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Abstract. We study a model for two unidirectionally coupled molecu-
lar lasers with a saturable absorber. Our numerical bifurcation study
shows the existence of isolas of in-phase periodic solutions as phys-
ical parameters change. There are also other non-isola in-phase and
intermediate-phase families of periodic oscillations. The coupling para-
meter strongly affects the stability of these periodic solutions. In this
model the unstable periodic orbits belonging to the in-phase isolas con-
stitute a skeleton of the attractor, when chaotic synchronization sets
in for a set of physically relevant control parameters.

1 Introduction

Synchronization is a special type of behavior in complex systems, and refers to a
process in which rhythms of interacting entities are adjusted when they are properly
coupled [1–3]. Generally the idea of synchronization gives a useful framework to study
the collective behavior of coupled nonlinear systems. Review articles [1,2] provide an
account of advances achieved in this multidisciplinary field, where many physical,
chemical, biological, and ecological systems have been studied.
Chaotic synchronization (CS) may appear somewhat counterintuitive, since the

sensitivity of the chaotic trajectories to small variations in the initial conditions seems
incompatible with the long term convergence of trajectories that are sufficiently close
initially. However, it has been demonstrated both theoretically and experimentally
[4–9] that chaotic systems under suitable mutual interactions are capable of exhibiting
different kinds of synchronization behavior. Several types of CS have been identified,
such as complete synchronization, generalized synchronization, phase synchroniza-
tion, lag synchronization, and anticipated synchronization [1,3]. More recent studies
concentrate also on complex networks, which have a wide range of interdisciplinary
applications ranging from neural networks to coupled lasers [2]. In many applications
the transmission time between oscillators is larger than their intrinsic time scales.
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Thus, networks with time-delayed interactions are a focus of active research [10]. In
particular, crowd synchrony and quorum sensing may occur when a large number of
oscillators undergo delayed interactions with each other via a common information
pool [11]. From the point of view of practical applications, another relevant issue is
chaotic synchronization in multistable systems [12,13].
In the present study we consider a fundamental case: CS under unidirectional

coupling, where the coupling is strongly nonlinear. In contrast, most coupling schemes
that have been studied have used linear terms, as in earlier works [14–16], and later
in the well-known articles of Pecora and Carroll [17,18]. Another feature of our work
is that we base our study on a bifurcation analysis of relevant families of periodic
orbits that explains the origin of CS. Another important characteristic of our study is
that we consider the dynamics of a coupled optical system which can exhibit complex
mixed mode oscillations. Mixed mode oscillations (MMO) display multiple time scales
and are currently the subject of substantial research in several experimental systems
[19–24]. Although our model can be generalized easily to networks of laser oscillators,
we choose to study the basic master-slave configuration due to its already complex
bifurcation structure for physically relevant parameters.
Laser devices in Q-switching operation typically emit short, intense pulses of light

that are followed by time intervals with minimal laser intensity [25–27]. For this
type of lasers, a saturable absorber element allows the energy inside the system to
be accumulated and stored long enough before it is suddenly released as an optical
pulse. These periodic pulses are an example of MMO. In this article we consider a
special type of optical coupling for Q-switched lasers, namely, coupling via saturable
absorbers. This coupling mechanism has been studied theoretically and experimen-
tally for CO2 lasers [28–30], where one of the main goals was precisely to achieve
optical chaotic synchronization. Our numerical study of the bifurcations, and simu-
lations using the model, allow us to explain qualitatively the origin of CS in these
experiments.
We show that for a model of two unidirectionally absorber-coupled Q-switched

CO2 lasers there are isolas of in-phase periodic solutions. This model also shows
characteristic families of in-phase and phase-locked periodic solutions. The former
arise from Hopf bifurcations along families of stationary solutions. Periodic solutions
having an intermediate-phase difference arise from subsequent symmetry-breaking
bifurcations. The unstable periodic orbits (UPO) which arise from the in-phase iso-
las constitute the skeleton of the attractor when chaotic synchronization sets in. It
is worthwhile mentioning that these isolas do not exist in the basic rate-equation
model [31]. Our solutions are complemented by two-parameter bifurcation diagrams
in the plane of the pump current and coupling strength, as obtained by a numerical
continuation study with the package AUTO [32]. In Section 2 we introduce and dis-
cuss the model, and in Section 3 we present its bifurcation analysis and numerical
simulations; conclusions and a discussion are presented in Section 4.

2 The model

We consider unidirectional coupling in class-B single-mode Q-switched lasers: a
master-slave configuration for a pair of CO2 lasers with a saturable absorber (LSA).
Each of the uncoupled lasers is described by a model which is a reduced four-level
LSA model [33,34]. The CO2 LSA is an important example of class-B lasers and its
giant laser spikes are known as passive Q-switching (PQS) self-pulsations, which are
a good example of MMOs. The complex instabilities found in this system gave rise
to early studies in nonlinear dynamics about three decades ago [25,27,35–38]. The
rich dynamical phenomenology of the CO2 LSA made it an interesting object for
study in nonlinear dynamics [39–47]. We consider a special type of optical coupling
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in Q-switched lasers, namely coupling via saturable absorbers, which is also a form
of incoherent coupling. This coupling mechanism between laser devices has been im-
plemented theoretically and experimentally in previous studies of CO2 lasers [28–30].
Each of the two laser devices is described by a reduced four-level model [33,34] and

the unidirectional coupling is via a fast saturable absorber. This system is modeled
in equation (1), where Ii stands for the field intensities within the laser cavities, the
fast variables, and vi and wi denote the effective populations of the lower and upper
(excited) rotational energy levels in the gain medium, respectively, with i = 1, 2. Here
vi and wi are the slow variables. Q is the incoherent pump induced by the excitation
current in the gain medium, and z is the effective number of reservoir rotational levels
in each vibrational band in the gain medium. The last term in the equations for Ii is
for the saturable absorber, the parameter α is proportional to the density of absorber
molecules and β is known as the saturability [33,34], while c is the coupling constant.
The vibrational relaxation rates for the upper (excited) and lower vibrational levels
in the CO2 molecules are called γ2 and γ1, respectively. The relaxation constants γi
have been suitably normalized in equation (1).

dI1

dt
= I1

(
−1 + (z + 1)Ω1

z
(w1 − v1)− α

1 + 2βI1

)
,

dv1

dt
= Ω1I1(w1 − v1)− γ1v1 ,

dw1

dt
= Ω1I1(v1 − w1)− γ2w1 + zγ2Q ,

dI2

dt
= I2

(
−1 + (z + 1)Ω2

z
(w2 − v2)− α

1 + 2β((1− c)I2 + cI1)
)
, (1)

dv2

dt
= Ω2I2(w2 − v2)− γ1v2 ,

dw2

dt
= Ω2I2(v2 − w2)− γ2w2 + zγ2Q .

Also in equation (1), we have defined

Ωi =
z + 1

(z + 1)2 + 2zIi/γR′
, i = 1, 2,

where γ′R stands for the characteristic rotational relaxation rates of CO2 molecules
within the same vibrational band [33,34]. Physical processes similar to those that take
place in the active medium may also occur in a saturable absorber of a gas cell, but
the absorber may also have a different nature, such as in semiconductor saturable
absorbers (SESAM) devices [48]. Our model is for the case of two unidirectionally
coupled CO2 lasers [29]. The saturable absorbers are assumed to be fast and iden-
tical in both lasers when coupling is zero. Moreover, both laser models have exactly
the same parameters. The only element of possible asymmetry is the presence of the
unidirectional coupling in the slave laser. When synchronous periodic or chaotic so-
lutions occur in the system then the coupling term in the absorber vanishes in the
slave laser.
The fixed parameter values are α = 0.75, γ′R = 0.2205, γ1 = 0.0252, γ2 = 0.00315,

z = 10, and β = 200, while Q and the coupling strength c are used as contin-
uation parameters. The synchronous (or in-phase) solutions, i.e., solutions with
I1(t) = I2(t) = I(t), v1(t) = v2(t) = v(t), and w1(t) = w2(t) = w(t), correspond to the
solutions of the single laser model, but their stability properties depend on c.
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Fig. 1. The unidirectionally-coupled lasers for c = 0.5. Top-Left: A partial bifurcation
diagram showing the L2 norm (defined in the text) of the solutions versus Q. The black
curve represents nonzero stationary states with two Hopf bifurcations (solid red squares),
from which bifurcate a family of in-phase periodic solutions (blue), and a family of peri-
odic solutions (red) along which the first laser is at rest. The brown family arises from the
in-phase family via period-doubling bifurcations (open diamonds). There are also several
branch points that lead to unstable families. Top-Right: A detail of the top-left panel.
Bottom: Representative stable in-phase solutions at the points labeled 1 and 2 at in the
top panels, showing log(I1) and log(I2) (which coincide) over one period, as a function of
the scaled time variable t. The actual periods of these solutions are 515.113 and 720.695,
repectively.

3 Numerical bifurcation analysis and synchronization

In this section we describe different families of solutions for equation (1). We do this
for a value of the coupling constant c, namely, c = 0.5, where complete CS happens.
The solution structure is significantly more complex than that of the single laser equa-
tions [33]. To develop insight into this structure, we explain it through a sequence of
diagrams that together provide an overview of the basic solution families and their bi-
furcations. In our bifurcation diagrams, solid/dashed curves represent stable/unstable
solutions, respectively, Hopf bifurcations are shown as solid red squares, branch points
as small open squares, and period-doubling bifurcations as open diamonds.
Figure 1 presents a partial bifurcation diagram for c = 0.5, showing the norm of

the solutions versus the pump parameter Q. Here the norm is simply the standard
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vector L2 norm for stationary states, and the integral L2 norm for periodic solutions.
The norm includes all six solution components, namely, log(Ii), vi, wi, i = 1, 2, while
the integral is taken over the scaled time interval [0,1]. This particular representation
is chosen mainly because of the clarity of the bifurcation diagrams that it produces.
There are two Hopf bifurcations (HB) along the nontrivial stationary family, where
I1 > 0 and I2 > 0. The blue curve represents the main family of in-phase periodic
solutions that bifurcates from the HB on the right. The HB on the left does not lead
to anti-phase orbits, as would be the case for mutually coupled laser oscillators [49],
but rather to a family of periodic solutions along which the uncoupled (master) laser,
I1, is at rest. For the current value of the coupling constant c, namely c = 0.5, this
family consists entirely of unstable solutions. However, it does contain stable regions
when the value of the coupling constant c is small enough.
Concerning the basic in-phase family, Figure 1 shows that it contains a region

of stable periodic orbits, namely to the left of a period-doubling bifurcation. Notice
also the presence of branch points (open squares) along the in-phase family. In turn,
the period-doubled family also has a region of stable solutions, bordered on the right
by a secondary period-doubling bifurcation, and on the left by a branch point, with
another period-doubling bifurcation closely nearby.
Figure 2 shows a more complete bifurcation diagram, again for the case c = 0.5,

which also includes isolas of in-phase periodic solutions. The structure of these isolas
is identical to that for the case of a single laser, but the stability properties are dif-
ferent, and depend on c. As seen in Figure 2, the isolas I03 through I07 contain stable
regions for this value of c. These stable regions are bordered by period-doubling bi-
furcations, of which the one on the left is close to a fold, with a nearby branch point,
as seen best in the top-right panel. Also notice the presence of branch points along
the main in-phase family, along the period-doubled family, as well as further branch
points along the isolas. The main folds and the main period-doubling bifurcations do
not depend on the coupling constant c. However, the branch points do depend on
c, and they are ultimately responsible for the disappearance of the stability regions.
This loss of stability is clarified in Figure 3, where the top panels again show details
of the bifurcation diagram in Figure 2, with c = 0.5. In particular, the top-left panel
of Figure 3 shows part of the in-phase family (blue, labeled 1), the main period-
doubled family (brown, labeled 2), and the isolas I03 to I12 (purple, labeled 3–12).
The top-right panel provides a local view of the isolas I08 to I12, which already do not
have stable regions. As mentioned, the main folds and period-doubling bifurcations
are independent of the coupling parameter c. This is evident in the bottom panel of
Figure 3, which shows the loci of folds (black) and the loci of period-doubling bifur-
cations (blue) as perfectly vertical lines in the c versus Q diagram. However, the loci
of branch points (red) do depend on c. In particular, none of the red curves reaches
the bottom of the diagram, which means that the branch points gradually disappear
as the coupling constant c decreases in value. Most of the stability regions seen in the
top-left panel of Figure 3 are bordered by period-doubling bifurcations. However, as
c decreases, branch points cross these period-doublings, and thereby become the new
border of the stability region, as has already happened along the period-doubled fam-
ily (brown, labeled 2) in the top-left panel of Figure 3. Ultimately, for small enough
c, the branch points disappear, and with them the regions of stability.
It has been shown in physical experiments [28–30] that chaos synchronization of

the characteristic PQS pulses is possible for suitable incoherent coupling via saturable
absorbers. Our analysis indicates that this may happen for values of the pump (Q)
slightly smaller than the HB of the in-phase family; where the HB is on the nontrivial
stationary family. Figure 4 confirms this for c = 0.5, where panel (a) shows a time
series for log(I1). In panel (b) the autocorrelation function indicates the fast decay of
correlations for the signal in (a), and panel (c) shows that complete synchronization
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Fig. 2. The unidirectionally-coupled lasers for c = 0.5. Top-Left: Part of the bifurcation
diagram in Figure 1, showing again the stationary family (black), the bifurcating in-phase
family (blue) and its period-doubled family (brown), but now also showing the isolas I03 to
I12 (purple). Top-Right: A detail of the top-left panel, showing in particular the isolas I03 to
I07 (labeled 3− 7) more cleary; note that these contain stable regions. Bottom: Representa-
tive solutions (at period-doubling bifurcations) along the isolas I03 and I04, showing log(I1)
and log(I2) (which coincide) over one period, as a function of the scaled time variable t. The
actual periods of these solutions are 833.191 and 896.828, repectively.

between the master and slave coupled lasers occurs. Finally, the histogram in panel (d)
shows the probability for the neighborhoods of the UPOs on the in-phase isolas to be
visited by the trajectory. This is in agreement with the existence of these UPOs in the
bifurcation diagram for the pump Q in the top panels of Figure 3, which are blow-ups
of top left panel in Figure 2 near Q = 2.26. For instance, for Q = 2.26 and c = 0.5
the trajectory cannot visit any UPO on isola I10 as its leftmost fold is to the right of
Q = 2.26. In contrast, the UPOs of isolas In, n = 4, 5, 6, 7, 8, 9 are visited according
to the histogram in Figure 4. Thus, the UPOs of the in-phase isolas constitute the
skeleton of the attractor when complete chaotic synchronization of PQS sets in.

4 Conclusions and discussion

We have studied a rate-equation model of two unidirectionally coupled CO2 lasers
with a saturable absorber (LSA). For each uncoupled laser this model displays mixed-
mode oscillations with one fast variable and two slow variables. In the bifurcation
diagrams we show that the regions of stability of in-phase periodic orbits are generally
bordered by period-doubling and symmetry-breaking bifurcations. The branch points
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Fig. 3. The unidirectionally-coupled lasers for c = 0.5. Top-Left: A detail of Figure 2,
showing the primary in-phase family (blue, labeled 1), the period-doubled family (brown,
labeled 2), and the isolas I03 to I12 (purple, labeled 3-12). Top-Right: A detail of the top-left
panel near Q = 2.26. Bottom: Loci of singular points, namely loci of folds (black), loci of
period-doubling bifurcations (blue), and loci branch points (red). Note that the location of
the folds and the period-doubling bifurcations does not depend on the coupling constant c.
As explained in the text, the absence of red curves near the bottom of the diagram, i.e., for
small c, corresponds to the absence of regions of stability along the primary in-phase family,
along the period-doubled family, and along the isolas.
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Fig. 4. (a) Time series for log(I1) at the Poincaré section. (b) Autocorrelation function for
the signal in (a) with delay time in units of the Poincaré section times. (c) Complete Chaotic
synchronization between the lasers; log(I1) versus log(I2). (d) Histogram for the number of
maxima m characterizing the neighborhoods of visited UPOs (see text). Coupling parameter
c = 0.5 and Q = 2.26.

are strongly affected by the coupling parameter c, while the period-doublings are
independent of c. In particular, for strong enough coupling, stable in-phase periodic
passive Q-switching (PQS) pulses are possible. Similarly, when coupling is strong
enough, complete chaotic synchronization may occur, where the attractor visits UPOs
along families of in-phase isolas, i.e., unstable PQS periodic pulses. Thus, we may
conclude that the UPOs belonging to the in-phase isolas constitute the skeleton of
the attractor when chaotic synchronization of PQS sets in.
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