system. For the two point equal-time
case, on the other hand, tw = t. The autocorrelation will henceforth be denoted as
Cag(t, tw). This quantity usually scales as [3,7–12]

Cag(t, tw) = C̃ag(�/�w), (5)

where C̃ag is another master function, independent of tw, and �w is the value of � at
tw. Another interesting quantity, in the context of phase ordering dynamics, is the
persistence probability P [13–20]. This is defined as the fraction of unaffected atomic
magnets (or spins) and decays in a power-law fashion with time as [13]

P ∼ t−θ. (6)

In the area of nonequilibrium statistical physics, there has been immense interest in
estimating the exponents α and θ, as well as in obtaining the functional forms of C̃
and C̃ag, via analytical theories and computer simulations [2,3,13].
In this work, we study all these properties for the nonconserved coarsening

dynamics in the Ising model [21],

H = −J
∑

<ij>

SiSj , J > 0, Si = ±1, (7)

via Monte Carlo (MC) simulations [21]. We focus on d = 3 and study ordering at
Tf = 0, for rapid quenches from Ti =∞. This dimension, particularly for Tf = 0,
received less attention compared to the d = 2 case. In d = 2, the MC results for
C(r, t) are found to be in nice agreement with the Ohta-Jasnow-Kawasaki (OJK)
function [2,3,22] (D being a diffusion constant)

C(r, t) =
2

π
sin−1

[
exp

(
− r2

8Dt

)]
. (8)

This expression also implies α = 1/2, validity of which has been separately checked
[2,3]. For the latter dimension (d = 2), in the long time limit, the autocorrelation is
understood to scale with x (= �/�w) as [7,9,12,23]

Cag(t, tw) ∼ x−λ, (9)
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with λ following a lower bound,

λ � d

2
, (10)

predicted by Fisher and Huse (FH) [7]. In this case, also the persistence exponent θ
has been estimated [17,18,24,25] for quenches to Tf = 0. Furthermore, a few of these
aspects, viz., the equal-time correlation function (for large r) and domain growth, are
understood to be independent of the value of Tf .
While the above aspects were studied in d = 3 as well, our interest in the zero

temperature quench in this dimension was drawn by works [26–29] that reported much
slower domain growth than the theoretical expectation. Here we mention that below
and above the roughening transition temperature (TR), value of which is nonzero [29]
(� 0.57Tc) in d = 3, there exist differences in structural properties [27]. Above TR
interfaces are rounded and the corresponding width (in equilibrium) logarithmically
diverges with the system size. Below TR, on the other hand, the interfaces are flat
and the width has no such system-size dependence. Thus, it may be natural to expect
that the dynamics will also be different for Tf < TR and Tf > TR. As stated above,
in this work we study structure and dynamics of coarsening for Tf = 0 and compare
some of these results with those for Tf = 0.6Tc that lies above TR. Here note that the
coarsening dynamics for Tf > TR is well understood [5].
The ordering dynamics of d = 3 Ising model at Tf = 0 were studied by other

authors as well [30–33]. Sponge-like structure was reported [32,33] and late time
behavior, from simulations of small system sizes, of the domain growth was shown
[32,33] to be extraordinarily slow. Our focus here, thus, will be to probe the dy-
namics over long time without being affected by finite size of the systems. Here
we also mention that the zero-temperature late time dynamics of the time de-
pendent Ginzburg-Landau (TDGL) model in this dimension was shown [34] to
be consistent with the theoretical expectation. Thus, it is important to estab-
lish that Ising model is not different. For experimental results in this context, see
reference [5].
While addressing this issue, via simulations with large system sizes over long

period, we made further interesting observations in other quantities. In this paper,
we present these results on pattern, growth, aging and persistence. While our studies
for pattern and aging are new, the results for growth and persistence are presented
in forms different from an earlier work [35], to bring completeness to the discussion.
It appears, previous conclusions on the value of α was led by the presence of an
exceptionally long transient period, which was later hinted in Reference [29]. In the
“true” long time limit, the growth exponent is indeed 1/2. Such a trend we observe in
the decay of the persistence probability as well. On the other hand, the pattern and
aging properties do not seem to exhibit any crossover. These results are very much
different from those obtained for quenches to a temperature above the roughening
temperature. Such temperature dependence does not exist in the d = 2 case. Wherever
necessary we presented results from the latter dimension as well.
The rest of the paper is organized as follows. In Section 2 we describe the methods.

Results are presented in Section 3. Finally, we conclude the paper in Section 4 by
presenting a summary.

2 Methods

All our results were obtained via MC simulations of the Ising model using Glauber
spin-flip moves [21,36], where, in each trial move the sign of a randomly chosen
spin was changed. Here we use the name Glauber only to emphasize that the trial
moves are related to flipping of single spins, to distinguish it from the exchange
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moves of Kawasaki, involving pairs of spins, that provide conserved order-parameter
dynamics [21]. Algorithm for accepting these moves are described below. For Tf = 0,
a move was always accepted if it brought a negative change in the energy. Here note
that in the zero temperature case moves that bring no change in energy are accepted
with different probabilities [32,33], viz., 0, 1/2 and 1, results from which are consistent
with each other. In this work we accept such moves with probability 1. On the other
hand, for Tf > 0, whenever a trial move brought a higher energy contribution, the
acceptance was decided by comparing the corresponding Boltzmann factor with a
random number (drawn from an uniform distribution), a standard practice followed
in the Metropolis algorithm [21]. As stated in reference [21], the conclusions should
remain same if one uses the Glauber acceptance algorithm instead.
In d = 2 we have used square lattice and for d = 3 the results are from simple cubic

lattice. All simulations were performed in periodic boxes of volume V = Ld, L being
the linear dimension of a box, in units of the lattice constant. For this model, the
d-dependent critical temperatures [21] are Tc � 2.269J/kB (d = 2) and Tc � 4.51J/kB
(d = 3), kB being the Boltzmann constant. Time in our simulations was measured in
units of MC step (MCS), each MCS consisting of Ld trial moves [21]. Unless otherwise
mentioned, all results are presented after averaging over at least 10 independent initial
configurations, with L = 512. For the rest of the paper we set kB , the lattice constant
and the interaction strength (J) to unity.
The average domain size was calculated in two different ways: (i) from the first

moment of the domain size distribution Pd(�d, t) as [37]

� =

∫
�dPd(�d, t)d�d, (11)

�d being the distance between two successive interfaces along any direction, and (ii)
using the scaling property of the correlation function as [2]

C(�, t) = 0.1. (12)

The average domain size can also be calculated from the first moment of the structure
factor (to be introduced later) as well as from the excess energy above the ground
state [38]. The results from all these methods should be proportional to each other in
the dynamical scaling regime. This fact we have checked by working with a number
of methods in other works. Unless otherwise mentioned, presented results in this
work are from equation (11). For this purpose, we have eliminated the noise in the
configurations at nonzero temperatures, by applying a majority spin rule [37]. Note
that the order-parameter ψ here is equivalent to the Ising spin variable Si. Thus,
further discussions on the calculation of the other quantities are not needed since
those are clearly understandable from the definitions.

3 Results

We start by showing the plots of � vs t, for d = 2 and 3, at Tf = 0, on a log-log scale,
in Figure 1(a). The system size considered here is comparable to the early studies
[26,27] in d = 3. The data for d = 2 is clearly consistent with the exponent α = 1/2,
for the whole time range [2,3]. On the other hand, after t = 10 the d = 3 data appear
parallel to α = 1/3. For accurate estimation of the exponent for a power-law behavior
it is useful to calculate the instantaneous exponent [39]

αi =
d ln �

d ln t
, (13)
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Fig. 1. (a) Log-log plots of the average domain length, �(t), vs time, for Tf = 0. Results
from both d = 2 and 3 are presented. In both the cases linear dimension of the system is
L = 200. The solid lines correspond to two different power-law growths, exponents being
mentioned in the figure. (b) Plots of the instantaneous exponent, αi, vs 1/�, obtained from
the data in Figure 1(a). (c) Finite-size scaling exercise for the d = 3 results for �(t). Here we
have shown the scaling function Y with the variation of the dimensionless quantity y. Y was
obtained from the best collapse of data from three different system sizes (mentioned in the
figure). The solid line corresponds to a power law decay with exponent 0.35. These results
are also from Tf = 0.

as well as perform finite size scaling (FSS) analysis [21,40]. In Figure 1(b) we plot αi
as a function of 1/�. Clearly, for d = 3, the convergence of the data set, in the limit
� =∞, is consistent with α = 1/3, while the d = 2 data converge to α = 1/2. Since
the data for large � in this figure are noisy, to understand the stability of the d = 3
exponent over long period, we perform the FSS analysis (see Figure 1(c)). We do not
perform this exercise for d = 2, since, in this case we have already seen that the data
are consistent with the theoretical expectation, as established previously [2,3]. In fact,
from here on, unless otherwise mentioned, all results are from d = 3 and Tf = 0.
In analogy with the critical phenomena [40], a finite-size scaling method in the

domain growth problems can be constructed as [37,41,42]

�(t) = LY (y), (14)

where the finite-size scaling function Y is independent of the system size but depends
upon y (= L1/α/t), a dimensionless scaling variable. In the long time limit (y → 0),
when � � L, Y should be a constant. At early time (y 
 0), on the other hand, the
behavior of Y should be such that equation (2) is recovered (since the finite-size effects
in this limit are non-existent). Thus

Y (y 
 0) ∼ y−α. (15)

In the FSS analysis, α is treated as an adjustable parameter. For appropriate choice
of α, in addition to observing the behavior in equation (15), data from all different
values of L should collapse onto a single master curve. In Figure 1(c) we have used
α = 0.35. The quality of collapse and the consistency of the power-law decay of the
scaling function with the above quoted exponent, over several decades in y, confirm
the stability of the value. Thus, it was not inappropriate for the previous studies
[26,27] to conclude that the growth is much slower. Nevertheless, given the increase
of computational resources over last two decades, it is instructive to simulate larger
systems over longer periods [29], to check if a crossover to the theoretically expected
exponent occurs at very late time.
In Figure 2(a) we present the � vs t data, on a log-log scale, from a much larger

system size [35] than the ones considered in Figure 1. Interestingly, three different
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Fig. 2. (a) Log-log plot of �(t) vs t, for d = 3 and Tf = 0, with L = 512. The rest of the
results are presented for this particular system size. The solid lines indicate different power-
law growths, the exponents being mentioned. The upper inset shows instantaneous exponent
αi as a function of t, the x-axis being in log scale, for the data presented in the main frame.
The horizontal solid lines there correspond to α = 1/3 and 1/2. The lower inset is same
as the main frame but for Tf = 0.6Tc. The continuous line there corresponds to a power-
law growth with exponent 0.48. (b) Log-log plot of the persistence probability, P (t), as a
function of t, for d = 3, Tf = 0 and L = 512. The inset shows corresponding instantaneous
exponent, θi, vs t, x-axis being in a log scale. The horizontal solid lines there correspond to
the ordinate values 0.176 and 0.15. The figure has resemblance with Figure 7(b) of Physical
Review E 93, 032139 (2016).

regimes are clearly visible. A very early time regime shows consistency with α = 1/2.
This is followed by an exponent 1/3, that stays for about three decades in time.
Finally, the expected α = 1/2 behavior is visible, for nearly a decade, before the
finite-size effects appear. In this case, an appropriate FSS analysis, to confirm the
later time exponent, requires even bigger systems with runs over much longer times,
which, given the resources available to us, was not possible. Thus, for an accurate
quantification of the asymptotic value of α, we restrict ourselves to the analysis via
the instantaneous exponent [39]. In the upper inset of Figure 2(a), we have plotted αi
as a function of t. The quantity shows a nice late time oscillation around the value 1/2.
This is at variance with the data at high temperature. See the � vs t data, on a log-
log scale, from Tf = 0.6Tc, in the lower inset of Figure 2(a). Here we observe α � 1/2
for the whole time range. For this data set as well we avoid presenting results from
further analyses. We have not been able to understand the multiple scaling regimes
in the Tf = 0 data. As mentioned above, for Tf = 0, similar results [34] with different
regimes were observed in the TDGL model as well.
For Tf = 0, the crossover that occurs in the time dependence of �, may be present

in other properties as well [35]. These we check next. For the persistence probabil-
ity, the value of θ was previously estimated [18], also from smaller system sizes, to
be � 0.17. In Figure 2(b) we show a log-log plot of P vs t and the corresponding
instantaneous exponent θi (see the inset), calculated as [39]

θi = −d lnP
d ln t

, (16)

vs t, for the same (large) system as in Figure 2(a). The early time data is consis-
tent with the previous estimate. At late time there is a crossover [35] to a smaller
value � 0.15, the crossover time being the same as that for the average domain size.
Here note that, despite improvements [16,28,35], the situation with respect to the
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Fig. 3. (a) Log-log plots of the autocorrelation function, Cag(t, tw), vs �/�w, for Tf = 0
and 0.6Tc. For each value of Tf , results from multiple ages are presented. The solid line
corresponds to a power-law decay, exponent for which is mentioned on the figure. (b) Plot
of the instantaneous exponent, λi, vs 1/x, for Tf = 0.6Tc, with tw = 300 MCS. The solid
line is a guide to the eyes. (c) Log-log plot of the ratio, R, between the master curves for
the autocorrelations at Tf = 0.6Tc and 0, as a function of x.

calculation of persistence at non-zero temperature may not be problem free, for the
reason stated below. Curvature driven coarsening essentially occurs due to flipping of
spins in the domain-boundary regions. However, for Tf > 0, spins inside the domains
also flip. Even though the growth mechanism is same, such microscopic dynamics
for Tf > 0, due to thermal fluctuation, affects the calculation of P . To overcome the
problem, Derrida [16] proposed simulations of ordered systems as references so that
the bulk spin-flips can be appropriately discounted. While we have checked that this
method works for Tf close to 0, at very high temperature calculations may still suffer
from errors because of interface broadening effect. Thus, for this quantity we avoid
presenting results from Tf = 0.6Tc.
In Figure 3(a) we show the plots of Cag(t, tw), vs �/�w, from Tf = 0 and 0.6Tc, on

a log-log scale, for different values of tw. Good collapse of data, for both the values
of Tf , are visible over the whole range of the abscissa variable. This, in addition to
establishing the scaling property of equation (5), implies the absence of the finite-size
effects [23,43]. On the issue of the finite-size effects for the nonconserved Ising model,
a previous study [23] showed that such effects become important only for � > 0.4L.
The length of our simulations were set in such a way that we are on the edge of this
limit. For Tf = 0, this can be appreciated from the � vs t data in the main frame
of Figure 2(a). Here note that for conserved Ising model the finite-size effects start
appearing when � is approximately 3/4th of the equilibrium domain size limit [37].
Thus, the effects are rather strong here and this fact is consistent with the late time
dynamics reported elsewhere [32,33].
From a Gaussian auxiliary field ansatz, in the context of the time dependent

Ginzburg-Landau model [2], Liu and Mazenko (LM) [9] constructed a dynamical
equation for C(r1, tw; r2, t). For t
 tw, from the solution of this equation, they
obtained (see Eq. (9)) λ � 1.67 in d = 3. The solid line in Figure 3(a) represents a
power-law decay with the above mentioned value of the exponent. The simulation
data, for both values of Tf , appear inconsistent with this exponent. Rather, the
simulation results on the log-log scale exhibit continuous bending. Such bending may
be due to the presence of correction to the power law decay at small values of x.
Thus, more appropriate analysis is needed to understand these results.
In Figure 3(b) we plot the instantaneous exponent [9,23,39]

λi = −d lnCag
d lnx

, x =
�

�w
, (17)
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as a function of 1/x, for Tf = 0.6Tc. A linear behavior is visible, extrapolation of
which, to x→∞, leads to λ � 1.63. The latter number follows the FH bound [7]
(see Eq. 10)) and is in good agreement with the theoretical prediction of LM [9].
Inserting the linear trend of λi in its definition (Eq. (17)), one obtains a full form for
the autocorrelation function to be [23]

Cag = C0exp

(
− B

x

)
x−λ, (18)

where C0 and B are constants. This empirical form was obtained by keeping in mind
its usefulness in obtaining an accurate value for λ via finite-size scaling analysis.
In fact, such an analysis [23], combining Ising and TDGL models, provided a value
1.68± 0.05 which, though closer to the LM one, is slightly higher than a previous
estimate [44]. Here note that there already exists [12] a full form, derived from the
local scale invariance, for the decay of Cag during coarsening in the ferromagnetic Ising
model. Validity of this has been demonstrated in studies [45] of q(> 2)-state Potts
model. The accuracy of our expression can be justified by comparing it with the latter.
However, even though derived from a rigorous theoretical method, this expression
contains a large number of unknowns which are not easy to estimate via fitting of
the simulation data. In d = 2, for which the values of the unknowns were provided by
the authors, it has been checked that equation (18) is a reasonable approximation to
this.
The decay of Cag, as seen in Figure 3(a), for Tf = 0 appears slower than that

for Tf = 0.6Tc. To confirm that, in Figure 3(c) we plot the ratio R, between Cag for
Tf = 0.6Tc and Tf = 0, on a log-log scale, vs x. Over the whole range of x, that covers
pre- as well as post-crossover regimes for domain growth, the data exhibit power-law
behavior that can be captured reasonably well by a single exponent � 0.15. This
implies an absence of crossover in the decay of this quantity and λ � 1.5, a number
significantly smaller than that for Tf = 0.6Tc. Irrespective of whether the FH lower
bound has actually been violated or not, such small value of λ, compared to the
Tf = 0.6Tc case, is an interesting observation which calls for further discussion and
calculation of the structural properties. Yeung, Rao and Desai (YRD) made a more
general prediction of the lower bound [11], viz.,

λ � d+ β

2
, (19)

where β is the exponent [46,47] for the small wave-number (k) power-law enhancement
of the structure factor (the Fourier transform of C(r, t)):

S(k) ∼ kβ . (20)

Here note that S(k, t) has the scaling form (for a self-similar pattern) [2]

S(k, t) ≡ �dS̃(k�), (21)

where S̃ is a time independent master function. We call equation (19) a more general
lower bound because of the fact that this was derived by keeping both conserved and
nonconserved order-parameter dynamics in mind. For nonconserved order parameter
[11], as in the present case, β = 0. Thus the YRD lower bound in this case is same as
the FH lower bound. Also note here that originally the FH bound was predicted from
the studies of spin-glass systems which later was found to be relevant in coarsening
systems like the one considered here, as also was hinted by these authors. The YRD
result, on the other hand, was derived by focusing on coarsening in ferromagnets and



Recent Advances in Phase Transitions and Critical Phenomena 773

Fig. 4. (a) Scaling plot of the two-point equal time correlation functions from Tf = 0
and d = 3. The distance along the abscissa has been scaled by the average domain sizes
at different times from which data are presented. Inset: same as the main frame, but
for Tf = 0.6Tc. In both the cases the solid curves represent the OJK form (see Eq. (8)).
(b) Scaled correlation functions from different Tf in d = 2. The continuous curve is the the
OJK function of equation (8). (c) Plots of the structure factors, from Tf = 0 and 0.6Tc, vs
k. The solid line represents the Porod law. For both the temperatures, we have presented
results from t = 5000. These results are from d = 3.

multicomponent mixtures. The FH bound can as well be appreciated from the OJK
expression for the general correlation function [3,22] of equation (4). This has the
form

C(r; t, tw) =
2

π
sin−1 γ, (22)

with

γ =

(
2
√
ttw

t+ tw

)d/2
exp

[
− r2

4D(t+ tw)

]
. (23)

For t = tw, this leads to equation (8). For r = 0 and t
 tw, equation (22) provides

Cag(t, tw) ∼
(
t

tw

)−d/4
. (24)

For α = 1/2, the exponent in equation (24) provides λ = d/2, which coincides with
the FH lower bound. Since the latter bound is embedded in equation (22) and the
violation of it for Tf = 0 is a possibility, it is instructive to calculate the structural
quantities, viz., C(r, t) and S(k, t), given that equation (22) contains expressions for
the latter quantities as well.
In Figure 4(a) we show a scaling plot of C(r, t), vs r/�, for Tf = 0, � being

extracted from equation (12). Nice collapse is visible for data from wide time range.
Given that no crossover in C(r, t) is observed and aging property is strongly re-
lated to the structure, it is understandable why a crossover in the autocorrelation
is nonexistent. The continuous line in this figure is the OJK function [2,3,22] of
equation (8). There exists significant discrepancy between the analytical function
and the simulation results. This is expected, given the sponge-like structure [32,33]
observed for Tf = 0. In the inset of this figure we plot the corresponding results for
T = 0.6Tc which, on the other hand, shows nice agreement with equation (8). Here
note that in d = 2 such temperature dependence does not exist [3]. For the sake of
completeness, this we have demonstrated in Figure 4(b). Data from all the tempera-
tures in this case are nicely described by the OJK function.
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In Figure 4(c) we show a comparison between the structure factors from Tf = 0
and Tf = 0.6Tc, in d = 3. The k

−4 line in this figure corresponds to the Porod law
[2,3,48] for the long wave-number decay of S(k, t), a consequence of scattering at sharp
interfaces like facets at Tf = 0. Data from both the temperatures show reasonable
consistency with this decay, even in intermediate range of k. For the sake of bringing
clarity in the small k region, we did not present the results for the whole range of k.
In the smaller wave-number region, disagreement between the slopes in the two cases
is visible. This may provide explanation for the small value of λ for Tf = 0. For this
purpose, below we provide a further discussion on the derivation of YRD. Starting
from the equal-time structure factors at tw and t, YRD arrived at [11]

Cag(t, tw) ≤ �d/2
∫ 2π/�

0

dkkd−1[S(k, tw)S̃(k�)]1/2. (25)

To obtain the lower bound, they used the small k form for S(k, tw), as quoted in
equation (20). In Figure 4(c) we see that, compared to Tf = 0.6Tc, the structure factor
for Tf = 0 starts decaying at a smaller value of k, providing an effective negative value
for β. The latter statement can be further appreciated from the fact that the upper
limit of integration in equation (25) is higher for Tf = 0 given that average domain
size in this case is smaller. This may be the reason for such a small value of λ.
Given that Tf = 0.6Tc lies above the roughening transition temperature, possibil-

ity exists [29] that the observed differences between kinetics at the two different values
of Tf may be related to this transition [49]. Here note that the results for Tf = 0.6Tc
are in agreement with our preliminary results for even higher values of Tf . System-
atic studies, however, are needed below TR to rule out that these are not properties
specific to zero temperature, thereby confirming the above mentioned possibility. We
mention here, most of the previous studies with nonconserved Ising model focused
on d = 2, for which there is no non-zero TR. Furthermore, question remains, why
the crossovers, exhibited by the growth of domains and the decay of persistence, are
missing in the structure and aging? This fact, e.g. for aging, may have similarity with
outcomes from some studies in upper critical dimension. If t and tw are chosen to be
very large, it will be difficult to identify any correction that appears only additively
to the leading order scaling form [50,51].
Even though the focus of the paper is on the coarsening dynamics at Tf = 0,

we would like to further discuss the results for Tf > 0. We restate the fact that for
nonzero temperature C(r, t) and �(t) were calculated after eliminating the thermal
noise from the original configurations via a majority spin rule. This exercise essen-
tially makes the interfaces sharp and provides “pure” domain structure in the bulk,
facilitating appropriate identification of the domain length by washing out fluctua-
tions at the scale of equilibrium correlation length. Almost perfect match of the OJK
function of equation (8) with the simulation data is because of this reason. If the noise
is not eliminated, there will be discrepancy in the small r region, reason for deviation
from the Porod law in large k limit. This was pointed out by Oono and Puri [52].
The corresponding modified form [4,5,52] of C(r, t) contains a factor (1 + aω2/t)−1,
appearing in front of the exponential in equation (8), where a is a constant and ω is
the interface width. Given that there now exist multiple unknowns, extraction of �(t),
as well as ω, via fitting of the simulation data (obtained from original configurations)
to this modified form, is less reliable. Our noise elimination exercise is performed by
keeping such problem in mind. However, the values of �(t), obtained from such noise-
free configurations, contain ω as well. One important question can now be asked:
whether the true domain size should include ω or not. If the answer is in affirmative,
all our analyses and conclusions are correct. Otherwise, ω should be appropriately
subtracted. Abraham and Upton [53] pointed out that in d = 3, above the roughening
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Fig. 5. (a) Log-log plots of � vs t, with (modified) and without (original) subtracting
the interface width (ω(t)) from �(t). The solid line represents a power-law with α = 1/2.
(b) Plots of λi vs 1/x (x = �/�w) with and without subtracting ω(t) from � and �w. The
solid lines are guides to the eye. All results correspond to d = 3 and Tf = 0.6Tc.

transition, ω ∼ (ln t)1/2. Further analyses for Tf = 0.6Tc (in d = 3) have been per-
formed by subtracting such logarithmic time dependence of ω from �(t). This way,
compared to the lower inset of Figure 2 (a), the early time log-log data for � vs t
appear more consistent with the exponent α = 1/2. Such an exercise, however, does
not alter our conclusion on the late time behavior. This is expected, since the (weak)
correction is additive. Similar fact we observe in the aging exponent λ. These results
are presented in Figure 5 where part (a) contains the data for domain growth and
results for λi are shown in part (b). In both the cases we have shown comparative
pictures between the original and modified analyses. Of course, Tf = 0 results do not
require any such exercise.

4 Conclusion

We have studied kinetics of phase transition in 3D non-conserved Ising model via
the Monte Carlo simulations [21], following quench from Ti =∞ to Tf = 0. Results
are presented for domain growth, persistence probability, aging and pattern, all of
which exhibit new features, compared to studies in d = 2 and quenches to higher
temperature for d = 3. The time dependence of the average domain size shows con-
sistency with the expected theoretical behavior only after an exceptionally long tran-
sient period [29,35]. This is reflected in the persistence probability [35]. However,
no such transient was observed for quenches to a temperature above the roughening
transition.
The two-point equal time correlation function does not follow the Ohta-Jasnow-

Kawasaki form [22], derived for the nonconserved order-parameter dynamics with
scalar order parameter. The latter form, however, is found to be consistent with
the simulation data above the roughening transition temperature. Unlike the domain
growth and persistence, we did not observe any time dependence (crossover) for this
observable. This is reflected in the decay of the autocorrelation function. The latter
quantity, at Tf = 0, appears to have a power-law decay exponent marginally satis-
fying the Fisher-Huse lower bound. These results are at deviation with those from
d = 2 for which there is no non-zero roughening transition.
It will be important to understand the temperature dependence in all these quan-

tities via more systematic studies. This may as well provide improvements in the
inputs for the derivation of the OJK function. Furthermore, the reason for long tran-
sient in domain growth and persistence deserves attention. These we aim to address
in future works.
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20. D. Stauffer, J. Phys. A 27, 5029 (1994)
21. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics
(Cambridge University Press, Cambridge, 2009)

22. T. Ohta, D. Jasnow, K. Kawasaki, Phys. Rev. Lett. 49, 1223 (1982)
23. J. Midya, S. Majumder, S.K. Das, J. Phys.: Condens. Matter 26, 452202 (2014)
24. T. Blanchard, L.F. Cugliandolo, M. Picco, J. Stat. Mech. P12021 (2014)
25. S. Chakraborty, S.K. Das, Eur. Phys. J. B 88, 160 (2015)
26. J.G. Amar, F. Family, Bull. Am. Phys. Soc. 34, 491 (1989)
27. J.D. Shore, M. Holzer, J.P. Sethna, Phys. Rev. B 46, 11376 (1992)
28. S. Cueille, C. Sire, J. Phys. A 30, L791 (1997)
29. F. Corberi, E. Lippiello, M. Zannetti, Phys. Rev. E 78, 011109 (2008)
30. V. Spirin, P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 036118 (2001)
31. V. Spirin, P.L. Krapivsky, S. Redner, Phys. Rev. E 65, 016119 (2001)
32. J. Olejarz, P.L. Krapivsky, S. Redner, Phys. Rev. E 83, 051104 (2011)
33. J. Olejarz, P.L. Krapivsky, S. Redner, Phys. Rev. E 83, 030104(R) (2011)
34. G. Brown, P.A. Rikvold, Phys. Rev. E 65, 036137 (2002)
35. S. Chakraborty, S.K. Das, Phys. Rev. E 93, 032139 (2016)
36. R.J. Glauber, J. Math. Phys. 4, 294 (1963)
37. S. Majumder, S.K. Das, Phys. Rev. E 81, 050102 (2010)
38. F. Corberi, M. Zannetti, E. Lippiello, A. Vezzani, arXiv:1506.01199 (2015)
39. D.A. Huse, Phys. Rev. B, 34, 7845 (1986)
40. M.E. Fisher, in Critical Phenomena, edited by M.S. Green (Academic, London, 1971)
41. D.W. Heermann, L. Yixue, K. Binder, Physica A 230, 132 (1996)
42. S.K. Das, S. Roy, S. Majumder, S. Ahmad, Europhys. Lett. 97, 66006 (2012)
43. J. Midya, S. Majumder, S.K. Das, Phys. Rev. E 92, 022124 (2015)
44. M. Henkel, M. Pleimling, Phys. Rev. E 68, 065101 (R) (2003)



Recent Advances in Phase Transitions and Critical Phenomena 777

45. E. Lorenz, W. Janke, Europhys. Lett. 77, 10003 (2007)
46. C. Yeung, Phys. Rev. Lett. 61, 1135 (1988)
47. S.N. Majumdar, D.A. Huse, B.D. Lubachevsky, Phys. Rev. Lett. 73, 182 (1994)
48. G. Porod, in Small-Angle X-ray Scattering, edited by O. Glatter, O. Kratky,
(Academic press, New York, 1982), p. 42

49. H. van Beijeren, I. Nolden, in Structures and Dynamics of Surfaces II: Phenomena,
Models and Methods, Topics in Current Physics, edited by W. Schommers,
P. von Blanckenhagen (Berlin, Springer, 1987), vol. 43

50. M.O. Hase, S.R. Salinas, J. Phys.: Math. Gen. 39, 4875 (2006)
51. M. Ebbinghaus, H. Grandclaude, M. Henkel, Eur. Phys. J. B 63, 85 (2008)
52. Y. Oono, S. Puri, Mod. Phys. Lett. B 2, 861 (1988)
53. D.B. Abraham, P.J. Upton, Phys. Rev. B 39, 736 (1989)


	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	References



