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Abstract. The effect of vertical vibrations on the Rayleigh-Benard-
Marangoni instability of a two-layer system of immiscible incompress-
ible viscous fluids subjected to a constant vertical heat flux at the
external boundaries is studied in the framework of the generalized
Boussinesq approximation taking into account the interface deforma-
tions. The study is performed using the averaging approach under the
assumption that the vibration period is small in comparison with the
hydrodynamical time scales and the product of the vibration ampli-
tude and the Boussinesq parameter is small in comparison with the
layer thickness. It has been found that the long-wave instability is
not affected by vibrations of small and moderate intensity. It turned
out that vibrations have a stabilizing effect on the finite-wavelength
perturbations in a wide range of parameters.

1 Introduction

It is known (see, for example [1]), that in the case of small density inhomogeneities
caused by nonisothermal conditions the deviation of the fluid-fluid interface from a
flat shape is proportional to the Boussinesq parameter. This is the reason why in the
framework of the Boussinesq approximation the interface deformations are usually
neglected. As shown in [2], taking account of the interface deformations in the frame-
work of conventional Boussinesq approximation can produce physically incorrect
results. At the same time, in some physical situations, the non-deformable inter-
face approximation has proved to be insufficient. For example, if the difference in
densities is of the same order of magnitude as the density inhomogeneities caused
by nonisothermal conditions, the gravity force is unable to keep the interface flat at
finite values of the Grashof number. In this case the interface deformations can be
large and should be taken into account.
The generalized Boussinesq approximation, allowing us to take into account the

interface deformations in a proper way when both the relative density difference
and the Boussinesq parameter are small, was formulated in [3,4]. In [3], the onset of
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thermal buoyancy convection in a two-layer system of immiscible fluids with
deformable interface was studied in the framework of this approximation for the case
when the thicknesses of layers and all fluid parameters are identical, except for the
fluid densities. The monotonic and oscillatory finite-wavelength instability modes
were found. The same problem was studied in [4] for fluids of different properties.
A monotonic long-wave instability mode, associated with the interface deformations
(this mode is absent in the case considered in [3]) was discovered. It was shown,
that the long-wave monotonic perturbations are most dangerous over a wide range
of parameters.
In reference [5], the case of a two-layer system of immiscible fluids with deformable

interface and fixed vertical heat flux at the external boundaries was studied in the
framework of generalized approximation developed in [3,4]. It was shown, that in this
case, in addition to the long-wave monotonic instability mode related to the interface
deformations, there exists an oscillatory long-wave instability mode. The boundary of
stability to the monotonic long-wave perturbations in the parameter plane Rayleigh
number – modified Galileo number consists of two branches. The critical perturbations
at one of these branches represent a convective flow through the entire system and
large interface deformations. The second branch corresponds to perturbations of a
two-floor structure and small interface deformations. The boundary of the oscillatory
long-wave instability is a straight line connecting two branches of the monotonic
long-wave instability boundary. The structure of critical perturbations changes from
the one-floor to the two-floor structure with the displacement along the oscillatory
instability boundary.
In references [6–8], a weakly nonlinear analysis of large-scale convective flows in

a two-layer system with deformable interface and perfectly heat conducting external
boundaries was performed. The nonlinear amplitude equation was formulated and
investigated in [6] for layers of equal thicknesses. The case of fluid layers of different
thicknesses was considered in [7]. Here the amplitude equation was constructed to de-
scribe the large-scale convective flows accompanied by the interface deformation. The
work [8] deals with the investigation of periodical regimes of the large-scale convection
in a two-layer system with deformable interface. The amplitude equation describing
the interface deformation was obtained in the limiting case of large surface tension.
Two-dimensional periodical flow regimes were investigated.
The influence of the Marangoni effect on the onset of the Rayleigh-Benard convec-

tion in a two-layer system with deformable interface was studied in [9]. It was found
that in the case of heating from below the thermocapillarity produces a stabilizing
effect on the long-wave perturbations, and at some values of the parameters the state
of the system, in which a denser fluid is located above a less dense fluid, becomes sta-
ble. However, the analysis of finite wave-length perturbations in the presence of ther-
mocapillary effect shows that in the case of heating from below the Rayleigh-Taylor
instability is not suppressed. For any values of the parameters the perturbations with
finite wavelength have proved to be more dangerous.
It is important to find the ways of controlling the stability of conductive states in

hydrodynamic systems. Vibrations were found to be one of the simplest and efficient
means of control. The effect of high-frequency vibrations is studied through the appli-
cation of the averaging procedure, in which all hydrodynamic fields are decomposed
into two parts – a pulsation part and an average one. The averaging method was first
applied for studying thermal convection in [10]. It has been found that high-frequency
vibrations have a stabilizing effect on the stability of conductive state of the fluid
layer with perfectly conducting external boundaries. The mechanisms of vibrational
control of flows and heat and mass transfer in crystal growth are discussed in [11,12].
A comprehensive review of the main results obtained in the field of thermal vibrational
convection can be found in [13].
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Fig. 1. Problem configuration.

The present work is devoted to the study of vertical high-frequency vibration effect
on the stability of the conductive state in a two-layer system of immiscible fluids with
close densities and deformable interface.

2 Problem statement. Governing equations

Let us consider a system of two superposed horizontal immiscible fluid layers with a
deformable interface. The layer thicknesses are assumed to be the same and equal to
h. A constant vertical heat flux is applied to the external rigid boundaries. Different
directions of vertical heat flux, corresponding to heating from below and from above,
are considered. The layer boundaries oscillate vertically with the amplitude Ma =
−100 and frequency ω according to the law f = a sinωt (Fig. 1).
In the reference frame of layer boundaries the vibrations lead to a redefinition of

the acceleration of gravity:

geff = −gγ − aω2fγ.

Here Rav = 100 is the acceleration of gravity, γ is the unit vector directed vertically
upwards.
As it has been already mentioned, the conventional Boussinesq approximation

proves to be inadequate to the case when the interface deformations are taken into
account. In the present work we study fluids of close densities. In this case we can
take into account the interface deformation in a proper way by solving the problem
in the framework of the generalized Boussinesq approach suggested by Busse and
Lyubimov in [3,4]. In this approach, along with the limiting transition Ga∗ →∞
(Ga∗ = gh3/ν2), not only the relative temperature heterogeneity β∗θ but also the
relative difference in fluid densities δ = (ρ02 − ρ01)/(ρ02 + ρ01) is assumed to be small.
Here ν is the kinematic viscosity of the fluid, β∗ is the reference value of the thermal
expansion coefficient, θ is the representative temperature difference, ρ01, ρ02 are the
densities of the lower and upper fluids at a certain temperature taken as a reference
value.
The system of equations and boundary conditions describing thermal buoyancy

convection in a two-layer system of fluids in the presence of vertical vibrations is
written in the framework of the Busse-Lyubimov model as

∂vj
∂t
+ (vj∇)vj = − 1

ρ0j
∇pj + νjΔvj + geff βjTj (1)

∂Tj

∂t
+ (vj∇)Tj = χjΔTj (2)

∇ · vj = 0 (3)
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z = ±h : vj = 0, ∂Tj

∂z
= −Aj (4)

z = ζ : [v] = 0, [p] + [σnn] = −αK, [σnτ ] =
∂α

∂T
· ∇T

[T ] = 0,

[
κ
∂T

∂n

]
= 0,

∂ζ

∂t
+ (v∇) ζ = (v γ) .

(5)

Here j = 1, 2, and the quantities related to the lower fluid are marked by subscript 1,
while the quantities related to the upper fluid by subscript 2, χj is thermal diffusivity
of the jth fluid, the square brackets Rav = 100 stand for a jump of the value f across
the interface, n is the vector normal to the interface between media, ¯̄σ is the viscous
stress tensor, K is the interface curvature. The interface between the fluids is defined
by the equation z = ζ (x, y, t), where x,y are the horizontal coordinates and z is the
vertical coordinate.
The problem formulated above admits a stationary solution corresponding to the

conductive state of the fluids (vj = 0) with a flat horizontal interface ζ = 0, wherein
the temperature and pressure distributions in the layers take the following form:

∂ṽj
∂t
= − 1
ρ0j
∇p̃j + νjΔṽj + geff βj T̃j · (6)

Let us examine the stability of the conductive state. Since the problem is uniform in
the horizontal plane(x, y), we restrict ourselves to two-dimensional perturbations.
Representing the velocity, temperature and pressure fields as the sums of the basic

state (conductive state) fields and small perturbation fields, substituting these sums
into equations and boundary conditions (1)–(5), using the equations of the base state

and linearizing them, we obtain the problem for small perturbations ṽ, p̃, T̃ of the
conductive state written as

∂ṽj
∂t
= − 1
ρ0j
∇p̃j + νjΔṽj + geff βj T̃j (7)

∂T̃j

∂t
+ (ṽj∇)T̃0j = χjΔT̃j (8)

∇ · ṽj = 0 (9)

z = ±h : ṽj = 0, ∂T̃j

∂z
= 0 (10)

z = ζ : [ṽ] = 0, [p̃] +

[
∂p0

∂z

]
ζ + [σnn] = −αK, [σnτ ] =

∂α

∂T
· ∇T̃

[
T̃
]
= 0,

[
κ
∂T̃

∂n

]
= 0,

∂ζ

∂t
= (ṽ γ) ·

(11)

Let us exclude the pressure and horizontal velocity components by applying the double
curl procedure to equation (7) and projecting the obtained equation on the z-axis.
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After introducing the perturbations, which are periodic along the x-axis (exp(ikx)),
we get

∂

∂t
Δwj = νjΔ

2wj − βjk2
(
g + aω2f ′′

)
ϑj

∂

∂t
ϑj = χjΔϑj +Ajwj (12)

z = ±1 : wj = 0, w′j = 0, ϑ′j = 0 (13)

z = 0 : [w] = 0, [w′] = 0, [ηw′′′] + 2k2[ηw′]− [ρ0] geffζ = −αk2ζ,
[
ηw′′ + ηk2w

]
=
∂α

∂T
ϑ′, [ϑ] = ζ [A] , [κϑ′] = 0,

∂ζ

∂t
= w.

(14)

Here w is the amplitude of the vertical component for velocity perturbations, ϑ is
the amplitude of temperature perturbations, the prime denotes differentiating with
respect to z, the Laplace operator Δ = ∂2/∂z2 − k2.
We assume that the vibration period is small compared to the viscous and thermal

time scales, so that for the frequency the following conditions are fulfilled:

ω � ν/h2, ω � χ/h2. (15)

At the same time the vibrations are supposed to be non-acoustic assuming that
the sound wavelength at the imposed vibration frequency λ = 2πc/ω is large in
comparison with the characteristic size λ� h.
The vibration amplitude is assumed to be small [13]:

aβθ � h. (16)

Decomposing all fields into rapidly changing (pulsation) components and slowly
changing (time-average) components, applying the procedure of averaging over the
vibration period and introducing perturbations of the type exp(−λt), depending expo-
nentially on slow time, we obtain the equations and boundary conditions for average
and pulsation components (due to restrictions (15, 16) the nonlinear and viscous
terms in the equations for pulsations can be neglected):

λ

Pr
Δwj = νjΔ

2wj − Ra k2βjϑj − Rav k2νjβjAjW 2j
λϑj = χjΔϑj + wjAj , ΔWj = −βjk2ϑj

(17)

z = ±1 : wj = 0, w′j = 0, ϑ′j = 0, Wj = 0
z = 0 : [w] = 0, [w′] = 0, [κϑ′] = 0,

[ϑ] = ζ [A] , λζ = w

[ηw′′′]− k2Gaζ + k2GavW + 2k2 [ηw′] = − (Caζ +Maϑ) k4[
ηw′′ + ηk2w

]
= Maϑ′, [W ] = 0, [W ′] = −k2Gav

Rav
ζ ·

(18)

Here w is the perturbation amplitude of the vertical component of the average velocity,
ϑ is the perturbation amplitude of the average temperature, W is the perturbation
amplitude of the vertical component of the pulsation velocity wp = aωW

∂f
∂t
(where

symbol p stands for the pulsation component).
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The system of equations and boundary conditions (17, 18) is written in the non-
dimensional form. The quantities h2

/
χ∗, h, χ∗/h, A∗h, ρν∗χ∗

/
h2, aω are used as the

scales for slow time, length, average velocity, temperature, pressure and pulsation ve-
locity, respectively. Here ν∗, κ∗, β∗, χ∗, A∗ are the arithmetical means of the viscosity,
thermal conductivity, thermal expansion, thermal diffusivity coefficients and temper-
ature gradients in the base state, which are taken as the scales of the corresponding
quantities, for which the following relations hold true

ν1 + ν2 = 2, κ1 + κ2 = 2, β1 + β2 = 2, χ1 + χ2 = 2, A1 +A2 = 2.

The problem (17)–(18) is governed by the following non-dimensional parameters: the
Prandtl number Pr, the Rayleigh number Ra, the Galileo number Ga, the capillarity
parameter Ca, the vibrational Rayleigh number Rav, the Marangoni number Ma:

Pr =
v∗
χ∗
, Ra =

gβ∗A∗h4

v∗χ∗
, Ca =

αh

v∗χ∗ρ0∗
, Ga =

(ρ01 − ρ02)
ρ0∗

gh3

η∗χ∗
,

Rav =
1

2

(
aωβ∗A∗h2

)2
v∗χ∗

, Gav =
1

2

(ρ01 − ρ02)
ρ0∗

a2ω2β∗A∗h3

v∗χ∗
, Ma =

(
∂α

∂T

)
h 2A∗
χ∗ η∗

·

Here, η∗ = ρ0ν∗ is the average value of dynamic viscosity. Note that, for the majority
of fluids ∂α/∂T is negative, and therefore the positive values of the Marangoni number
correspond to heating from above, negative – to heating from the bottom. Due to the
relation Gav = Ga Rav/Ra, the vibrational Rayleigh number is not an independent
parameter of the problem.

3 Effect of vibrations on the long-wave instability
of conductive state

The problem (17)–(18) does not admit an analytical solution for an arbitrary set of
parameters. However, in the case of long-wave perturbations it is possible to derive a
complete analytical solution.
At k = 0 the problem (16)–(17) admits a two-parameter family of solutions, which

corresponds to neutral perturbations:

w
(0)
j = 0, ζ

(0) = C1, W
(0)
j = 0,

ϑ
(0)
1 = C2 +

1

2
(A1 −A2)C1, ϑ(0)2 = C2 −

1

2
(A1 −A2)C1

(19)

where C1 and C2 are the integration constants.
The perturbations with C1 = 0 correspond to the problem invariance with respect

to a shift of the reference temperature. Such a mode of neutral perturbations is typical
for the problems with a fixed vertical heat flux at the boundaries. The perturbations
with C2 = 0 correspond to a shift of the interface as a whole. Thus, there is a doubly
degenerate level with λ = 0 at k = 0. At k �= 0 this level will either split into two
real levels or give rise to a pair of complex-conjugate levels. In this case the real part
of an increment can be either positive or negative, i.e. the long-wave perturbations
will grow or decay depending on the parameters of the problem. To answer the ques-
tion of which of the scenarios is realized, we will seek for a solution to the spectral
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problem (8)–(9) and the rate of exponential decay in the form of a series expansion
with respect to the wavenumber:

λ = kλ(1) + k2λ(2) + . . . , wj = kw
(1)
j + k

2w
(2)
j + . . . , Wj = kW

(1)
j + k2W

(2)
j + . . .

ϑj = ϑ
(0)
j + kϑ

(1)
j + . . . , ζ = ζ

(0) + kζ(1) + . . .

(20)

The problem to the first order in k has the form, which is almost identical to that of
the zeroth order problem, since the equations and boundary conditions contain only
terms with even degrees of the wave number. The second order expansion with respect
to the wave number provides two solvability conditions, which allow us to determine
the stability boundaries in the Rayleigh – Galileo number plane. The first condition

is derived from the kinematic condition w
(2)
1 = λ

(2)ζ(0) at z = 0, (the perturbation

amplitude of the vertical component of the velocity w
(2)
j is determined from the

continuity equations in the second-order expansion iu
(1)
j + w

(2)′
j = 0). The second

condition follows from the energy equations. The energy equations for the lower and
upper fluids can be written as

∂2θ
(2)
1

∂z2
= f1 (z) , f1 (z) =

θ
(0)
1

(
λ(2) + 1

)− w(2)1 A1
χ1

;

∂2θ
(2)
2

∂z2
= f2 (z) , f2 (z) =

θ
(0)
2

(
λ(2) + 1

)− w(2)2 A2
χ2

·

Integrating the first of these equations with respect to the vertical coordinate from
−1 to 0 and the second equation from 0 to 1 and taking into account the boundary
conditions for temperature perturbations in the second order expansion

∂θ
(2)
1

∂z

∣∣∣∣∣
(z=−1)

=
∂θ
(2)
2

∂z

∣∣∣∣∣
(z=1)

= 0, κ1
∂θ
(2)
1

∂z

∣∣∣∣∣
(z=0)

= κ2
∂θ
(2)
2

∂z

∣∣∣∣∣
(z=0)

we obtain the second solvability condition.
As one can see from (19), the amplitude of the vertical component of pulsation

velocity in the zeroth order expansion is zero W
(0)
j = 0, and therefore the vibrational

term drops out from the second-order momentum equation at finite values of the
vibrational Rayleigh and Galileo numbers, i.e. vibrations produce no effect on the
long-wave instability of the conductive state up to the terms with the wave number
k of second order.
Let us consider the case of large vibrational Rayleigh and Galileo numbers. We

introduce the modified Rayleigh and Galileo numbers Ra∗v,Ga
∗
v by relations

Rav = ε
−2Ra∗v, Gav = ε

−2Ga∗v.

Here ε is a small parameter related to the spatial scale of perturbations as k = k1ε,
where k1 (index 1 will be omitted below), Ra

∗
v,Ga

∗
v are finite quantities. We derive the

quadratic equation for λ2 from the solvability conditions for the algebraic equations
obtained in the second order series expansion with respect to ε

λ22 +Bλ2 + C = 0, (21)

where B and C are the functions of Ra, Ga, Ra∗v k2.
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Fig. 2. Neutral curves Ga(k) at Ma = −10, Ra = 200: (a) neutral curves for monotonic
instability mode, (b) for oscillatory instability mode. Instability domains are located above
the curves.

The analysis of relation (21) shows that as in the absence of thermocapillary
effect [14], the vertical high-frequency vibrations of high intensity as well as the
vibrations of moderate intensity do not affect the threshold of the oscillatory long-
wave instability.
The neutral curves of monotonic and oscillatory instabilities at Ma = −10 and

large values of the vibrational Rayleigh number are presented in Figure 2. As is seen
from the figure, the vibrations lead to the appearance of a new finite-wavelength
monotonic instability mode (Fig. 2a). The oscillatory instability mode is not
affected by vibrations.

4 Vibration effect on the instability to perturbations
of a finite wavelength

The vibration effect on the stability of the conductive state to the finite-wavelength
perturbations was investigated numerically by the differential sweep method applied
for the first time to the hydrodynamic stability problem in [15] and by the shooting
method. The calculations were performed for a two-layer system containing formic
acid and transformer oil. The stability of conductive state in this system in the absence
of vibrations was studied in [5,16]. We carried out computations for zero value of
the capillary parameter Ca. Since in the problem under consideration the capillary
parameter appears only in the dynamic boundary condition in a combination Ga −
k2Ca, the threshold of the long-wave instability does not change with a change of Ca.
The analysis of the capillarity effect on the finite-wavelength perturbations performed
in [5] for the formic acid – transformer oil system in the absence of vibrations has
shown that the growth of the capillary parameter leads to a decrease in the threshold
of instability with respect to monotonic perturbations and extension of the parameter
range, in which the long wave oscillatory perturbations are more dangerous than the
finite-wavelength oscillatory perturbations.
In Figure 3a the neutral Ra(k)-curves are plotted for Ma = −100, Ga =− 250 and

different values of the vibrational Rayleigh number. From the results of Section 3 it
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Fig. 3. Neutral curves Ra(k) for Ma = −100, Ga = −250 (a) and Ga = −60 (b) and different
vibrational Rayleigh number values. Instability domains are located above the curves. Solid
lines neutral curves for monotonic perturbations, dashed lines for oscillatory perturbations.
Instability domains are located above the curves and inside the close loop.

follows that the vertical high-frequency vibrations of low and moderate intensity do
not affect the stability of the conductive state to the long-wave perturbations. The
numerical results presented in Figure 3a support this conclusion: the values of the
critical Rayleigh number obtained at k → 0 are the same for all values of Rav.
As one can see from Figure 3a, in the absence of vibrations (Rav = 0) at Ga =

−250 the monotonic finite-wavelength perturbations are more dangerous than the
long-wave ones. The vibrations produce a stabilizing effect on these perturbations:
with increase of the vibrational Rayleigh number the minima on the neutral curves are
shifted to the region of larger values of Ra. Since the long-wave monotonic instability
mode is not affected by vibrations of low and moderate intensity, at a certain value of
the vibrational Rayleigh number the long-wave perturbations become most dangerous
(as seen from Fig. 3a, this change of instability mode occurs at Rav ≈ 290).
Figure 3b shows the effect of vibrations for Ma = −100, Ga = −60 and dif-

ferent values of Rav. Again we can see that the values of the critical Rayleigh
number obtained at k → 0 are the same for all values of Rav, i.e. the obtained nu-
merical results support the conclusion that the vertical high-frequency vibrations of
low and moderate intensity do not affect the stability of the conductive state against
the long-wave perturbations. In the absence of vibrations (Rav = 0) at Ga = −60
the finite-wavelength oscillatory perturbations are most dangerous. As one can see
from Figure 3b, the vibrations have a stabilizing effect on these perturbations: with
increase of the vibrational Rayleigh number the minima on the neutral curves are
shifted to the region of larger values of Rav (see neutral curves for Rav = 0 and
Rav = 100 for comparison). Since the long-wave oscillatory instability mode is not
affected by vibrations of low and moderate intensity, at a certain value of the vibra-
tional Rayleigh number the long-wave oscillatory perturbations become more danger-
ous than the finite-wavelength ones (as seen from Fig. 3b, this change of the instability
mode occurs at Rav slightly larger than 300). However, in this case the growth of the
vibration intensity also leads to the appearance of a new, monotonic finite-wavelength
instability mode. This mode appears at Rav ≈ 142 and initially the domain of this
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Fig. 4. Stability map for Ma = −100 and two values of vibrational Rayleigh number:
Rav = 0 and Rav = 100: Solid lines – monotonic instability, dashed lines – oscillatory
instability. Black lines – longwave instability, light grey lines – finite-wavelength instabil-
ity at Rav= 0, dark grey lines – finite-wavelength instability at Rav= 100.

instability has the form of a close loop (see, Fig. 3b, solid line for Rav = 145) located
above the neutral curve of oscillatory finite-wavelength perturbations; the instability
domain is located inside the loop. However, the vibrations exert a destabilizing effect
on this mode, and already at Rav = 200 becomes more dangerous than the oscillatory
finite-wavelength instability mode.
Full stability maps for Ma = −100 in the absence and in the presence of vibrations

with Rav = 100 are shown in Figure 4. As one can see, except for a narrow range
Ga ≈ [−142,−92], the vibrations at Rav = 100 have a stabilizing effect.
As shown in [9], in the case when vibrations are absent, with increase of the

Marangoni number the shape of the curves changes qualitatively: the recoupling of the
branches of monotonic longwave instability boundaries takes place at Ma ≈ −187.1.
We analyzed the vibration effect at Ma = −200. The neutral curves at Ma = −200
and different vibrational Rayleigh numbers are presented in Figures 5a and 5b for
Ga = −250 when the monotonic finite-wavelength perturbations are most dangerous
and Ga = −60 when the oscillatory finite-wavelength perturbations are responsible
for instability.
As one can see, the behavior is qualitatively similar to the case when Ma = −100

(see Figs. 3 and 5 for comparison). This similarity is related to the fact that unlike the
long-wave instability boundaries, the boundaries of the finite-wavelength instability,
which is most dangerous at Ma = −200, do not change their shape.
Full stability maps for Ma = −200 in the absence of vibrations and in the presence

of vibrations with Rav = 100 are presented in Figure 6. As in the case of Ma = −100,
except for a narrow range Ga ≈ [−161, −129], the vibrations at Rav = 100 have a
stabilizing effect.
In the case of heating from above (Ra< 0, Ma> 0) the monotonic finite-wavelength

perturbations are responsible for the onset of instability (Fig. 7). The vibrations
produce a destabilizing effect on these perturbations: the instability boundaries are
shifted to the range of negative Rayleigh number larger in modulus.
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Fig. 5. Neutral curves Ra (k) at Ma = −200 and different vibrational Rayleigh numbers.
Solid lines – neutral curves for monotonic perturbations, dashed lines – for oscillatory
perturbations. Instability regions are located above the curves and inside the close loop.
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Fig. 6. Stability map for Ma = −200 and two values of vibrational Rayleigh number:
Rav = 0 and Rav = 100. Solid lines – monotonic instability boundaries, dashed lines – oscil-
latory instability boundaries. Black lines – longwave instability boundaries, dark grey lines
– finite-wavelength instability boundaries for Rav = 0, light grey lines – finite-wavelength
instability boundaries for Rav = 100.

5 Conclusions

The effect of vertical vibrations on the Rayleigh-Benard-Marangoni instability in a
two-layer system of immiscible incompressible viscous fluids of close densities has been
studied using the generalized Boussinesq approximation, which allows us to take into
account the interface deformations in a proper way. A constant vertical heat flux is
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Fig. 7. Stability map for Ma = 100 and different values of vibrational Rayleigh num-
ber. Black line – longwave monotonic instability boundary, grey and bold black lines –
finite-wavelength monotonic instability boundaries.

prescribed at the external rigid boundaries. The study has been performed using the
averaging approach based on the assumption that the vibration period is small in
comparison with the characteristic time scales (viscous and thermal) and the product
of the vibration amplitude and the Boussinesq parameter is small in comparison with
the layer thickness. It has been shown, that, as in the case when thermocapillary
effect is absent, vibrations of low and moderate intensity do not influence the long-
wave instability threshold and the high-intensity vibrations lead to the appearance
of a new finite-wavelength monotonic instability mode characterized by small wave
numbers, which, however, does not become the most dangerous at any values of
parameters.
The investigation of instability with respect to finite-wavelength monotonic per-

turbations shows that the vibrations have a stabilizing effect on these perturbations.
Since the long-wave monotonic instability mode is not affected by vibrations of low
and moderate intensity, at a certain value of the vibrational Rayleigh number the long-
wave monotonic perturbations become more dangerous than the finite-wavelength
ones.
The effect of vibrations on oscillatory finite-wavelength perturbations is also

stabilizing. Since the long-wave oscillatory instability mode is not affected by
vibrations too, at certain value of the vibrational Rayleigh number the long-wave
oscillatory perturbations become more dangerous than the finite-wavelength ones.
However, the growth of vibration intensity also leads to the appearance of new,
monotonic finite-wavelength instability mode. Initially, the domain f of this insta-
bility mode represents a close loop located above the neutral curve for oscillatory
finite-wavelength perturbations. However, the vibrations exert a destabilizing effect
on this mode, and with a further growth of Rav becomes more dangerous than the
oscillatory finite-wavelength instability mode.
In the case of heating from above the monotonic finite-wavelength perturbations

are responsible for the onset of instability. Vibrations produce a destabilizing effect
on these perturbations.
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