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Abstract. Dynamic coarse graining is a procedure to map a dynamical
system with large degrees of freedom to a system with smaller degrees of
freedom by properly choosing coarse grained variables. This procedure
has been conducted mainly by empiricisms. In this paper, I will discuss
a theoretical principle which may be useful for this procedure. I will
discuss how to choose coarse grained variables (or slow variables), and
how to set up their evolution equations. To this end, I will review the
classical example of dynamic coarse graining, i.e., the Brownian motion
theory, and show a variational principle for the evolution of the slow
variables. The principle, called the Onsager principle, is useful not only
to derive the evolution equations, but also to solve the problems.

1 Introduction

Coarse graining is a procedure needed in multi-scale modeling [1,2]. It is an operation
of reducing the degrees of freedom of the original system in such a way that the new
system with less degrees of freedom behaves in the same way as the original on large
length and time scales. For example, in the study of polymers (see Fig. 1), one can
use an atomistic model in which the polymer molecule is represented by a set of
chemically bonded atoms (Fig. 1(a)). Alternatively, one can use the coarse grained
model, in which the polymer is represented by simplified objects, for example, beads
and springs (Fig. 1(b)) where the beads represent a group of atoms (for example, the
atoms encircled by the dashed lines) and the springs represent the effective connection
between them. Such coarse grained model is expected to represent the behavior of
the polymer molecule on large length and time scales. A natural question is how to
construct such a model.
Coarse graining has two features, static and dynamic. In the static coarse graining,

the objective is to construct a model which reproduces the equilibrium properties,
while in the dynamic coarse graining, the objective is to reproduce both equilibrium
and non-equilibrium properties. Various methods have been proposed and tested for
static coarse graining [3–5]. On the other hand, not many studies have been done for
dynamic coarse graining [6].
In this paper, I will discuss some theoretical basis for dynamic coarse grain-

ing. For this purpose, I will first revisit the Brownian motion theory, the classical
example of dynamic coarse graining, and review the argument used in deriving evolu-
tion equations for coarse grained variables. I will then show that the evolution law for
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(a) (b)

Fig. 1. Model of a polymer molecule (a) atomistic model, (b) coarse grained model.

the coarse grained variables can be stated in a variational principle, called Onsager
principle [7–9], which is useful not only in deriving the evolution equations, but also
in solving the equations.

2 Brownian motion theory

2.1 Hydrodynamic description

Consider small particles moving in a viscous fluid (see Fig. 2). If the particles are
macroscopic, their dynamics is described by hydrodynamics: the fluid is regarded as
a continuum with viscosity η and the evolution of particle position and orientation are
calculated by solving the hydrodynamic equation. Let x = (x1, x2, ...xn) be the set of
parameters representing the configuration of the particles. The particles are subject
to two kinds of forces, the potential forces (the forces arising from the interaction
potential between particles, and/or the gravitational potential), and the frictional
forces exerted by the fluid. The former is represented by the potential energy of the
system U(x) as

Fpi = −∂U(x)
∂xi

· (1)

This represents the generalized force conjugate to xi. The frictional forces exerted by
the fluid are calculated by Stokesian hydrodynamics for small particles of colloidal
size. As a result, the forces are obtained as linear functions of the particle velocity
ẋ = (ẋ1, ẋ2, . . . ẋn):

Ffi = −
∑

j

ζij(x)ẋj (2)

ζij is called friction coefficient, which is, in general, a function of the particle con-
figuration x. It is known that the matrix made of ζij(x) is symmetric and positive
definite, i.e.,

ζij(x) = ζji(x),
∑

ij

ζij ẋiẋj ≥ 0 for any ẋi. (3)

The reciprocal relation ζij = ζji can be proved starting from the Stokes equation and
is called Lorentz reciprocal relation.
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Fig. 2. Molecular representations of a suspension. Particles are moving at constant speed
Vi among fluid molecules. The average of the force Fi exerted on the particle is calculated
either by macroscopic hydrodynamics or by statistical mechanics. This gives the connection
between macroscopic description and molecular description.

The evolution equation of the particle configuration is given by the force balance
equation Fpi + Ffi = 0, or

∑

j

ζij(x)ẋj = −∂U(x)
∂xi

· (4)

This is a non-linear equation for x, and therefore can be used to study the complex
non-linear behaviors of suspensions [10,11].

2.2 Mesoscopic description

If particle size becomes small, the particles start to show Brownian motion.
Phenomenologically, the Brownian motion can be described by the Langevin equation

∑

j

ζij(x)ẋj = −∂U(x)
∂xi

+ Fri(t) (5)

where Fri(t) is a stochastic force representing the fluctuating part of the force
exerted on the particle by fluid molecules. Since the average part of this force is
already in the left hand side of Eq. (5), the average of Fri(t) is zero; 〈Fri(t)〉 = 0. The
variance of Fri(t) is determined by the condition that the statistical distribution of x
at equilibrium is given by the Boltzmann distribution ψeq(x) ∝ exp(−βU(x)), where
β = 1/(kBT ). The second condition requires that the time correlation of the random
forces must satisfy [9]

〈Fri(t)Frj(t′)〉x = 2ζij(x)kBTδ(t− t′) (6)
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where 〈...〉x stands for the average for the state where particle configuration is fixed
at x. Equation (6) is obtained by combining macroscopic phenomenological equation
(i.e., the Stokes equation) with statistical theory (i.e., the Boltzmann distribution).
Notice that the reciprocal relation and the positive definiteness of ζij , represented by
Eq. (3), are also derived from this relation.

2.3 Molecular description

The set of equations appearing in the phenomenological theory can be derived directly
from the first principle of statistical mechanics, i.e., from the Liouville equation. Let
Γ = (q1, q2, . . . qf , p1, p2, . . . pf ) be the set of generalized coordinates and generalized
momenta of the fluid molecules. The Hamiltonian of the system can be written as
H(Γ;x). (Note that here the variables x = (x1, . . . xn) representing the particle con-
figuration are treated as external parameters appearing in the Hamiltonian.)
Given the Hamiltonian, the force acting on the particle in the microscopic state

Γ is calculated by

F̂i(Γ;x) = −∂H(Γ;x)
∂xi

· (7)

To relate this molecular description to hydrodynamic description, we consider that
the particles are slowly moving at rate ẋ driven by some external forces, and ask what
is the average of the microscopic force F̂i. The average can be calculated straight-
forwardly by statistical mechanics.
First consider the case that the particle configuration is fixed, i.e., the case of

ẋ = 0. In this case, the fluid molecules are in equilibrium for given x, and their
distribution is given by

ψeq(Γ;x) =
e−βH(Γ;x)∫
dΓ e−βH(Γ;x)

· (8)

The average of F̂i for this state is easily calculated as

〈F̂i〉x =
∫
dΓF̂iψeq(Γ;x) = −

∫
dΓ ∂H

∂xi
e−βH(Γ;x)

∫
dΓ e−βH(Γ;x)

= −∂A(x)
∂xi

(9)

where A(x) is the free energy of the system when x is fixed.

A(x) = − 1
β
ln

[∫
dΓ e−βH(Γ;x)

]
· (10)

Now let us consider that particles start to move with constant velocity ẋ at time
t = 0. The distribution function of fluid molecules ψ(Γ, t;x, ẋ) is obtained by solving
the Liouville equation with the initial condition ψ(Γ, 0;x, ẋ) = ψeq(Γ;x). If ẋ is small
enough, the Liouville equation can be solved by perturbation method, i.e., by writing
ψ(Γ, t;x, ẋ) as

ψ(Γ, t;x, ẋ) = ψeq(Γ;x) +
∑

i

ψi(Γ, t;x)ẋi + . . . (11)

The average of the force acting on the particle at time t is then calculated by

〈F̂i〉x,ẋ =
∫
dΓF̂i

[
ψeq(Γ;x) +

∑

i

ψi(Γ, t;x)ẋi + . . .

]
· (12)
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The result can be written as [9]

〈F̂i〉x,ẋ = −∂A(x)
∂xi

−
∑

j

ζ̃ij(x, t)ẋj + . . . (13)

The first term on the right hand side represents the force in the case of ẋ = 0, and the
second term represents the first order correction to this for small ẋ. By straightforward
calculation, one can show that ζ̃ij(x, t) is given by [9]

ζ̃ij(x, t) = β

∫ t

0

dt′〈Fri(t′)Frj(0)〉x (14)

where
Fri = F̂i(Γ;x)− 〈F̂i〉x (15)

is the fluctuating part of the microscopic force acting on the particle.
If the correlation times of the random forces are much smaller than the character-

istic times of particles, ζ̃ij(x, t) approaches to the asymptotic value ζ̃ij(x,∞) before
x changes by any appreciable amount. In this case, Eq. (13) can be simplified as

〈F̂i〉x,ẋ = −∂A(x)
∂xi

−
∑

j

ζij(x)ẋj + . . . (16)

where

ζij(x) = ζ̃ij(x,∞) = β
∫ ∞

0

dt′〈Fri(t′)Frj(0)〉x. (17)

In the above discussion, we considered the situation that the particles are forced to
move at a given rate ẋ by some external forces. If there are no external forces, the
motion of the particles is determined by the condition that the average force 〈F̂i〉x,ẋ
is zero. This condition gives

∑

j

ζij(x)ẋj = −∂A(x)
∂xi

· (18)

This is equivalent to Eq. (4), where the potential energy U(x) is now replaced by the
free energy A(x) since the potential energy U(x) in a macroscopic system is in fact
the free energy. Therefore the equations in the phenomenological theory are derived
straightforwardly from statistical mechanics.

3 Onsager principle

3.1 Variational principle in the evolution law

The argument in the previous section shows that as long as x is a proper set of slowly
varying variables, their evolution equations are written in the form of Eq. (18). We
call such variables slow variables. In the case of suspensions, slow variables are the
particle coordinates, and the other fast variables are Γ, but there is nothing to restrict
the argument to this case. The only requirement for x is that they change slowly in
time: the characteristic time of x, which is determined by the kinetic Eq. (18), is much
longer than the correlation time of the forces created by other variables. As long as
this condition is satisfied, the rewriting of Eq. (13) into Eq. (16) is justified, ant the
time evolution (18) is justified.



1416 The European Physical Journal Special Topics

The generality of the argument in the Brownian motion theory was noted by
Onsager [7,8], and he used this argument to prove his celebrated reciprocal relation:
if the kinetic equation for an irreversible system is written in the form (18), the
equality ζij = ζji holds. He then showed that due to the reciprocal relation, the
kinetic Eq. (18) can be generally written in a form of variational principle. Consider
the following quadratic function of ẋ, called Rayleighian

R(x, ẋ) =
1

2

∑

i,j

ζij(x)ẋiẋj +
∑

i

∂A

∂xi
ẋi. (19)

The kinetic Eq. (18) is then obtained by minimizing R with respect to ẋi, i.e., by the
condition ∂R/∂ẋi = 0. We shall call this principle Onsager principle. [The Onsager
principle discussed here is a special case of Onsager’s original one. His original varia-
tional principle uses entropy production rather than energy dissipation. The present
variational principle is valid for isothermal system where the temperature is constant
throughout the system].
The Rayleighian consists of two parts. The first part

Φ =
1

2

∑

i,j

ζij(x)ẋiẋj (20)

is called the dissipation function and the second part

Ȧ =
∑

i

∂A

∂xi
ẋi (21)

is called the free energy change rate.
Φ is called dissipation function since 2Φ represents the energy dissipated in the

system per unit time when the slow variables are changing at rate ẋ. This is seen as
follows. To change xi at rate ẋi, we have to apply a force −(Fpi + Ffi) = ∂A/∂xi +∑
j ζij ẋj . The work done to the system per unit time is −

∑
i(Fpi + Ffi)ẋi. The

difference between this work and the free energy change rate Ȧ is the work dissipated
in the system per unit time, which is equal to 2Φ.
The Onsager principle can be state as follows: Among all possible physical

processes, the actual process realized in reality is the process that minimizes the
Rayleighian. Alternatively, it can be stated in the form of minimum energy dissi-
pation principle: Among all possible physical processes which change the free energy
from A to A+ ȦΔt, the actual process realized in reality is the process that minimizes
the energy dissipation 2Φ.

4 How to choose slow variables

The argument in the previous section shows that if the slow variables are properly
chosen, the dynamics is determined by the Onsager principle and their time evolution
equations are written in the form of Eq. (18) with coefficients satisfying the reciprocal
relation ζij = ζji. [ Note that Eq. (18) can represent partial differential equations since
i in Eq. (18) can be a continuous variable, and A(x) can be a functional of a function
x(i). Such an example is given in Sect. 5.1, and many other examples are given in
Ref. [9]]. In practice, the most difficult part in applying the Onsager principle to
practical problems is how to choose slow variables. In principle, the only requisite
for slow variables is that they change much more slowly than other variables. This



Modern Simulation Approaches in Soft Matter Science 1417

condition is still vague and it is natural to ask how we can choose slow variables, and
how we can judge whether the chosen slow variables are proper or not.
At this stage, no clear answers can be given to such questions. However, we can

discuss some criteria which are useful in selecting proper slow variables (see also the
discussion in [13]).
A simple criteria to judge whether the chosen set of slow variables are proper or

not is whether the evolution of the system is determined uniquely if the set of the
slow variables x are given. The slow variables have to specify the non-equilibrium
state of the system in such a way that, given the state at time t, the state at the next
time step t+Δt is determined uniquely.
For example, if a macroscopic particle is moving in a viscous fluid, the particle

position at time t + Δt is determined uniquely if the particle position at time t is
given. In this case, the particle position x is a proper slow variable, and the dynamics
of the system is described by the evolution equation for x. However, if the particle
is moving in a viscoelastic fluid (such as polymer solutions), the particle position x
is not enough to determine the time evolution of x because the drag exerted on the
particle by viscoelastic fluids depends on the particle velocity in the past. Therefore
the evolution equation cannot be written in the form of Eq. (18). Mathematically
speaking, this is because the rewriting of Eq. (13) into (16) is not allowed in this
case (since the correlation time for the random force is non-negligible in viscoelastic
fluids). However, even in this case, if we include inner variables which describe the
viscoelasticity (e.g., the variables describing the polymer configuration), it is still
possible to discuss the evolution of the system in the framework of the variational
principle [13].
Discussion is needed on the applicability of the variational principle for a system

in which the Brownian motion is important. In this case, the particle position x is
not deterministic, and the evolution equation for x cannot be written in the form of
Eq. (18). However, we can still make a statistical prediction on the state of the system.
If we know the distribution function ψ(x, t) of the particle at time t, the distribution
function at the next time step is determined uniquely. Indeed, its evolution equation
for ψ(x, t) can be derived from the variational principle [9,12]. (Example of such
treatment is given in Sect. 5.1.)
An important situation where the variational principle clearly breaks down is

the case that inertia forces (or accelerations ẍ) are non-negligible. In this case, the
argument given in Sect. 2.3 is not valid any more. The inertia effect can be included
in a more general framework called dissipative Hamiltonian dynamics [13,14].
With these reservations, the dynamics of many soft matter systems obeys the vari-

ational principle. Many phenomenological equations in soft matter (diffusion equa-
tion, Smoluchowskii equation for Brownian motion, Cahn-Hilliard equation for phase
separation, Leslie-Ericksen equation for nematic crystals, gel dynamic equations etc.)
have been derived based on this principle [9,12]. On the other hand, clear criteria for
slow variables are still lacking, and it is a subject to be explored.

5 Example

5.1 Diffusion of particles

In this section, I demonstrate a usage of the variational principle for a simple problem.
Let us consider colloidal suspensions. In the previous sections, dynamics of suspen-
sions was discussed with particle positions used as slow variables. Here the dynamics
is considered at a higher level of coarse graining. Let us focus on the evolution of the
particle concentration. Let n(x; t) be the number density of particles at position x and
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time t. This is a proper set of slow variables since, given n(x; t) at time t, n(x, t+Δt)
is uniquely determined.
The free energy of the system is written as a functional of n(x; t):

A[n(x; t)] =

∫
dxf(n) (22)

where f(n) the free energy density of the solution at concentration n. In dilute
solution, f(n) is given by

f(n) = nkBT lnn. (23)

In concentrated solutions, f(n) includes other terms arising from the interaction
between particles.
To construct the dissipation function, we consider how much energy is dissipated

in the fluid when n(x, t) is changing at rate ṅ(x, t). Energy dissipation takes place
because the change of concentration is associated with the motion of particles in
fluids. Let v(x, t) is the average velocity of particles at position x. It is related to ṅ
by the conservation equation

ṅ = −∂(nv)
∂x
· (24)

The dissipation function is a quadratic function of v, and can be written as

Φ =
1

2

∫
dxξ(n)v2 (25)

where ξ(n) is the friction coefficient of particles per unit volume: the total hydrody-
namic drag exerted on the particles moving with velocity v in unit volume is given
by −ξ(n)v. In dilute solution, ξ(n) can be written as

ξ(n) = nζ (26)

where ζ = 6πηa is the Stokes friction constant of a particle. ξ(n) in concentrated
suspensions has been discussed extensively in Stokesian hydrodynamics [15].
The evolution of the system is given by v which minimizes the Rayleighian R =

Φ+ Ȧ. By Eqs. (22) and (24) Ȧ is calculated as

Ȧ =

∫
dx
∂f

∂n
ṅ = −

∫
dx
∂f

∂n

∂nv

∂x
=

∫
dx

∂

∂x

(
∂f

∂n

)
nv. (27)

The minimization of R = Φ+ Ȧ with respect to v gives

v = −n
ξ

∂

∂x

(
∂f

∂n

)
· (28)

Equations (24) and (28) give the diffusion equation

∂n

∂t
=

∂

∂x

[
n2

ξ

∂

∂x

(
∂f

∂n

)]
=

∂

∂x

[
D
∂n

∂x

]
(29)

where D is given by

D =
n2

ξ

∂2f

∂n2
· (30)

In dilute solutions, Eqs. (23) and (26) can be used for f(n) and ξ(n), and Eq. (29)
gives the usual diffusion equation.

∂n

∂t
= D

∂2n

∂x2
, with D =

kBT

ζ
· (31)
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The above derivation of the diffusion equation shows an advantage of using the
variational principle. The slow variable in this case is a function n(x, t), and therefore
Φ has to be written as a function (or rather a functional) of ṅ(x, t). It is difficult to
write down such a functional, but by introducing a new variable v(x, t), it is easy to
write down Φ (see Eq. (25)). Notice that, in our present definition, v(x, t) is not the
slow variables since v(x, t) does not appear in the expression of the free energy A.
(The slow variables are the set of variables appearing in the free energy of the system.)
v(x, t) is an auxiliary variable introduced to write down the dissipation function.
Such flexibility in choosing variables or introducing new variables is the advantage

of the variational formulation. This is similar to Lagrangian mechanics [16] where, as
long as one can write down the kinetic energy as a function of certain set of variables,
one can eventually get correct set of equations of motion independently of the choice
of the variables.

5.2 Onsager principle as a tool for approximation

The variational principle has other advantages. It provides us a new way of getting
approximate solution of the problem [17]. This advantage has been demonstrated by
many examples [18–21]. The base of the approximation is as follows.
The Onsager principle states that, given the state x of the system at time t, the

state at the next time step t+Δt is given by x+Δx that minimizes the Rayleighian
R(x,Δx/Δt). Now instead of searching the minimum in the entire parameter space,
we search the minimum in a limited space where xi is expressed as a function of other
parameter set α = (α1, α2, ...αp) as xi(t) = xi(α(t)). The evolution of α(t) is then
determined by the Onsager principle.
For example, let us consider to solve the diffusion Eq. (31) in an infinite space

(−∞ < x <∞) under the initial condition n(x, 0) = δ(x). The exact solution of this
problem is

nexact(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
· (32)

Let us assume that the solution is approximated by the following piece-wise linear
function

n(x, t) =

{
1
a(t)

∣∣∣1− x
a(t)

∣∣∣ |x| < a(t)

0 |x| > a(t)
(33)

where a(t) is a parameter representing the width of the function n(x, t).
Equation (33) is exact at time t = 0 if we impose a(0) = 0. To determine the
evolution of a(t), we use the Onsager principle.
If a(t) changes at rate ȧ(t), n(x, t) changes as

ṅ =

{− ȧ
a2

(
1− 2x

a

)
0 < x < a(t)

0 a(t) < x.
(34)

Here only the region of x > 0 is considered since the solution is symmetric with
respect to x = 0. Now we calculate the dissipation function Φ and the free energy
change rate Ȧ associated with this change. The particle velocity v is obtained from
Eq. (24) and Eq. (34)

− ȧ

a2

(
1− 2x

a

)
= −∂nv

∂x
(35)

which gives

v =

{
ȧ
a
x 0 < x < a(t)
0 a(t) < x.

(36)
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Hence Φ and Ȧ are calculated straightforwardly by Eqs. (25) and (27). The result is:

Φ =
1

6
ζa2 and Ȧ = −2kBT

a
ȧ. (37)

The minimization of R = Φ+ Ȧ with respect to ȧ gives

aȧ = 6
kBT

ζ
= 6D (38)

which is solved as
a(t) =

√
12Dt. (39)

The peak position of the distribution function is

n(0, t) =
1√
12Dt

· (40)

This is close to the exact value nexact(0, t) = 1/
√
4πDt. The variance 〈x2〉 calculated

for the distribution function (33) is 〈x2〉 = 2Dt, which agrees with that of the exact
solution. Therefore the approximate solution obtained here is a fairly good solution.

6 Conclusion

In this paper, I reviewed the classical theory of Brownian motion, and showed that the
essential structure of the theory can be applied to general non-equilibrium systems
in which the state of the system is specified by a certain set of slow variables. The
kinetic equations for such a system have a general form, and the evolution law of
such a system can be stated in a form of variational principle. I have demonstrated
this for a simple problem of diffusion, but the method can be applied to many other
problems [17–21]. The variational principle will also gives us a new simulation scheme
for dynamical systems.

The author acknowledges the financial support of the Chinese Central Government in
the program of ’Thousand talents’ and the NSFC grant (No. 21434001, No. 11421110001,
No. 51561145002).
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