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Abstract. The noise from most materials exhibits a power-spectral den-
sity that tends to diverge as S(f) ∝ 1/f at low frequencies, f . A funda-
mental mechanism for this 1/f noise comes from the thermodynamics
of small systems applied to reversible fluctuations of nanometer-sized
regions inside bulk samples. Here this “nanothermodynamics” is used
to derive a nonlinear correction to Boltzmann’s factor. Specifically:
Boltzmann’s factor comes from the first-order (linear) derivative of en-
tropy with respect to energy, whereas the nonlinear correction comes
from higher-order terms. The nonlinear correction is applied to Monte
Carlo simulations of small regions in the Ising model, yielding a low-
frequency crossover to white noise that keeps the power-spectral density
finite as f →0. It is shown that the low-frequency noise in the model
is reduced by reducing the size of the regions.

Fluctuations of individual nanometer-sized systems can be measured using sophis-
ticated techniques [1–8], and interpreted using modern fluctuation theorems [9–14].
Most of these fluctuation theorems are based on Boltzmann’s factor, which assumes
ideal thermal contact to an effectively infinite heat reservoir at a fixed temperature
[15–17]. However even for bulk materials, several experimental techniques have shown
that the primary response often involves independently relaxing, nanometer-sized
regions that are uncorrelated with neighboring regions [18–24], with an effective local
temperature that may temporarily fluctuate away from the infinite reservoir [25–30].
Nanothermodynamics provides the theoretical foundation for treating the thermal
properties of individual small systems in a self-consistent manner, with a local ther-
mal bath due to neighboring regions that are similarly small [31–34]. A common
consequence is a nonlinear correction to Boltzmann’s factor that yields non-Gaussian
fluctuations that differ from those predicted by macroscopic statistical mechanics. A
common result is that the thermal fluctuations exhibit noise with a power spectral
density that varies as S(f) ∼ 1/f over a wide range of frequencies, consistent with
what is often measured in materials.
Thermal fluctuations exhibiting 1/f -like noise were first reported in 1925 from

measurements on early electron-tube amplifiers [35]. Similar 1/f -like noise has
since been found in most materials [36]; as well as in electronic, magnetic, and
quantum devices [37–39]]; biological systems [40,41], and human perceptions [42,43].
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Although no single model can explain all details in every system, such ubiquity
suggests that 1/f noise involves a general principle that is not yet fully appreciated.
Nanothermodynamics provides a common foundation for understanding 1/f -like
noise in many systems [44]. The key requirement is strict adherence to the laws of
thermodynamics [31,34,45,46]. Specifically, non-extensive contributions to energy
are accommodated using Hill’s subdivision potential ε, and equilibrium fluctuations
that decrease the entropy of the system are balanced by increasing the entropy of
the surrounding sample. Another feature facilitates the statistics of indistinguishable
particles, thereby avoiding Gibbs’ paradox during equilibrium fluctuations. Here
I focus on how nanothermodynamics is used to minimize the free energy in the
fully-open generalized ensemble, thus allowing heterogeneous fluctuations inside bulk
samples, which are ill-defined in standard thermodynamics.
Hill’s subdivision potential can be understood by comparison to Gibbs’ chemical

potential, μ. In standard thermodynamics μ is an intensive parameter that comes
from the first-order derivative of energy with respect to the number of particles N ,
whereas Hill’s ε comes from higher-order derivatives, discrete-particle differences,
and other non-extensive contributions to the energy of finite-sized systems. Note that
some non-extensive contributions (e.g surface terms) can be added to the energy in
an ad hoc fashion, but internal fluctuations that alter the total energy cannot be
treated using standard thermodynamics. A fundamental thermodynamic equation
for conservation of energy in magnetic systems is ε = E–TS–HM–μN , adapted from
Equation 10–3 in [31]. Here S is the entropy, T is temperature, and H is the external
magnetic field; while the thermal-average properties are internal energy E, magnetic
moment M , and particle number N . Note that different properties are averaged in
other ensembles, and that ε depends on the ensemble, as expected for small systems
where fluctuations influence the total energy. Also note that the Gibbs-Duhem
relation requires ε→ 0 as N →∞, because in standard thermodynamics E is
assumed to be a linear homogenous function of S,M , and N . However, non-extensive
contributions from internal fluctuations in heterogeneous systems must be included
if total energy is to be conserved.
For simplicity I start with an ideal system of n non-interacting Ising-like particles

(“spins”), each with alignment (σi) that may be up (+1) or down (–1). Although the
Ising model was originally developed to describe ferromagnets, it is now a ubiquitous
model for investigating the basic behavior of multi-particle systems. The net align-
ment of the system ism =

∑ n
i=1 σi, where –n ≤ m ≤ n. The binomial coefficient gives

the exact multiplicity of each alignment, Ωm,n = n!/[1/2(n+m)]![1/2(n−m)]! Con-
nection to thermodynamics is made through Boltzmann’s entropy Sm,n = kln(Ωm,n),
where k is Boltzmann’s constant. The maximum entropy is S0,n = kln(Ω0,n) with

Ω0,n = n!/[(1/2n)!]
2. For non-interacting particles in zero field (where E =0), Ω0,n

also minimizes the Helmholtz free energy Fm,n = E–TSm,n. As discussed in chapter
11 of [31], using the change of variables B = n and N = 1/2(n+m) this ideal
Ising model is equivalent to the ideal lattice gas for the number of ways that N
identical (indistinguishable) particles can be placed on B binding sites. In chapter 15
(pp. 203–205) Hill treats this ideal lattice gas using discrete difference equations
with exact factorials, and shows that even the first-order thermal properties dif-
fer from those based on continuous degrees of freedom. Adapting his results to
the ideal Ising model I obtain an internal field hm,n ≡ (Fm+1/2,n − Fm−1/2,n) =
kT ln[(n+m+ 1)/(n−m+ 1)] and chemical potential μm,n ≡ 1/2[(Fm+1/2,n+1/2
−Fm−1/2,n−1/2) + (Fm−1/2,n+1/2 − Fm+1/2,n−1/2) = kT ln[

√
(n+ 1)2 −m2/(2n+ 1)].

Note that I use half-integer values for m and n to more-accurately define the
differences around each integer [47], and to ensure that energy is symmetrical
about m = 0, with h0,n =0. Also note that because E = 0, both hm,n and μm,n
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come entirely from changes in entropy, due to a type of entropic force that is
well-known for polymers [46,48,49]. Finally note that in the usual thermodynamic
limit (n→∞) with m� n, the limiting values are hm,n =0 and μm,n =–kTln(2).
For finite systems, however, the subdivision potential (similar to Equation (15–94)
in [31]), from εm,n = E–TSm,n–hm,nm–μm,nn with E =0, becomes

εm,n

kT
= − ln

[
n!

(n+m2 )!(
n−m
2 )!

(
n+m+ 1

n−m+ 1
)m
(√
(n+ 1)2 −m2
2n+ 1

)n]

. (1)

In chapter 10 (p. 101 of [31]) Hill shows how the subdivision potential depends on
the ensemble. In the fully-open (μ,H,T ) ensemble, which allows spontaneous fluctua-
tions in m and n, thermal equilibrium is found by setting ε = 0 (see Eqs. (10–117)).
This is analogous to μ = 0 in the grand-canonical ensemble, where the number of
modes (e.g. photons or phonons) must also fluctuate freely. In standard statistical
mechanics, normal thermal fluctuations of extensive parameters vary proportional to
the square root in the number of particles, m ∼ √n. Specifically for the root-mean-
squared average of m, neglecting the internal field so that the alignment probabili-

ties are governed solely by the multiplicities, mrms =
√∑n

m=−nm2 Ωm,n/
∑ n
−n Ωm,n.

Converting the summations to integrals over m, extending the limits to ±∞, and ap-
proximating the multiplicities by a Gaussian yields mrms =

√
n. Using this mrms,

with equation (1) set to zero, yields a thermal-equilibrium system size of n ≈ 11.07.
It is interesting to note that measurements on glycerol in thermal equilibrium above
the glass transition find slowly-relaxing regions that contain about 10 molecules [23].
Given the simplistic model and assumptions used in deriving equation (1), such close
quantitative agreement is undoubtedly fortuitous, but the idea that thermal equilib-
rium requires independent nanometer-sized regions is unique to nanothermodynamics.
Indeed, although the model is for simple dipoles in zero external field (H =0), there
is an internal field from finite-size fluctuations that minimizes the free energy and
reduces the net energy by an average amount h√n,n

√
n ≈ 1.883kT . The internal field

could come from dipolar interactions not considered explicitly here, or from ther-
mal motion that tends to randomize alignments as in the entropic model for poly-
mers [49]. In standard thermodynamics, heterogeneous regions with non-extensive
energies from thermal fluctuations are not allowed. Now I consider interacting par-
ticles (E 
= 0), and non-Gaussian fluctuations in small regions that yield 1/f -like
noise.
Inside bulk samples, spontaneous fluctuations of m and n should be treated in

the generalized (μ,H,T ) ensemble, see pp. 96–99 in chapter 10 of [31]. Again thermal
equilibrium is found by setting the subdivision potential to zero, 0 = E − TSm,n −
hm,nm− μm,nn. First assume that the fluctuations are reversible, so that this condi-
tion for thermal equilibrium is maintained. Next assume that fluctuations in m and n
are independent, with significantly slower fluctuations in n, consistent with measure-
ments [21–24]. Thus, alignment fluctuations will occur in regions of relatively constant
size, so that the chemical potential will be averaged to a value that does not depend on
instantaneous alignment, μm,n → μm,n. Therefore, because m and n are assumed to
be independent, the equation for thermal equilibrium can be separated into two parts:
μm,n = E/n and hm,n = −TSm,n/m. Again in zero external field, reversible fluctu-
ations from 0→ m require a nonlinear amount of internal work hm,nm = −TSm,n.
The negative sign indicates that the internal field favors ferromagnetic alignment,
even with no interactions. Thus for Monte Carlo simulations, the Metropolis algo-
rithm governs changes in energy (ΔE), while the nonlinear correction accommodates
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Fig. 1. Normalized magnetization as a function of time for averaging times of τ = 1, 100,
and 10,000 steps. All simulations are made on a system containing a total of N = 216 spins.
Numbers of spins in each region (n) are: 27 (black), 18 (red), 12 (green), 8 (blue),
and 1 (cyan), as given in the legend. Note that for smaller regions, averaging greatly
reduces the amplitude of the fluctuations.

energy released due to reversible work (–TSm,n):

e−ΔE/kT > rand [0, 1) Metropolis Algorithm, and

e(Sm,n−S0,n)/k > rand [0, 1) Nonlinear Correction. (2)

I use Monte Carlo simulations of the Ising model to study thermal fluctuations that
yield 1/f noise. A quadratic correction to Boltzmann’s factor has been found to
improve agreement between the Ising model and measured susceptibility of ferromag-
netic materials and critical fluids [33], as well as nanometer-sized dynamical correla-
tions in the structure of LaMnO3 [46]. The correction to all orders (Eq. (2)) yields
1/f -like noise over at least 8 orders of magnitude in frequency [44]. Here I study how
the magnitude and frequency range of this 1/f -like noise can be reduced by reducing
the size of the regions.
I simulate the Ising model on a simple-cubic lattice having 6 spins on each side, for

a total of N = 216 spins in the full sample. The interaction energy between nearest-
neighbor spins is J , with periodic boundary conditions on all outside surfaces. The
full sample is subdivided into smaller regions, each containing n < N lattice sites.
I record the alignment of the full sample as a function of time M(t), which yields
the net magnetization M(t)/N . For simulations over a wide dynamic range with a
reasonable number of data points, I averageM(t) over various times τ , similar to how
averaging is done in a measurement. Specifically, if τ =1 M(t) is recorded every step,
if τ =10 M(t) is averaged over 10 steps before recording, up to τ =106 steps, with
217 data points per simulation, yielding up to 1.31× 1011 steps per simulation.
Figure 1 shows the net magnetization as a function of time from simulations hav-

ing five different region sizes. Three different averaging times are taken from three
sets of simulations, and separated into different time intervals along the time axis.
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Fig. 2. Power spectral density of noise as a function of frequency on a log-log plot. Note that
noise is multiplied by N to accommodate the size dependence of normal thermal fluctuations,
and frequency is multiplied by 10 to match the dB scale. The magenta solid line shows exact
1/f behavior. Solid symbols come from simulations of systems with various region sizes: n =
27 (black squares), 18 (red circles), 12 (green up-triangles), 8 (blue down-triangles), and
1 (cyan diamonds), also given in the legend. Open triangles, which mark the low-frequency
end of the 1/f -like regime, have frequencies inversely proportional to the maximum multi-
plicity of each region.

Note that for samples with small regions the fluctuations decrease with increasing
averaging time, but the fluctuations remain large for samples with larger regions.
Clearly, low-frequency fluctuations are reduced for samples with small regions.
Figure 2 shows the power spectral density as a function of frequency, S(f),

from simulations of M(t) similar to those in Figure 1 but over much longer
times for a wider frequency range. Magnetization as a function of time is con-
verted to the power spectral density using a discrete Fourier transform: S(f) =
∣
∣
∣ 1j
∑j−1
t=0 [M(t)/N ] exp(−2πift/j)

∣
∣
∣
2

. The spectra are smoothed by linear regression

using a sliding frequency range, where the spectral density at frequency f1 comes from
a linear least-squares fit to all data over the frequencies –0.2 ≤ 10 log10(f/f1) ≤ 0.2.
Additional smoothing is achieved by simulating the system ∼ 20 times using different
initial conditions, but intrinsic noise is retained by analyzing each simulation sepa-
rately before averaging.
The solid line in Figure 2 has a slope of –1 corresponding to exact 1/f behavior.

The solid symbols in Figure 2 come from the simulations, showing 1/f -like behavior
over a frequency range that decreases with decreasing region size. The open triangles
that mark the low-frequency knee of each 1/f -like regime decrease inversely propor-
tional to the maximum multiplicity of the spins in the region, f0 ∼ 1/Ω0,n ≈ 2−n.
Consequently, the amplitude of noise at very low frequencies, below the 1/f -like
regime, increases exponentially with increasing n.
To summarize, a common mechanism for 1/f noise involves Hill’s subdivision

potential, ε. This ε is necessary to conserve total energy and maintain maximum en-
tropy during equilibrium fluctuations. Here I focus on how ε = 0 minimizes the free
energy in the fully-open generalized ensemble, which allows spontaneous fluctuations
of nanometer-sized regions inside bulk samples with no artificial constraints. Ensuring
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ε = 0 during reversible fluctuations yields a nonlinear correction to the Metropolis al-
gorithm. Using this nonlinear correction for Monte Carlo simulations of the Ising
model yields 1/f -like noise over a range of frequencies. In this model, the size of
the region governs the frequency range and maximum amplitude of the 1/f noise.
Minimizing the region size minimizes the low-frequency noise.

I thank S. Abe, B.F. Davis, and G.H. Wolf for enlightening discusions. Most of the sim-
ulations utilized the A2C2 computing facility at Arizona State University. It is a pleasure
to acknowledge Alberto Robledo for his kindness and creativity on the occasion of his 70th

birthday.
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