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Abstract. Classical anisotropic XY antiferromagnets in a field on
square and simple cubic lattices are studied using mainly Monte
Carlo simulations. While in two dimensions the ordered antiferromag-
netic and spin-flop phases are observed to be separated by a narrow
disordered phase, a line of direct transitions of first order between the
two phases and a bicritical point are found in three dimensions. Results
are compared to previous findings.

1 Introduction

Uniaxially anisotropic antiferromagnets in a magnetic field have been studied quite
extensively in the past, both experimentally and theoretically. Typically, they display,
at low temperatures, the antiferromagnetic (AF) phase and, when increasing the field,
the spin-flop (SF) phase [1,2]. In addition, more complicated structures, like biconical
[3] ones, have been observed. The various ordered phases may lead to interesting
multicritical behavior, including bi- and tetracritical points [3–6].
Experimentally, several antiferromagnets with uniaxial anisotropy have been

investigated, three-dimensional magnets [7–11], such as MnF2 and GdAlO3, as well
as quasi two-dimensional magnets [12–16].
Much of the theoretical work is based on analyzing the prototypical classical

Heisenberg model with uniaxial anisotropy, the XXZ model, in a field, plus, pos-
sibly, further anisotropy terms, such as single-ion anisotropies. Especially, mean-field
approximation [2,4], Monte Carlo simulations [17–26], and renormalization group
calculations [3,5,27–30] have been applied.
In this article, we shall deal with the anisotropic XY antiferromagnet in a field.

The x-axis is taken to be the easy axis and the field acts on the x-component of
the spins. The model is a variant of the much studied uniaxially anisotropic three-
component XXZ antiferromagnet in a field, with the field along the easy axis, the
z-direction. In a previous paper, the two-dimensional version, on the square lattice,
of the XY model had been studied, applying ground state considerations and Monte
Carlo techniques [22]. At the field separating the AF and SF phases, the ground
state has been found to be highly degenerate due to the presence of biconical (or,
more precisely, non-collinear, biangular or bidirectional, BD) structures. At finite
temperatures, T > 0, these structures seem to lead to a disordered phase between the
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Fig. 1. Ground state configurations: (a) antiferromagnetic (AF), (b,d) spin-flop (SF), and
(c) biconical as well as (e) bidirectional (BD) configurations. (a,d,e) occur in the anisotropic
XY, (a,b,c) in the uniaxially anisotropic XXZ antiferromagnet. The tilt angles are defined
with respect to the easy axis, being the x-axis in the XY and the z-axis in the XXZ case.

AF and SF phases, similar to the situation in the two-dimensional XXZ Heisenberg
antiferromagnet. Here, we shall briefly reconsider this case. Our main emphasis will be
on the anisotropic XY model on the simple cubic lattice. To our knowledge, no prior
analysis exists. In particular, the existence and nature of the possible bicritical point,
at which the AF, SF, and paramagnetic phases are expected to merge, in analogy to
the XXZ antiferromagnet, will be studied.
The paper is organised as follows: in the next section, the anisotropic XY model

will be introduced and ground state properties will be discussed. Then, results for the
model on the square lattice will be presented, followed by our large-scale simulation
findings for the three-dimensional case. A short summary concludes the article.

2 The model

The anisotropic XY antiferromagnet in a field is described by the Hamiltonian

HXY = J
∑

i,j

[
Sxi S

x
j +ΔS

y
i S
y
j

] − H
∑

i

Sxi (1)

where the first sum runs over all pairs of neighbouring sites, i and j, of the lattice, with
the second sum running over all lattice sites. J > 0 is the antiferromagnetic coupling
constant, Δ < 1 is the anisotropy parameter, and H is the external field along the
easy axis, the x-axis. Sαi , α=x and y, are the two components of the classical spin
vector of length one.
We shall consider mainly the model on a simple cubic lattice (d = 3), but some

results for the square lattice (d = 2) will also be discussed comparing them to previ-
ous findings [22]. In both cases, the ground states, at zero temperature, T = 0, see
Figure 1, may be determined in a straightforward way [4,22,31]. For small fields,
H < Hc1, the AF structure is stable, in which neighbouring sites belong to dif-
ferent sublattices, A and B, where the x-components of A- and B-spins point in
opposite directions. The y-component vanishes at all sites. At intermediate fields,
Hc1 < H < Hc2, one encounters the SF structure, where the x-components of the
spins on both sublattices are equal, being smaller than one, while the antiferromag-
netic sublattice structure shows up in the y-components. At large fields, H > Hc2,
all spins are aligned parallel to the field, with vanishing y-component of the spin
vectors. At H = Hc1, the AF, the SF, and BD configurations form ground states.
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In the highly degenerate BD configurations, the spins on the two sublattices, A and
B, are tilted with respect to the field direction, the x-axis. The resulting two tilt
angles, say, ΘA and ΘB , are interrelated interpolating continuously between the AF
and SF structures. The exact relation depends on the anisotropy parameter Δ. Of
course, in the SF limit, one has ΘA = ΘB = ΘSF (H) > 0.
At non-zero temperatures, one expects, among others, phase transitions in the

Ising universality class from the disordered phase to the AF and SF phases. The
longitudinal staggered magnetization, describing the antiferromagnetic ordering of
the x-component of the spins on the A- and B-sublattices, is the order parameter
in the AF phase. The transversal staggered magnetization describes the antiferro-
magnetic ordering of the y-component of the spins in the SF phase, in which the
x-component has the same value on both sublattices. Accordingly, a possible bicritical
point is expected to belong to the n = 2 or XY universality class [3,5]. This behaviour
is in marked contrast to the situation in the anisotropic XXZ antiferromagnet in a
field, along the z-axis. There the SF phase is described by an antiferromagnetic order-
ing of the two components perpendicular to the z-component of the spins, implying
a transition to the paramagnetic phase in the XY universality class. Of course, the
transition from the paramagnetic to the AF phase belongs to the Ising universality
class, in the XXZ case as well. Thence, a possible bicritical point would fall into the
n = 3 or Heisenberg universality class [3,5].
To study the phase diagram, in the (kBT/J,H/J) plane, of the 2d and 3d XY

antiferromagnets, we did extensive Monte Carlo (MC) simulations, using the standard
Metropolis algorithm [32]. Lattices with Ld sites were considered, with L ranging from
10 to 200 for d = 2, and from 8 to 40 for d = 3. In all cases, full periodic boundary
conditions were employed. As usual, finite-size extrapolations were done to obtain
estimates for the thermodynamic limit. Typically, runs of, at least, 107 MC steps
per site (MCS) were performed, averaging over a few realizations, by using different
random numbers, to estimate error bars. Here, error bars are usually smaller than
the size of the symbols shown in the figures. Of course, close to the phase transition,
larger lattices may require longer runs to take into account critical fluctuations and
critical slowing down [32].
We recorded, among others, quantities related to the longitudinal staggered mag-

netisation Mxst defined by M
x
st = (S

x
A − SxB)/2, and the corresponding transversal

staggered magnetization for the y component of the spins. In particular, thermal
averages over the second moments of the magnetizations are expected to signal the
transitions to the AF and SF phases. Actually, these transitions may be detected
quite easily and reliably by the Binder cumulant [33]

Ux,y = 1− 〈(Mx,yst )4
〉
/(3
〈
(Mx,yst )

2
〉
) (2)

where the brackets denote thermal averages. The transition from the disordered phase
to the AF phase can be determined by Ux, and that to the SF phase can be determined
by Uy. To detect a possible bicritical point in the n = 2 or XY universality class, we
also computed the analoguous Binder cumulant Uxy, invoking the second and fourth
moments of the total staggered magnetization Mst =

√
((Mxst)

2 + (Myst)
2).

We also recorded the longitudinal and transversal staggered susceptibilties,
obtained, as usual, from the fluctuations of the corresponding magnetizations. Further
interesting information on the thermal behavior of the model follows from the specific
heat, C, determined from the energy fluctuations, as well as histograms. In particular,
we computed probability functions of the tilt angles, such as the probability p(Θ) for
encountering the tilt angle Θ at an arbitrary site and the probability p2(ΘA,ΘB) for
finding the two angles, ΘA and ΘB, at neighbouring sites of the lattice, as before [22].
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Fig. 2. Phase diagram of the anisotropic XY antiferromagnet on the square lattice with
Δ = 0.8. From reference [22].

3 Phase diagrams

We shall first briefly discuss previous and new MC findings for the 2d case, presenting
evidence for a narrow disordered phase separating the AF and SF phases. The main
emphasis will be on the 3d model, for which a qualitatively different topology of the
phase diagram is observed. In fact, our simulation data suggest the existence of a
bicritical point, at which the AF, SF, and paramagnetic phases meet. In both cases,
we set the anisotropy parameter Δ = 0.8.

3.1 Anisotropic XY antiferromagnet on a square lattice

The phase diagram of the anisotropic XY antiferromagnet in a field on a square
lattice has been determined before [22], comprising the AF, SF, and paramagnetic
phases. It is depicted in Figure 2, setting the anisotropy parameter Δ equal to 0.8.
The characteristic fields for the ground states are Hc1/J = 2.4 and Hc2/J = 7.2. The
transition lines of the AF and SF phases to the disordered phase, having confirmed to
be in the Ising universality class, approach each other rather closely at kBT/J ≈ 0.68
and H/J ≈ 2.47.
In principle, the two lines might meet at a bicritical point in the XY or Kosterlitz-

Thouless [34] universality class, with a line of transitions of first order between the
AF and SF phases at lower temperatures. Note that such a topology is excluded for
the two-dimensional XXZ antiferromagnet, where the bicritical point would belong
to the Heisenberg universality class. In fact, the existence of such a point at T > 0 is
excluded by the well-known theorem of Mermin and Wagner [35].
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Fig. 3. Finite-size dependence of the crossing points of the longitudinal Binder cumulants
Uxcr(Leff ) at kBT/J = 0.6 (squares) and 0.7 (circles). The value of the critical cumulant for
the Ising case U∗ = 0.61069... is indicated.

In our present study, we searched for possible evidence, whether there is a bicrit-
ical point in the anisotropic XY model on a square lattice. In particular, we did MC
simulations at the temperatures kBT/J = 0.7, 0.6, and 0.4.
The Binder cumulants Ux,y turned out to be very useful in investigating the

low-temperature region. We monitored the crossing points Ucr(Leff ) of the cumu-
lants for two successive square lattices with linear dimensions L1 and L2, assigning
an effective length Leff = (L1 + L2)/2. In general [33], one expects Ucr to occur
in the thermodynamic limit at the phase transition, with the critical value U∗. In
the case of phase transitions in the 2d Ising universality class, employing full peri-
odic boundary conditions and considering systems with spatially isotropic spin-spin
correlations [36,37], one has U∗= 0.61069. . . [37,38].
In Figure 3, results for the crossing points of the longitudinal Binder cumulant

Ux at kBT/J = 0.6 and 0.7, with lattice sizes ranging from L = 20 to 200, are
depicted. The typical critical value, U∗ = 0.61069. . . , seems to be approached for
both temperatures, with smaller finite-size effects at the higher temperature. Because
the finite-size corrections are not known, we did not do polynomial fits to the data.
Similar observations hold for the transversal cumulant. Accordingly, the two transi-
tions are seen to be Ising-like. Note that at kBT/J = 0.6, the two distinct transitions
occur at about H/J = 2.4505, for the AF phase, and 2.4525, for the SF phase. The
values are estimated from the size-dependence of the crossing points, Uxcr and U

y
cr,

increasing monotonically for the upper transition, and decreasing monotonically for
the lower transition. The disordered phase between the AF and SF phases becomes
more and more narrow, as the temperature is lowered, see also Figure 2.
The existence of that narrow disordered phase had been previously [22] inferred

from histograms of the probability p2. p2 describes the relation between the tilt angles
at neighbouring sites, as stated above. Actually, at the temperature kBT/J = 0.4,
in an extremely small range of fields, the dominant configurations have neither an
AF nor SF character, but they are of BD type. The disordered phase had been
argued to be due to BD fluctuations caused by the highly degenerate ground state
at Hc1.
Indeed, the present simulations provide additional evidence against a transition

of first order between the AF and SF phases at such low temperatures. For example,
the longitudinal and transversal Binder cumulants are expected to become strongly
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Fig. 4. Phase diagram of the XY antiferromagnet with Δ = 0.8 on the simple cubic lattice.

negative near a first-order transition [39,40], even diverging to minus infinity in the
thermodynamic limit. We do not observe such a behavior.
Moreover, we studied the maximal specific heat Cmax, close to the AF-SF transi-

tion as a function of the lattice size, L. At a first order transition in two dimensions,
Cmax is predicted [41,42] to grow, for sufficiently large lattices, like Cmax ∝ L2. On
the other hand, at an Ising-like transition in two dimensions, there is only a log-
arithmic increase. Actually, we fitted the simulation data for Cmax(L) to a power
law, Cmax ∝ LX . We determined the effective exponent Xeff (L) = d lnCmax/d lnL.
Simulations, at kBT/J = 0.4 and 0.6, are performed at discrete values of L, ranging
from 20 to 200. Data for successive sizes, L1 and L2, are fitted to the discretized
effective exponent Xeff (Le), with Le =

√
(L1 × L2). We find rather small effective

exponents, being, at most, about 0.25, far from the quadratic behavior characterising
a transition of first-order.
In conclusion, for the anisotropic XY antiferromagnet on a square lattice, we find

no evidence for a direct transition of first order between the AF and SF phases down
to kB/J = 0.4. Accordingly, there is no indication for a bicritical point.

3.2 Anisotropic XY antiferromagnet on a simple cubic lattice

The crucial part of the phase diagram for the 3d anisotropic XY model in a field
is shown in Figure 4. It summarizes present MC findings, setting the anisotropy
parameter Δ equal to 0.8. At zero temperature, the AF configuration is stable up to
Hc1/J = 3.6 and the SF structure is stable up to Hc2/J = 10.8.
The transition lines between the disordered paramagnetic phase and the two

orderded phases AF and SF phases are believed to belong to the Ising universality
class. In fact, our estimates for the critical exponents of the staggered magnetizations
and susceptibilities as well as of the specific heat agree with the Ising values [44].
Furthermore, for both transitions, the critical Binder cumulants, U∗, are found to
be close to the characteristic value for isotropic phase transitions of 3d Ising type,
U∗ ≈ 0.465 [43].
The most interesting aspect of the phase diagram concerns the existence, location,

and characteristics of the bicritical point, at which the AF, SF, and paramagnetic
phases may meet.
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Fig. 5. Maximal specific heat, Cmax, versus lattice size, L, near the AF-SF transition at
kBT/J = 1.0 (circles), 1.3 (squares), 1.45 (diamonds), 1.50 (triangles left), and 1.55 (triangles
up). The straight line corresponds to Cmax ∝ L3.

To identify a, possibly, first-order transition between the AF and SF phases at
low temperatures, we monitored the size-dependence of the maximum in the specific
heat, Cmax. A first transition of first order is expected [41,42] to be signalled by a
divergence of the form Cmax ∝ L3, for sufficiently large lattice sizes. In contrast, at a
continuous transition in three dimensions, one expects a power-law behavior with an
exponent α/ν, with α and ν being the standard critical exponents. For an Ising-type
transition in 3d [44], one obtains α/ν ≈ 0.175. As depicted in Figure 5, the size-
dependence typical for a first-order transition is observed to be approximated closely
at low temperatures. For instance, at kBT/J = 1.0, the cubic size dependence, char-
acteristic for a first-order transition, is approached already for L = 16. Increasing the
temperature, the crossover towards the (almost) cubic behaviour is shifted to larger
lattices, being about L = 30 at kBT/J = 1.45. Obviously, at higher temperatures, as
shown in Figure 5 for kBT/J = 1.5, it becomes more and more demanding to reach
the asymptotic regime. Presumably, the difficulty is related to the increase in the
correlation length at the first-order transition when getting closer to the bicritical
point. Actually, at the bicritical point in the XY universality class, one expects no
divergence in C, but a cusp-like singularity, with the corresponding standard critical
exponent α being slightly negative [44]. Indeed, see Figure 5, at kBT/J = 1.55, Cmax
increases only slightly with the lattice size, indicating, probably, the closeness of the
bicritical point.
Another signature of the first-order transition at low temperatures is provided by

the longitudinal and transversal Binder cumulants, Ux and Uy. In fact, both quanti-
ties display, close to the boundary between the AF and SF phases, negative minima,
choosing temperatures kBT/J ranging from 1.0 to 1.50. Lattices with L up to 36 were
considered. The minima became more pronounced, when lowering the temperature,
reflecting the fact that then the transition gets more strongly of first order, with a
smaller correlation length, in agreement with the behavior of the specific heat, as dis-
cussed above. By increasing the lattice size, the minima are getting deeper. In fact, in
the thermodynamic limit, the cumulant is predicted to be minus infinity at the phase
transition of first order [39,40].
The data on the specific heat C suggest that the transition between the AF and SF

phases is of first order up to temperatures of, at least, about kBT/J ≈ 1.5. To locate
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the bicrital point and to characterize its nature, the Binder cumulant Uxy turns out to
be quite useful as well. Its critical value, at a transition point in the XY-universality
class in three dimensions, has been estimated [45,46] to be U (xy)∗ ≈ 0.586.
Of course, Uxy is expected to approach, for large lattices, in both ordered phases

the limiting value 2/3. When the transition between the AF and SF phases is of first
order, as suggested by the specific heat, the cumulant displays, fixing the tempera-
ture and varying the field (or vice versa), a minimum close to the transition, Uxymin,
as exemplified in Figure 6. When increasing the lattice size, the minimum is, eventu-
ally, lowered, falling clearly below the value, 0.586, characterising the XY universality
class. Results of the present simulations on the size-dependence of the height of the
minimum for various temperatures and fields are depicted in Figure 7.
Perhaps most interestingly, Figure 7 shows a rather drastic change in the size

dependence of the height of the minimum, when getting closer to the bicritical
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point. Eventually, Uxymin starts to increase for large lattices. It seems to approach,
for sufficiently large lattices, the characteristic value of the 3d XY universality class,
U (xy)∗ ≈ 0.586, in the temperature range between about kBT/J = 1.51 and 1.55. The
lower bound is inferred from the simulation data when fixing the field at H/J = 4.03,
with the corresponding phase transition occurring at kBT/J ≈ 1.518. Accordingly,
the present simulations are consistent with the existence of a bicritical point of XY
type in the three-dimensional model. The result confirms the previous theoretical
prediction [3,5] on the nature of the bicritical point, based on renormalization group
calculations. Note that at even higher temperatures, either the two transition lines of
the AF and SF phases to the paramagnetic phase are well separated or there is only
the transition to the AF phase, as depicted in Figure 3. Then, the transition is no
longer signalled by a minimum in Uxy.
Of course, to explore, in detail, finite-size effects in the crossover region in the

vicinity of the bicritical point, data of very high accuracy for larger lattices would be
desirable. This feature, however, is beyond the scope of our study.

4 Summary

We conclude that the topology of the phase diagram, in the (kBT/J,H/J) plane, of
the anisotropic XY antiferromagnet depends significantly on the lattice dimension.
For the square lattice, in agreement with a previous study, we find no evidence for
a bicritical point. Instead, in between the AF and SF phases, there is a narrow
intervening paramagnetic phase down to the lowest temperatures we considered. In
contrast, for the simple cubic lattice, we find a line of direct transitions of first order
between the two ordered phases, leading, eventually, to a bicritical point.
We locate the bicritical point at kBT/J ≈ 1.53± 0.02, based on finite-size analyzes

for the specific heat and Binder cumulants. The point belongs to the XY universality
class.
The qualitatively different phase diagrams in two and three dimensions may be

explained by the bidirectional configurations, leading to the highly degenerate ground
state at the field separating the AF and SF structures. In two dimensions, these
configurations seem to suppress the direct transition between the AF and SF phases,
while they are thermally less relevant in three dimensions. Such a feature has been
seen to hold in the related XXZ Heisenberg antiferromagnet in a field as well. In
that case, the existence of a bicritical point (belonging to the Heisenberg universality
class) in two dimensions is already excluded by the Mermin-Wagner theorem.

This article is dedicated to Wolfhard Janke on the occasion of his 60th birthday. We should
like to thank especially Kurt Binder, David Landau, Reinhard Folk, and Martin Holtschnei-
der for useful information, remarks, and discussions on the topic of this article. We thank
Wolfhard Janke for very helpful and pleasant interactions.

References
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