Eur. Phys. J. Special Topics 226, 391-400 (2017)
© EDP Sciences, Springer-Verlag 2017 THE EUROPEAN

DOL: 10.1140/epjst /e2016-60195-6 PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

On salesmen and tourists: Two-step
optimization in deterministic foragers

Miguel Maya!, Octavio Miramontes'2, and Denis Boyer!:?

! Instituto de Fisica and C3, Universidad Nacional Auténoma de México, 04510 México
CDMX, Mexico

2 Departamento de Matemética Aplicada a la Ingenierfa Aeroespacial, ETSI Aeronduticos,
Universidad Politécnica de Madrid, Madrid, Spain

Received 29 June 2016 / Received in final form 26 August 2016
Published online 6 March 2017

Abstract. We explore a two-step optimization problem in random envi-
ronments, the so-called restaurant-coffee shop problem, where a walker
aims at visiting the nearest and better restaurant in an area and then
move to the nearest and better coffee-shop. This is an extension of
the Tourist Problem, a one-step optimization dynamics that can be
viewed as a deterministic walk in a random medium. A certain amount
of heterogeneity in the values of the resources to be visited causes the
emergence of power-laws distributions for the steps performed by the
walker, similarly to a Lévy flight. The fluctuations of the step lengths
tend to decrease as a consequence of multiple-step planning, thus reduc-
ing the foraging uncertainty. We find that the first and second steps
of each planned movement play very different roles in heterogeneous
environments. The two-step process improves only slightly the forag-
ing efficiency compared to the one-step optimization, at a much higher
computational cost. We discuss the implications of these findings for
animal and human mobility, in particular in relation to the com-
putational effort that informed agents should deploy to solve search
problems.

1 Introduction

The Traveling Salesman Problem (TSP) is paradigmatic of combinatorial optimiza-
tion problems and has far reaching applications in many fields of science. In the TSP,
an agent must find the shortest route that visits a set of IV cities, each city being vis-
ited once, before returning to its starting city. This is a NP-hard problem due to the
global nature of the optimization, and the computation time to find the solution is of
the order of N!. On the other hand, the Tourist Problem (TP) is a local optimization
problem where a visitor goes from one city to the nearest city not already visited, and
so on [1,2]. Global and local optimization problems are of great importance in physics
since these are related to variational problems, with applications to the determination
of Hamiltonian parameters in spin systems, for instance [3].
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The TP can be considered as a deterministic walk that explores a disordered
medium (if the cities are distributed randomly) by taking steps as short as possible
given a discrete number of possibilities at each step [2]. Therefore, the walker’s driving
force is a local optimization procedure, rather than a stochastic force as in standard
random walks. Thus, the walker has some information about the environment and
uses that information to take presumably efficient movement decisions. As a matter of
fact, many animal species [4] and humans [5] keep memory of their previous activities
and can be considered as deterministic to some extend. Cognitive abilities can be
used to maximize a foraging efficiency, e.g., the amount of visited resources per unit
of traveled distance, a problem that the TSP and the TP tackle with different levels
of complexity.

Many animals, when searching for resources, are known to perform trajectories
that are reminiscent of Lévy flights or Lévy walks [6], see also [7] and references
therein. In empirical data, the statistics of displacement lengths are often approxi-
mated by power-laws, which are distributions that lack a characteristic scale and are
dominated by rare, very long jumps. The common interpretation for the presence
of these patterns in ecology is that Lévy walk movements optimize the success of
random searches when foragers have no information about resources, and when those
are scarce and randomly distributed in patches [8,9]. A less studied interpretation of
biological Lévy mobility assumes that the forager responds to a complex distribution
of resources, which induces movements that reflect the environmental heterogeneity.
According to this hypothesis, Lévy walks are no longer an internal search process
but emerge from an ecological interaction [10-13]. Along this line, Lévy patterns can
emerge if animals follow mental maps that contain information about the location and
quality of heterogeneous food resources [8,14-16]. Evidence actually supports the use
of memory in monkeys [12,14,17], humans [18,19] and many other animal species.

In many foraging theories that incorporate information use (see also e.g. [20,21]),
each movement decision usually follows, like in the TP, a single-step rule. Typically,
the forager evaluates the best move, given its current position and environmental
conditions. In this paper, we wish to extend this reasoning to the less-studied multiple-
step optimization processes, where a forager evaluates at once the outcome of a com-
bination of several steps. This is an intermediate case between the TP and the TSP,
but still of much lower computational difficulty than the latter. Considering here the
simplest case of two-step planning, we discuss how the foraging efficiency of the walker
is improved, and how the Lévy patterns emerging in single-step processes are affected
by the introduction of a second step.

2 Model

In this paper we extend the model introduced originally in [12], that was motivated by
observations on fruit-eating monkeys. We consider a two dimensional squared domain
of unit area filled with IV randomly and uniformly distributed point-like targets at
fixed positions. Each target ¢ has a size or attractiveness k;, which is a random
variable drawn from a given distribution p(k). In this disordered environment, we
consider a forager with a perfect knowledge of the sizes and positions of the targets.
Reference [12] studied trajectories generated by a one-step optimization rule, that we
call from now on the model “olp”. In this rule, the forager located, say, on target
i chooses the next target to visit, j* # i, such that the distance between i and j*
divided by the size of j* is minimal. Therefore j* minimizes the cost function

EW =1;/kj, (1)
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where [;; is the distance between targets ¢ and j, and where j cannot be an already
visited target. The above process is iterated, generating a deterministic trajectory
which does not revisit twice a same target. With equation (1), the forager seeks to
obtain as many resources as possible (large k;’s) in the shortest traveled distance.

The model studied here is a two-step version of this model, and is referred to
as “02p” in the following. To take an image, this model describes the situation of
a person willing to visit a good restaurant not too far away, followed from there by a
trip to a nearby good coffee shop. Or, to go to a nearby cash machine, from where a
cheap gas station can be visited afterwards, etc. ..

The model assumes, as in [12], that the resource sizes are distributed according
to a power-law distribution:

p(k) = CE=P, with k£ =1,2,..., kmax, (2)

with k£ an integer, kmax a cutoff, C' the normalization constant, and 1 < 3 < oo a
parameter which characterizes the heterogeneity of the medium regarding the size
of the targets. The introduction of the power-law form is based on evidence that
resources, in particular fruit trees on which many animals feed, are often distributed
along fat-tailed distributions [22,23]. The forager is initially located at the center of
the domain and then moves from one target to another. At each step, the following
rules are iterated:

(i) The forager located, say, at target ¢ considers an available target (not visited
before), j # i;
(4i) then, the forager considers a second available target, m (#i,7);
(ii1) among all possible pairs (j, m) of available targets, the forager will visit the one
(j*, and then m*), such that the following cost function is minimal:

L+l
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As in equation (1), this expression represents, for the combined steps, the dis-
tance traveled per unit of resources obtained.

(i) Previously visited targets are not revisited.

The rules of the models olp and 02p are depicted in Figure 1. We notice that,
given a same medium and starting site, the sites chosen may differ in principle in
both rules. For instance, the most important target C' is closer to target B than to
target A, therefore, using o02p, B is preferred en route to C, despite of the fact that
B is less important than A, which is chosen first in olp.

We can distinguish, roughly speaking, three different kinds of environment.
(1) When 8 < 2 there are many targets of very large sizes, hence these environments
are considered as abundant. (i7) If 2 < 8 < 4, the mean target size does no scale up
with kpnax but the variance of the size can be large, these environment belong to the
so-called diverse regime. (i7i) For 8 > 4 most of the targets have the minimal unit
size, and we call this regime the homogeneous or scarce regime.

In the simulations of the model below, we consider N = 10*, and the total number
of visited targets in one trajectory is n =500 < N. The cutoff value for the maximum
target sizes is set to kyax = 10%. Every point depicted in the following figures repre-
sents an average over 100 trajectories (each taking place in a different independent
medium).
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Fig. 1. First choice of a forager that performs a one-step (olp) and two-step optimization
(02p). The forager starts at the location indicated by the cross.
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Fig. 2. Emerging forager trajectories in media with different values of 3.

3 Results

Examples of emerging trajectories of a forager in the 02p model are depicted in
Figure 2. On average, the movement patterns in the domain primarily depend on the
resource exponent (3, which is the main parameter in both models.

It can be noticed that when the media is abundant, or § < 2, the forager tends to
visit large targets. Since those are numerous, movements have a characteristic step
length, with relatively small fluctuations around it (see also below). In the case of
the diverse regime, 2 < 8 < 4, the lengths of the steps are much more heterogeneous,
which can be interpreted by the fact that relatively few targets have a very large size.
Given their relative scarcity, sometimes, it is worth for the forager to perform a very
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Fig. 3. Relative fluctuations of the step lengths, as given by CZ., as a function of the
resource exponent 3. Dashed lines are visual guides to the eye only.

large jump to reach one of them. These movements qualitatively resemble stochastic
Markovian Lévy flights [24,25], as in the one-step model [12,26]. Finally in the scarce
regime, B > 4, most of the targets have small sizes, in this case the forager roughly
performs a local motion to nearest-neighbor unvisited targets. This case would be the
equivalent of a deterministic “Brownian” regime.

In Figure 3, we display the coefficient of variation, that measures the relative
fluctuations of the step lengths I =1;;:

(4)

where ¢ and (I) are the standard deviation and the mean of the target-to-target jump
lengths, respectively. Here, we have aggregated the lengths of the first and the second
steps of the two-step process. The quantity C2,, is useful to compare the dispersion
between sets of measures of different random variables [27]. In Figure 3, we also show
C2,, in the olp case for comparison.

There are two results worth noting. First, the two-step optimization model
exhibits maximal fluctuations for a particular environmental parameter, 3 ~ 3, which
is roughly the same as for the one-step optimization model. Therefore, the media
with 8 &~ 3 produce the most heterogeneous trajectories. A second remarkable result
is that the fluctuations, in a same medium, are weaker in the 02p model. Therefore,
by optimizing pairs of steps, the forager reduces the uncertainty on the length of
the resulting steps, or, in other words, travels with more similar step lengths than in
the single optimization process. One may anticipate that by using three-step, four-
step optimizations and so on, the fluctuations are likely to decrease even more. In
the limiting case of N-step processes, our problem actually reduces to the standard
TSP, since the denominator in equation (3) would be replaced by the total amount of
resources, which is independent of the path. In the TSP, the step lengths are known
to be short and to fluctuate little.

Here, the relatively large fluctuations of [ near 3 =3 are indicative of power-laws
distributions. We computed the frequency distribution P(l), as depicted in Figure 4
(again grouping the first and second steps of each optimization). There are two limits
on the lengths in our problem: the first one is the characteristic distance between
nearest-neighbor, of order 1/v/N, and the second is the domain size itself (unity).
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Fig. 4. Frequency distribution of the jump lengths in the 02p model. A clear power-law
behavior is observed for 8 around 3.

In Figure 4 we focus on the scales comprised between these two limiting lengths.
Again, like in the olp case [12,26], and in sharp contrast with the Poissonian dis-
tribution between nearest-neighbor targets in the medium, when [ is around 3, the
power-law is a good fit for P(l). For 5 =2.9, we determine P(l) ~ =%, with a =2.06.
For environments with £ significantly > 3 or < 3, P(l) is poorly described by a power-
law.

We now continue with the foraging efficiency of the two-step optimization model,
and further compare it with the results of the well-known olp model [26]. The total
amount of resources captured after having visited n targets and the total distance
traveled are determined in each simulation. Obviously, the computational time needed
to move from one target to another for a forager doing olp is much shorter than in
the 02p model.

An utility function (synonymous for efficiency) can be defined as

Utility — <KT> , (5)

Iy

where Kp= 3 ., ki/ >, _1 y ki is the ratio between the cumulated amount of vis-

ited (or “captured”) resources and the total amount of resources in the system, ip
is the total distance traveled, and the brackets denote an average over independent
realizations. The forager utility is plotted in Figure 5 as a function of 3.

As one may have expected, the utility achieved by the 02p model is greater than
that of the olp model. However, considering the much larger computing time required
in the former (of O(N?) at each step, instead of O(N)), the increase in efficiency is
quite marginal. It is instructive, though, to separate the contributions of the two steps
during each choice in the 02p model. Thus, we have calculated separately the average
utility of the jumps ¢ — j (first jump) and 5 — m (second jump) in the notation above.
In Figure 6, the average utility of these jumps is displayed, as well as the utility of the
forager performing olp in comparison. There is a remarkable asymmetry between the
efficiencies of the first and the second jumps in the 02p, the second jump being much
more efficient. In addition, the first jump (as illustrated in the cartoon of Fig. 1) is
less efficient on average than a olp jump, which undermines the overall efficiency of
the two-step optimization.
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Fig. 5. Comparison of the utility obtained in the two optimization models.
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Fig. 6. Utility obtained by the first and second jumps of the two-step process, compared
with that of the single-step model, olp.

Figure 7a displays the average fraction of captured resources (Kr) as given by
02p, whereas Figure 7b shows the average total traveled distance (lr). Again, we
have separated the contributions of the first and second jumps to these quantities.
The two types of jumps are clearly different. Interestingly, the second jumps are not
only the ones that visit the more important targets, but they are also the shorter
ones. The picture that emerges from these results is that the first jump of the two-
step optimization serves as an “approach” towards some important targets, which
would not be visited directly in the one-step optimization.

4 Discussion and conclusions

In this paper we have presented a computer model which mimics the mobility of
an intelligent forager that has a perfect knowledge of its environment. The model is
ecologically inspired by the way many animals (including humans) interact with com-
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Fig. 7. Properties of the first and second jumps in the 02p model. (a) Fraction of captured
resources. (b) Total distance travelled. The lines are visual guides to the eye.

plex landscapes of resources, and it incorporates two important features: optimization
(least effort rule) and multiple-step planning.

We found that the average foraging efficiency obtained from a two-step optimiza-
tion is larger compared to that of the one-step optimization. Nevertheless, the cal-
culation time needed in the former is orders of magnitude larger. In the two-step
scenario, power-law step-length distributions emerge in certain heterogeneous envi-
ronments which are characterized by a resource exponent § near 3, similarly to the
case of the one-step process. We also found that the incorporation of more than one
step in the planed movements decreases the fluctuations of the lengths of the result-
ing steps, or, in other words, diminishes the uncertainty faced by the forager. In the
limiting case of N-step planning, the TSP is recovered.

The increased computing time for the two-step model does not bring a significant
improvement in the forager’s efficiency, compared with the simpler single-step rule.
This result resonates with recent empirical findings on primate systems, where no
evidence for multi-step planning was found [28]. However, this issue is not completely
settled, as other studies suggest that multiple-step planning is sometimes used by
primates [29]. Some experiments even provide evidence that bumblebees are able to
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solve the TSP by learning from experience, but in simple configurations containing
a small number of targets [30]. We speculate that when the environment is very
heterogeneous and offers many possibilities to the forager, one-step strategies may be
sufficient and could have been selected through evolution.

We have found a clear asymmetry between the properties of the first and the
second jump in the two-step optimization. The first jump is usually longer, while most
of the resources are captured in the second jump. Therefore, the function of the first
step is to approach the forager closer to a large resource patch, that would otherwise
not necessarily be chosen in a single-step process. This combination produces an
increase in the foraging efficiency.

The foregoing results pose several challenging questions regarding the amount of
multiple-step planning that humans are willing to perform in order to solve foraging,
shopping, visiting or delivery problems. We suggest that it is unlikely that high order
step optimization will be performed. This result could be generic and transcend the
context of the present study. We speculate that single step processes may explain, for
instance, why retail stores of the same kind tend to group in a same area, as close to
each other as possible [31].
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