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Abstract. In this review I present several representation learning
methods, and discuss the latest advancements with emphasis in
applications to network science. Representation learning is a set of
techniques that has the goal of efficiently mapping data structures into
convenient latent spaces. Either for dimensionality reduction or
for gaining semantic content, this type of feature embeddings has
demonstrated to be useful, for example, for node classification or link
prediction tasks, among many other relevant applications to networks.
I provide a description of the state-of-the-art of network representation
learning as well as a detailed account of the connections with other
fields of study such as continuous word embeddings and deep learning
architectures. Finally, I provide a broad view of several applications of
these techniques to networks in various domains.

1 Introduction

Networks describe sets of relationships among entities, generally encoded in the form
of a graph, i.e. entities are represented by nodes, and relationships by links connecting
those nodes. Networks are central in many areas of research and have been the focus
of interest in a vast number of disciplines, from social sciences and biology, to com-
munication engineering, among many others. Their usefulness resides in that most
groups of interconnected items or data structures describing any sort of relationship
are susceptible – often conveniently – of being represented as a graph.
Real network data usually contain rich information about the systems that pro-

duce them, but many times any analysis requires vast resources due to the volume of
the datasets, or the high frequency at which they are generated. Many algorithmic
tools for network analysis depend heavily on aspects such as size and linearity of vari-
ables of interest. For instance, many real network data (e.g. those digitally-generated)
are so vast that outrun traditional analysis algorithms. Additionally, sparse connec-
tivity, i.e. if the network present only a small fraction of all the possible relationships
among its nodes, makes analyses through simple approximations more difficult.
Even though many dimensionality reduction methods, such as Principal Com-

ponent Analysis or Factor Analysis, have been studied for many decades, in recent

a e-mail: lgmoyano@mendoza-conicet.gob.ar

http://www.epj.org/
https://doi.org/10.1140/epjst/e2016-60266-2


500 The European Physical Journal Special Topics

years there have been many efforts in the literature to develop better ways of cap-
turing non-trivial aspects of network structure in efficient ways. This is particularly
the case for the communities of network science, statistical physics, and computer
science, that usually aim at improving and extending these methods, tailoring them
to specific challenges, e.g. speech and image recognition [11,12], social network clas-
sification tasks [22], among several others.
Many systems can be described as driven by variables not directly observable or

quantifiable, commonly called hidden or latent variables. There has been much in-
terest in the assumption that, for some systems, the number of latent variables may
be much smaller, sometimes orders of magnitude less, than the number of degrees of
freedom of the system. For such cases, it could be very useful to gain insight from
methods that infer on hidden variables. In this direction, the sustained attention
by the research community on probabilistic, stochastic and statistical methods have
resulted in a broad class of algorithms capable of improving the understanding of
complex data such as social or technological networks. Usually these models imply
finding a specific transformation or mapping of the data to some low-dimensional
continuous vector space, more suitable for further modeling and analysis efforts.
In this review I present some general ideas regarding the representation of high-

dimensional data onto low-dimensional vector spaces, with emphasis in models and
techniques for network data, as well as some very recent progress obtained by the-
ory and simulations. Additionally, I put forward some of the latest applications of
these ideas, some of which involve empirical data from real networks. This review
does not intend to be a thorough summary of the various representation learning
models and algorithms in the literature, but aims to visit some key concepts around
the idea of representation learning, motivate the exploration of the different mod-
els and describe some recent methods specifically around network representation
learning. Finally, another important aspect in this report is to provide an update
of concepts and results for the benefit of all the research communities involved: the
computer science and machine learning areas, as well as the statistical physics and
network science communities.
The present review is organised as follows: Section 2 gives an overview of repre-

sentation learning and revisits some classical methods for dimensionality reduction,
as well as some general comments on classical representation learning methods in
contrast to new deep learning algorithms. In Section 3 we will review efforts around
learning text representations, a subject that has been at the center of the repre-
sentation learning field and that has served as incentive for network representations
models. In Section 4 we cover different models and algorithms for learning network
representations, from geometrical methods to probabilistic and methods based on
multilayer neural networks. We briefly illustrate some applications in Section 5 and
present some conclusions and prospects in Section 6.

2 Representation learning

As we will see throughout this review, the idea of representing high-dimensional data
through expressive vectors living in low-dimensional spaces has been exploited in the
past in several areas of science. Here we are interested in techniques and methodologies
to find effective representations of data, i.e. to find a set of transformations to be
applied to the data in order to arrive at a more convenient structure, usually with
lower dimensionality, which will be more suitable for further analysis or processing,
e.g., node classification, link prediction, among others.
Traditionally, researchers have used insight from prior expert knowledge of the

system to define which attributes in the data were the most convenient to take into
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account for any given task, e.g. the degree of a node would be a basic and general
variable to quantify the network in order to describe its structure, and would be
used to model things such as network dynamics, communities, and other aspects
of the data. Such data attributes, also called features, are contrasted and validated
through the performance of the learning tasks, such as classification or clustering.
This feature engineering may be quite difficult depending on the analysis at hand,
especially when the raw data are extremely high-dimensional and non-linear. Thus, it
is advantageous to be able to find a convenient low-dimensional manifold that reflects
the main explanatory factors for the observed variations in the data. Moreover, the
possibility to find this embedding automatically, i.e. to learn the data representation,
is at the center of the efforts driving the research forward in this area.
An essential assumption of representation learning is the manifold hypothesis [12],

an implicit assumption that high-dimensional real-world data has the tendency to
group in a a manifold M of lower dimension dM, i.e. a neighborhood embedded in
input space Rdx. This manifold would provide a natural coordinate system to the
representation being learned.
Representation learning is a rapidly-growing area, much encouraged by a steady

stream of success in areas such as speech recognition, natural language processing,
signal processing, image recognition, among others. As we will see in Section 3.1, very
efficient and semantically meaningful latent representations have been developed in
the area of Natural Language Processing for text, based on distributed word vectors.
These word vectors usually have real-valued dimensions, in opposition to one-hot
representations canonically used in feature engineering, i.e. vectors with only one non-
zero dimension. Such distributed word vectors typically allow for a better reflection
of semantics and language relationships in machine learning classification tasks.
Typically, a good representation needs to have some key ingredients to correctly

rescribe the intricacies of real-word data [12,93]. The learning model needs to be
non-linear in order to adapt to the inherent non-linearity in the data. Additionally,
a good representation needs also to preserve data structure, in the sense that similar
data points should stay relatively close to each other in representation space, a non-
trivial task as many times it is not entirely clear how to quantify these similarities.
Finally, and as has been mentioned above but especially relevant for networks, a
good representation needs to be able to deal with data sparsity, which usually strains
classical algorithms due to a combination of high-dimensionality and insensitivity of
features to small variations in input data.

2.1 Dimensionality reduction: Linear and non-linear methods

Most areas of science dealing with empirical data analysis, especially with current
trends such as big data, are faced with the problem of high-dimensionality in data
and how to reduce it to a lower-dimensional equivalent structure in order to carry
out meaningful analyses.
There are classical subspace learning techniques used for dimensionality reduc-

tion to explain data variability and similarity such as Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP),
Multidimensional Scaling (MDS) and Factor Analysis (FA), and their extensions.
Most of these techniques can be generalised under the framework of matrix factor-
ization. PCA is the most common unsupervised method, which uses linear trans-
formations to find an embedding of the original data in low-dimensional space such
that it maximmises the original variance of the data. LDA [29] is a supervised learn-
ing method, where data is projected into a low-dimensional space maximizing the
ratio of between-class and within-class distances. MDS also produces an embedding
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through a linear transformation, which tends to preserve the distance between the
data coordinates, and it is equivalent to PCA with Euclidean distance. LPP [34] is
a linearization alternative of the non-linear Laplacian Eigenmaps method. Finally,
FA also attempts to explain data variability through a smaller number of variables
(factors) and models them as random variables. These techniques are linear, easy to
implement and compute, and work well if the data is lying on an approximately linear
subspace within the original high-dimensional space. However, when the dataset is
associated to a non-linear structure, these algorithms do not provide meaningful em-
beddings capable of preserving any of the original associations [87]. Moreover, when
the datasets are large is the case of most real networks of interest, these algorithms
quickly become expensive and impractical because of the associated time complexity
due to the common eigendecomposition step they all need to perform.
Several non-linear models have been proposed to overcome the limitations intrin-

sic in linear models mentioned above, as is the case of Isometric Feature Mapping
(ISOMAP) [87], Local Linear Embedding (LLE) [74], Local Spline Embedding [96],
as well as manifold learning techniques [10]. For instance, Belkin and Nigoyi [9] pro-
pose a model called Laplacian Eigenmaps (LEs), a geometrically-inspired method for
representing a low-dimensional data structure contained in a high-dimensional space.
Their method is capable of preserving locality, which makes it particularly stable in
front of outliers and noise. The model by Belkin and Nigoyi was in turn the basis of
a method proposed by Lobato et al. [4], where they use the Laplacian of a graph to
embed complex networks in hyperbolic spaces, with remarkable efficiency.

2.2 Deep learning

However, in the last decade, a set of learning models stemming mainly from the ma-
chine learning community, now generically known as Deep Learning models, has had a
substantial impact in the representation learning literature for its significant improve-
ments in accuracy and efficiency over previous efforts [11,12,50]. Even though deep
learning models have had many applications, they can be regarded intrinsically as
representation-learning methods. A deep learning architecture is typically composed
by some type of an Artificial Neural Network (ANN), i.e. a stack of layers each com-
posed by several (possibly non-linear) modules formally called neurons. Most ANNs
are composed by an input layer, and output layer and one or more intermediate hidden
layers. Each of these modules represents a non-linear mapping from input to output
data, and aim at increasing the selectivity and invariance of the features learned by
each layer. These layers provide multiple stages of data transformation from raw data
(be it image, audio, text, etc.) to increasingly abstract levels of representations, in
fact building a hierarchy of features. Such transformations can efficiently filter out
irrelevant features of the input data and keep those aspects that contribute for the
discriminative power of the model. Importantly, features in the intermediate layers
are not design nor engineered by hand, but learned from the input data, effectively
trained by examples.
In 2006, Hinton et al. [36] introduced a greedy unsupervised learning strategy

that could compute multiple layers of feature detectors, by pre-training one layer at a
time using unsupervised learning for Restricted Boltzmann Machines or RBMs (more
on RBMs below). Their proposal was tested on the MNIST database of handwritten
digits, which contains 60,000 training images and 10,000 test images and achieved re-
markable accuracy, reviving the attention of the machine learning community in deep
feedforward networks [12,50]. Some strong aspects of these deep architectures are the
possibility of feature re-use and concept abstraction. The depth of a neural network
refers to the amount of hidden layers in the model. More intermediate layers increase
its power to re-use features, as there are multiple path combinations, which in fact
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grow exponentially with their number. Additionally, intermediate feature representa-
tions become more abstract from layer to layer, and this in turn allows features to be
shared across learning tasks [11].
As mentioned above, deep architectures are typically trained with data, and there

is a general agreement that this training can be computed by simple Stochastic Gra-
dient Descent (where local minima normally do not impose difficulties when networks
are large [50]). If the layers are composed by sufficiently smooth functions of their
inputs and internal weights, the computation of gradients may be done by the Back-
propagation procedure [12] (which can be thought of as a practical application of
the chain rule of derivatives). Training is an integral and challenging aspect of deep
learning research, as it is a process which is often quite consuming (both data and
resources) if there is to achieve accurate results. Indeed, new architectures and both
training and pre-training strategies are constantly proposed, examining the role of
labeled data availability, depth and processing power [12].
There are several variants of deep architectures, some of the most common be-

ing Feedforward Neural Networks (FNNs), Recurrent Neural Networks (RNNs), Re-
stricted Boltzmann Machines (RBMs), Convolucional Neural Networks (CNNs) and
Deep Autoencoders (there are, of course, several others, see [12] and references
therein). FNNs are a variant of an artificial neural network where there are no cy-
cles formed by its connections. The multilayer version of FNNs is one of the most
common forms of deep learning architectures. RNNs are neural network models that
share parameters at each layer and process input sequences one at a time. Unlike
FNNs, they do form (directed) cycles, and have an dynamical internal state that can
maintain information about the history of the sequence. They are hard to train but
have become powerful as generative models or in specific tasks such as machine trans-
lation [50]. RBMs are a stochastic type of ANNs, where the restriction is that modules
within each layer may not have connections, which allows for training strategies that
make them particularly useful and makes RBMs inference readily tractable. RBMs
have had much impact in the representation learning community [36]. CNNs are a
form of feed-forward neural networks, specially suited to process data in array form,
as is the case of the visual cortex. CNNs typically have local connectivity between
neurons and layers, each neuron connected to a small region of the input. They also
use shared weights which allows for translational symmetry as well as pooling (for
downsampling) layers. CNNs are generally tractable for simple backpropagating gra-
dient computation. Finally, autoencoders are unsupervised neural networks used for
learning efficient representations of data, trained to reconstruct the same data be-
ing used as input, with the goal of reducing dimensionality. Deep autoencoders (also
known as Deep Belief Networks, DBNs [12]) are autoencoders with a large number of
hidden layers where each pair of neighboring layers are pre-trained to approximate
the solution before performing the backpropagation procedure. Typically, DBNs are
stochastic generative models composed by stacked layers of RBMs.
Deep learning is making major progress in several areas of machine learning and

artificial intelligence, with stunning results, for instance, for automatically generat-
ing captions from images [92]. There have also been many other remarkable results
in areas such as Natural Language Processing (e.g., topic classification, sentiment
analysis, question and answering), speech and image recognition, among several oth-
ers [50], making deep learning a promising framework for cross-fertilization of ideas
with other fields.

3 Learning text representations

Word embeddings are language techniques designed to find effective mappings from
words to low-dimensional vectors in continuous space, in such a way that related or
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similar words are relatively close together. These text representations seek to improve
Natural Language Processing tasks such as sentiment analysis, named entity recogni-
tion, part-of-speech tagging, among others. Applications of feature representations to
text are at the root of many research efforts and have been the source of many of the
ideas and developments used to approach to network representations. In this section
we explore two great families of models for learning text representations [70]: global
matrix factorization models and shallow window-based methods. We will highlight
specific concepts that will be instrumental for understanding network representation
learning models.
Several kind of global matrix factorization models have been proposed for the task

of estimating (continuous) representations of words, e.g. Latent Semantic Analysis
(LSA), Latent Dirichlet Allocation (LDA), Latent Semantic Indexing (LSI) among
others. LSA deals with term-document matrices, and represent a well-known analysis
method developed for language models for finding a low-dimensional representation of
words and documents in terms of latent class variables. These methods intend to map
a query to its relevant documents at the semantic level where keyword-based match-
ing often fails. LSI [28] eigendecomposes, by using singular-value decomposition, a
bag-of-words feature space (i.e. an approximation where word ordering is irrelevant),
where positions in this space serve as a kind of semantic indexing. LDA [13] is an-
other statistical method devised for topic modeling that associates related words into
sets of topics, which act as latent variables, representing documents in the form of
distributions over these topics. Over large data sets, LDA is known to become com-
putationally quite expensive.
On the other hand, local context window-based methods have been proposed

to overcome general scalability issues present in matrix factorization methods. The
question of whether distributed word representations are better learned by count-
based methods or by prediction-based methods remains open. For instance, Baroni
et al. (2014) argue in favor of prediction models [7], while others, e.g. Pennington [70],
point out that each method has its strengths and weaknesses.

3.1 Shallow word embeddings: word2vec

A commonly used model for efficient text representation is the word2vec model.
In [62], Mikolov et al. present a predictive algorithm which extends their previous
work [61], where they introduce two shallow neural network architectures, the Con-
tinuous Bag-of-Words (CBOW) model and the Skip-gram model (SG). The Skip-
gram model is a neural probabilistic language model for constructing word vectors
from large datasets (billions of words, with vocabularies of millions of words). It is
regarded as very efficient as it does not need to perform dense matrix operations. The
architecture has an input layer, a projection layer and an output layer in order to
predict context words. If a corpus is composed by a sequence of words w1, w2, . . . , wN ,
then word vectors are trained to maximize the log probability of neighboring words
in the corpus

1

N

N∑

i=1

∑

j∈nb(j)
log p(wj |wi) (1)

where nb(j) are the words in the neighborhood of word wi and p(wj |wi) is the
conditional probability, usually computed by means of the Hierarchical Soft-max
model [61].
The architecture of the Skip-gram model is designed to predict, given a target

word, a number of context words associated to it. It works in opposition to the
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Fig. 1. Different learning methods for the word2vec model. Left: Continuous Bag-Of-
Words training. The input layer corresponds to source words within a context fixed-length
window, for computing the probability of the target word. Right: Skip-gram training model.
The input layer contains the source word, to compute a prediction for context words in a
fixed-length window.

CBOW model, in which given a number of context words, the model predicts the
target word (see Fig. 1).
In [62], Mikolov et al. improve their algorithm into the word2vec model which

provides better quality word vectors and higher training speed, by subsampling the
most frequent words and by presenting a simple training method over improbable
examples (Negative Sampling). This allows for more accurate representations, espe-
cially for the case of more frequent words. Resulting word vectors have the desired
property of placing semantically similar words close to each other in representation
space, e.g. “strong” may lie close to “powerful”. The same effect is captured even
for whole phrase representations [12]. An intriguing property of the word2vec algo-
rithm is the possibility of linearly combining some of the word vectors produced to
obtain semantically meaningful results. Thus, it is possible to find word analogies by
means of vector arithmetic, e.g. “biggest” − “big” + “small” = “smallest” [61], which
captures the idea of multi-clustered distributed representations [11,70]. This property
also translates into equivalences of vector structures larger than simple words or even
between languages. In [49], Le and Mikolov propose doc2vec, a model that extends
word2vec to tackle larger blocks of text, i.e. sentences, paragraphs and even entire
documents. This framework has been used for instance for sentiment analysis in social
media for business [75].
The word2vec model has a prominent place in the representation learning liter-

ature [7,53,66,101], including some recent network representation models [32,71], as
we will see in Section 4.2.

3.2 Log-bilinear models

Pennington and colleagues explore in [70] the origins of the arithmetic properties
described in Section 3. They propose another shallow neural network model called
GloVe, a log-bilinear regression model that combines global matrix factorization and
local context window methods, leveraging the most advantageous properties of count-
based and prediction-based models. By training only nonzero elements in a word-word
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co-occurrence symmetrical matrix, it avoids processing the complete sparse matrix,
or context word windows in extended corpora. The authors report good results for
word analogy tasks, as well as similarity and named entity recognition tasks.
Log-bilinear models have also been explored by Kiros et al. [41], where they pro-

pose a multiplicative neural network model for learning distributed representations
of words and text-based attributes, e.g. the language of the text, or meta-data asso-
ciated with it, author information, etc. In this way, they are able to produce repre-
sentations with conditional word similarity, e.g. the word “joy” may appear near the
word “god” if the author is associated with the attribute “religion”, but could appear
near the word “comfort” is the author attribute is “science”. The authors report effi-
ciency improvements for tasks such as sentiment analysis and cross-lingual document
classification.

4 Learning network representations

Latent text representation research has gained an unprecedented level of attention,
spurred by useful applications in the digital information domain and the high levels
of accuracy and efficiency of recent models such as word2vec. These ideas have per-
meated other areas of research and has had an influence in network science through
models inspired in these results. Much of the same challenges for accuracy and com-
putational efficiency found in the case of text representations are also present in
problems related to networks, also relating to high volume of data, non-linearity of
the structures of interest as well as network sparsity. For instance, the intense tech-
nological advancements in the last years have given place to unprecedented ways of
quantifying networks in detail, many times yielding enormous quantities of informa-
tion, generating very sparse and non-trivial network structures.
To address these issues, Network Representation Learning (NRL) aims at the pos-

sibility of encoding node information in a unified continuous space. As in the case
of text representations, the intention is to capture some original network property
(topological, functional, etc.) into a space with lower dimensionality. As an illus-
tration, consider Figure 2. In Figure 2a (above) we show the well-known Zachary’s
Karate club dataset where we have computed communities1 presented in color code.
In Figure 2b we see the nodes embedded in a latent 2-dimensional space, where nodes
belonging to the same community are close to each other, and thus communities
appear clusterised. Different areas of study from network science, communications
engineering and computer science, to name a few, have approached this problem.
Next we will examine some of these concepts and some representative models found
in the literature: models from a graph-theoretical and probabilistic point of view,
models based on the geometrical nature of the embedding space and, finally, we com-
ment on models based on deep neural networks.
Given a network G = (V,E), a graph embedding (or network representation) con-

sists in finding an appropriate mapping (or embedding),M : V → X, whereX is a set
of points x1, x2, . . . , x|V | with xi ∈ Rd, every node in G is mapped into coordinates in
a d-dimensional space, where possibly d� |V |. This ubiquitous form of representing
information has been studied in many disciplines. For instance, in connection with
statistical learning, it draws much input from Relational Learning, which aims at
capturing the correlation between connected objects, especially in the presence of un-
certainty [31,60,76]. Additionally, many ideas and concepts involving network latent
spaces come from the graph theory literature. For instance, in [25], Cohen discusses
the case of three-dimensional graph drawing, which refers to the possibility of em-
bedding an arbitrary graph in a three-dimensional space without any edge crossing.

1 Communities were computed with the Louvain method [14]
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(a) The Zachary’s karate club data in network layout. Communities were computed
with the Louvain method and are color coded.

(b) Embedded vectors for the Zachary’s karate club data in a 2-dimensional latent
space. Colors represent communities. Euclidean distance represents node similarity
from a community point of view and same community nodes appear as clusters.

Fig. 2. The Zachary’s karate club network, with communities in color code (above). Em-
bedded vectors in representation space show that similar nodes (i.e. belonging to the same
community) are close to each other in representation space.

From a topological perspective, Aste and coauthors [6] point out that any network
can be embedded in a surface with sufficiently high genus, making their results quite
general.
Another aspect of NRL research refers to the nature of the hidden space where

data is thought to cluster in. The authors in [81] present a probabilistic generative
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latent class model for graphs, where the probability of edges between two nodes de-
pend on a set of latent classes. Handcock and colleagues propose in [33] a cluster
model for social networks, with the aim to learn a latent Euclidean social space for
prediction of social ties. In this model, the probability of a tie depends on the distance
in this latent social space. Tang et al. [85] also extract latent social dimensions for
use during training and improve performance of classification tasks. In what follows
we will review recent results on three important and very active lines of research, em-
beddings based on geometric properties of the subjacent space, embeddings produced
by stochastic and probabilistic methods such as random walks, and finally we will
summarise methods based on different variants of neural networks, including deep
learning models.

4.1 Geometric embeddings

The idea that similar nodes (in a topological sense or from a functional perspec-
tive) may be due to closeness in a hidden metric space has also produced models
grounded in more geometrical justifications. Aside from networks actually embed-
ded in Euclidean (not hidden) space [8,27], such as transportation networks, early
applications of hidden geometric embeddings appear, for instance, in the area of in-
formation networking. With the specific interest set in technological networks such as
peer-to-peer networks and the internet, Shavitt and coauthors propose a method to
efficiently embed graphs first in Euclidean spaces [78] and shortly afterwards in hy-
perbolic spaces [79,80], aiming at an accurate model for the internet (i.e., autonomous
systems topologies).

4.1.1 Hyperbolic embeddings in complex networks

In [77], Serrano and colleagues explore the idea that topological properties of net-
works may be defined or influenced by geometrical properties of (hidden) subjacent
metric space. This concept was introduced to explain self-similarity properties of some
small-world networks. Nodes are embedded in the hidden metric space, each pair at
a distance d, and there is an integrable function p governing the probability of being
connected, which relates the network topology to the underlying metric space. This
probability depends on the metric distance d as p = d/dc, where dc is the characteris-
tic distance scale. The authors in [77] relate the presence of clustering to the existence
of distances in this hidden metric space satisfying the triangle inequality.
The concept of an underlying metric space for networks had an immediate inter-

est to help understand routing processes within networks [42,63,94]. These ideas were
used for examine, for instance, an efficient greedy routing model for small-worlds [15],
which was then expanded by the authors to also show that, for complex networks in
general, there is no need to access to the complete topology in order to efficiently
navigate this class of topologies [16].
Aste et al. [5] examine the idea of embedding complex networks in hyperbolic

spaces and show that network properties are tightly linked to properties of the em-
bedding hyperbolic space. In [43], Kleinberg shows that every connected finite graph
has a greedy embedding in a hyperbolic space, i.e. a continuous space with constant
negative curvature. Indeed, the hierarchical structure of complex networks may be
approximately represented by treelike structures (small groups belonging to larger
groups and so on), and hyperbolic space can be regarded as a continuous version of
trees. A detailed analysis of why hyperbolic space may be consistent with complex net-
works was developed in [46], where Krioukov et al. argue that the scale-free property
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associated to some heterogeneous complex networks are associated with such hyper-
bolic spaces (see [79] for an earlier model involving a hyperbolic embedding specific
for the internet). Krioukov and coauthors put forward a geometric model that consid-
ers nodes in a hyperbolic space and a connection probability function parametrised
by a temperature T , in analogy with a grand canonical Fermi-Dirac distribution. In
this model, the curvature of the metric space controls the power-law exponent in the
degree distribution (i.e., the heterogeneity of the network), and the clustering is a
function of the temperature T . Their framework is tested with empirical traceroute-
based internet topology data, suggesting that is consistent with measurements.
The combination of greedy forwarding strategies for networks modeled as nodes

embedded in hyperbolic spaces paved the way for a more thorough study on the effi-
cient of routing [44,69] as well as in techniques to map empirical data to these types
of spaces [17]. Hyperbolic embeddings have helped understand the role of core con-
gestion in networks [65], the trade-off between similarity and popularity in network
growth [68] as well as more theoretical approaches on the degree of hyperbolicity in
networks [24].
Other authors have also exploited analogies with statistical mechanics. For in-

stance Aste et al. [6] explore maximally embedded networks in surfaces and define
simple energy functions from which they develop a statistical mechanics framework.
Hyperbolic embeddings have been analysed as well in the context of minimizing dis-
tortion [91], and Zhao and colleagues show in [104] an application of these ideas
for improving scalability in massive social networks. Lastly, hyperbolic embeddings
of networks have demonstrated useful in applications, for instance, in Protein In-
teractions Networks (PIN), as tools for high throughput detection of novel protein
interactions [1], generating best candidates for laboratory detection.

4.2 Stochastic and probabilistic embeddings

A number of authors, especially from the computer science community, have recently
proposed representation learning models and techniques based on stochastic methods
such as random walks over sequences of nodes over a network, as well as models based
in optimization of appropriately defined objective functions. In this section we discuss
three of the most prominent recent proposals.

4.2.1 DeepWalk

In [71], the authors introduce DeepWalk, an algorithm inspired in language model-
ing, more precisely in the word2vec algorithm (Sect. 3) with the goal of learning a
social representation of the nodes in a network. The authors aim at producing a repre-
sentation which is adaptable (new nodes and links should not need the representation
be generated again), it should be community aware, in the sense of capturing neigh-
borhood similarity and community membership (homophily translating in closeness),
should be low dimensional for improved generalization and should be embedded in
continuous space.
In analogy to word2vec, which processes short sequences of words to produce a

representation or embedding of a text corpus in continuous vector space, the Deep-
Walk algorithm generates sequences of nodes from a stream of truncated random
walks on the network, effectively mapping local information into features in a lower
dimensional embedding. Extending the analogy of sequences of nodes as sentences
composed by words, the idea in [71] is to estimate the likelihood of observing vertex
vi given the set of visited nodes in the random walk, i.e. Pr

(
vi | (v1, v2, · · · , vi−1)

)
.
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This quantity is expected to encode local community structure and capture the dif-
fusion process in the neighborhood of each vertex in the graph. The authors argue
that, as the walk grows in length, a direct computation of this probability function is
unfeasible, so they propose to follow the same strategy as the word2vec algorithm,
relaxing the constraints imposed by this probability function by ignoring the order
of the vertices. After generating a number of random walks starting at each vertex,
they perform an additional update step which makes use of Skip-gram and Hierarchi-
cal Soft-max (Sect. 3) as approximation procedures for the probability distribution.
The resulting latent representation is then used for multi-label classification tasks on
the nodes, and results are compared with other algorithms such as Spectral Cluster-
ing and Edge Clustering, outperforming them in most use cases. DeepWalk drew
much interest in the machine learning community as it carried useful ideas from the
word2vec algorithm to the realm of networks, spurring extensions and fruitful dis-
cussion.
Two authors of the DeepWalk algorithm extended their idea in [72], proposing

another random walk model that exploits a sampling mechanism, termed WALK-
LETS, over edges from powers of the adjacency matrix A. In this way, an edge
sampled from Ak represents a path of length k in the original graph. The WALK-
LETSmodel has the explicit aim to capture the multiscale relationship between nodes
thus generating efficient multiscale representations for multi-label classification tasks.
Their algorithm intends to improve on limitations of DeepWalk, where multiscale
representations are not explicitly captured (as it has a strong bias towards repre-
sentations that preserve mostly the lowest powers of the adjacency matrix [72,93]).
Additionally, with DeepWalk different scales of representations are not accessible
independently.
Yanardag et al. [98] describe a unified framework to learn latent representations

for graphs called Deep Graph Kernels. They use the word2vec CBOW/Skip-gram
framework making an analogy for words much like DeepWalk, but instead of nodes
they use graphlets (non-isomorphic sub-graphs of size k used for decomposing graphs).
Importantly, Yang, Liu and coauthors [99,100], as well as Levy and Golberg [51]

and Li et al. [53], argue that the DeepWalk’s procedure for generating a repre-
sentation is actually equivalent to factorizing a matrix M where each entry Mij is
the logarithm of the average probability that a random walk visiting vertex vi after-
wards visiting vertex vj . Yang and colleagues propose a representation model [100]
based in matrix factorization that incorporates text features of vertices, which is
particularly efficient for noisy data or for cases where only a limited amount of train-
ing data is available. These sets of works strengthen the role of matrix factoriza-
tion as a general framework from which to understand several latent representa-
tion algorithms. Even though DeepWalk is a rather recent proposal, it has been
widely used for benchmark comparison as well as a starting point in several posterior
works [20,26,57,64,84,89,95,100].

4.2.2 node2vec

Other works have explored the use of random walks over networks as a way to learn
representations. In [32], Grover and Leskovec present node2vec, an extension of
the DeepWalk algorithm. Their model is based on the design of a biased random
walk mechanism controlled by two parameters p and q. These two parameters allow
to tune the nature of the random walk, from exploring only neighborhood nodes to
being able to visit node sequences ever farther from the root node. The two types of
random walks for exploring the network add flexibility on the visited sequences, which
will determine the final network representation. The authors compare their algorithm
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with LINE (see next section) and DeepWalk on several empirical network data,
obtaining good results on a multi-label classification task. Grover et al. additionally
explore the possibility of defining a binary operator acting on the space of pairs of
feature vectors f(u) and f(v), generating a binary representation g(u, v) which may
be used for edge tasks such as link prediction.

4.2.3 LINE

Another recent network embedding model is LINE [84], by Tang and colleagues, which
attempts to tackle the scalability of representation learning algorithms, proposing a
method based on the optimization of an objective function designed explicitly for
networks. The authors put forward two objective functions, the first one modeling
neighboring nodes first order proximity [54] (local pairwise similarity), and second
order proximity, which models the presence of neighbors of neighbors. To overcome
the computationally expensive task of computing this second function over all pair
of edges in the network, the authors make use of Negative Sampling [62] (Sect. 3).
Additionally, they provide their method with an edge sampling mechanism devised to
efficiently perform stochastic gradient descent in weighted networks. LINE performs
well compared to other models (DeepWalk and graph factorization) in tasks such as
multi-label classification or in large empirical social network data, as well as in word
analogy in language networks. The LINE algorithm has had interesting applications
in the area of Natural Language Processing, e.g. in entity typing models where knowl-
edge graphs representations need to be generated [37]. LINE has also been used for
link prediction tasks [90]. Finally, the authors extended LINE in [83] to deal with
heterogeneous networks in which more than one type of nodes and edges are allowed
to exist.

4.3 Neural network embeddings

As stated in Section 2.2, the field of deep learning is at the core of representation
learning research and has had remarkable results, stimulating the exploration of ap-
plications of its ideas in many fields. As its natural, there is an array of research
efforts to test deep learning frameworks for network feature learning.
Li and coauthors [52] were among the first to propose a “stacked” neural network

architecture for latent feature learning in linked data. Inspired in existing models
of graph factorization, they proposed LRBM, a binary and conditional Restricted
Boltzmann Machine model for weighted networks. Their model propose latent vari-
ables (sender and receiver behaviours) aiming at capturing an effective representation
for both node attributes and neighbor structure. They test their model for link pre-
diction and node classification tasks with good results compared to baseline models,
including matrix factorization.
In [93], Wang et al. propose a semi-supervised deep model named Structural Deep

Network Embedding (SDNE). Much in the same way as [84], in order to preserve
both local and global accurate descriptions of the network’s structure, Wang and
colleagues propose to optimize both first and second-order proximities [54] (i.e., simi-
larity with neighbors and with neighbors of neighbors, respectively). The model feeds
the adjacency matrix to a deep autoencoder (Sect. 2) and then optimizes the recon-
struction error by minimizing a mixed loss function Lmix with respect to the set of
parameters θ (i.e., weights and biases). The authors compare their semi-supervised
deep model with other algorithms in respect to network reconstruction, multi-label
classification, link prediction and visualization tasks, using several types of empirical
network data, with remarkable results.
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Cao et al. [21] propose a stack of denoising autoencoders for extracting feature
representations of graphs, encoding vertices into low dimensional vectors. They adopt
the use of a random surfing model for producing a probabilistic co-occurrence matrix
and compare their model for clustering and word-similarity tasks over several empir-
ical networks, improving state-of-the-art results.
Several other works apply deep learning architectures to particular machine learn-

ing tasks for networks. In [97] the authors propose a conditional temporal Restricted
Boltzmann Machine (ctRBM) generative model for dynamic link prediction. Authors
in [55,56] also study the performance of deep belief networks for link prediction, in the
specific case of signed social networks. Other models approach link prediction tasks
with autoencoders for sparse graphs [103], which are also used for clustering tasks [88].
Deep architectures are also used for embeddings of heterogeneous networks [23].

5 Applications of network representation learning

The possibility of learning network embeddings has multiple applications. Relational
information is very general and there is a myriad of examples which can be framed
in a network framework. On the other hand, the dimensionality problem and the se-
mantic interpretation are widespread issues in applied research.
As it is natural, social networks and social media have been among the first ex-

amples to be examined under this light. For instance, Tang and Liu [85,86] extract
latent social dimensions from network structure using modularity and spectral clus-
tering techniques to improve affiliation classification tasks in social media. Jacob and
coauthors [39,40] also propose a latent social space model based on loss function
optimization for classification in heterogeneous (i.e., networks with different types
of nodes) social networks. Nozza et al. [67] also argue that these techniques help in
classifying heterogeneous networks. In their model, they optimize a classification loss
function to construct a latent social space and infer the polarity of users and posts
in social networks, particularly in the case of microblogs such as Twitter. Lai et al.
also combine text and social information into a shared representation for improving
social prediction tasks [48].
A more specific type of social relations are bibliographic co-authorship networks,

i.e. nodes representing authors, connected whenever there have published together
(i.e., they are actually the projection of bipartite networks formed by considering
two types of nodes, authors and papers). Ganesh and colleagues [30] consider an
unsupervised neural network model, based partly in paragraph2vec [49], to produce
continuous author vector embeddings for this type of co-authorship networks.
We have seen before that much of these ideas have grown from and have applica-

bility to text representations. There are several efforts in the context of distributed
representations of text also involving networks. The authors of LINE propose in [83]
another model for heterogeneous text network embeddings, particularly efficient for
classifying long documents where labeled data are abundant. In a similar note, Ren
and coauthors [73] propose a model for label noise reduction in entity typing (i.e.
automatically recognizing text mentions to people, locations, organizations and other
similar entities). They construct networks of mentions and the corresponding entity
types and propose a general framework to integrate entity mentions, text features and
entity types into a common low-dimensional latent space with the goal of minimizing
noise in label assignment.
Applications of text representations exist for semantic knowledge networks and

(web-based) entity networks, which interestingly is a topic that lies in-between text
and network representation. Yang et al. [102] ask the question of learning social
knowledge graphs. They propose a multi-modal Bayesian embedding framework to
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simultaneously capture network information (through DeepWalk) and text-based
concepts (through Skip-gram [62]) in order to compute a distributed topic latent
space. Luo et al. [59] exploit knowledge graphs connectivity patterns to capture con-
text to produce more efficient embeddings. In the context of the Web, Heck et al.
present in [38] a deep learning architecture for computing semantic models for web
search using click-through data, i.e. a list of queries and their clicked documents. A
similar deep architecture is presented by Heck and Huang [35] for embedding concepts
(pages) from Wikipedia for later use in semantic parsing of Twitter dialogs. Dallman
also aims at extracting semantic knowledge from Wikipedia [26] using tools such as
DeepWalk.
Several other interesting applications of network embeddings have been proposed.

For instance, related to information spreading and diffusion in networks [18,47], link
prediction [55,56], traffic sign image recognition [58], video diffusion patterns in online
social networks [57] and visualization of large-scale and high-dimensional data [82].
Network embeddings have also been applied in genetics and network medicine, e.g.
to enhance topological prediction of protein interaction networks [19], analyzing non-
linear patterns in population genetics datasets [2], and in genetic interaction net-
works [3], among other examples.

6 Conclusions

We have reviewed different aspects of network representation learning, as well as con-
nections with text embeddings. We have also seen some recent advances in this field
and applications. Representation learning is a powerful and general set of techniques,
which draws from different areas such as graph theory and heavily from the artificial
intelligence and machine learning communities. Nevertheless, much of the ideas from
these areas have seen fertile ground in network theory and important advances in
the area of complex networks have been developed, as we have seen in the hyperbolic
latent space formulation from Boguña, Krioukov and colleagues [16,45]. Moreover, we
have seen that theoretical and technological breakthroughs have strongly influenced
the methodologies and models proposed for constructing and understanding network
latent spaces, as is the case for deep learning architectures. Indeed, the number of in-
teresting applications in social media, biotechnology, semantic networks, image recog-
nition, among many others, generated in connection with this body of research has
had a sustained effect in the development of network research. It remains to be seen
how the many research threads from the different areas of study will influence the
advancement of network representation learning, but it is clear that there are as many
challenges as opportunities.

I warmly thank Prof. Alberto Robledo and colleagues for their kind invitation for writing
the present contribution. This work was supported by CONICET, Consejo Nacional de
Investigaciones Cient́ıficas y Técnicas.
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