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Abstract. We examine the behaviour of single-particle orientational
time correlation functions in nematic liquid crystals. As well as the
expected dynamics involving oscillation in a mean-field potential, and
occasional jumps between orientations parallel and antiparallel to the
director, we provide the first simulation evidence of long-time tails char-
acteristic of coupling to director fluctuations.

1 Introduction

The nematic liquid crystal phase is characterized by long-ranged orientational order,
but short-ranged positional order. There is a preferred direction in space, the director
n, which breaks the rotational symmetry. Reorientational motion in nematics involves
end-over-end tumbling, and libration, in the mean field provided by the neighbouring
molecules. Accordingly, and bearing in mind that nematics are typically dense liq-
uids, one might think that this can be described by a rotational diffusion model in an
external, orientation-dependent, potential. However, things are not so simple. Firstly,
rotational motion may be intrinsically collective in nature, involving clusters of mole-
cules reorienting together. Secondly, although the director acts as a quasi-conserved
variable, it is subject to fluctuations over a range of wavelengths which typically
affect the single-particle motion. In this paper, we study some aspects of this mo-
tion by molecular simulation using a coarse-grained model, concentrating on this last
aspect.
As discussed in [1], the time evolution of single-particle orientations in liquid

crystals may be coupled to fluctuations of the nematic director. For the appropri-
ate component of the second-rank orientation tensor, a crude mode-coupling theory
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[2,3, and references therein] predicts a long-time tail of the form t−1/2. This is sup-
ported by a more sophisticated theoretical analysis along the lines of [4] and by
experiment [5].
In the following sections we establish the notation used to describe rotational

time correlation functions, and mention briefly the rotational diffusion model; then
we present the simulation model and methods, followed by our results and some
conclusions.

2 Theory

In this paper we consider axially symmetric molecules, for which the unit orientation
vectors are described in terms of Cartesian components or polar angles:

u = (uX , uY , uZ) = (sin θ cosφ, sin θ sinφ, cos θ).

We adopt a coordinate system in which the nematic director n lies along the Z axis.
The molecular orientations are used to calculate spherical harmonic functions Y �m(ut),
where t is a time argument, and hence the time correlation functions of interest in
the nematic phase. We use the Condon and Shortley phase convention, as described
in [6]

Y �m(θ, φ) = (−)m
√
2�+ 1

4π

√
(�−m)!
(�+m)!

P �m(cos θ) exp(imφ), 0 ≤ m ≤ �, (1)

where P �m(cos θ) are associated Legendre polynomials, and for −� ≤ m < 0 use
Y �−m(θ, φ) = (−)mY �m(θ, φ)∗ . (2)

Hence
Y �−m(θ0, φ0)Y

�
m(θt, φt) ∝ P �m(cos θ0)P �m(cos θt) exp

[
im(φt − φ0)

]
(3)

and averaging eliminates the imaginary part, giving the single-particle orientational
correlation functions of interest to us

c�m(t) ∝
〈
Y �−m(θ0, φ0)Y

�
m(θt, φt)

〉
(4a)

∝ 〈P �m(cos θ0)P �m(cos θt) cosm(φt − φ0)〉 0 ≤ m ≤ � . (4b)

The proportionality constant is chosen such that c�m(0) = 1. In an isotropic liquid, all
the rank-� functions c�m(t) with 0 ≤ m ≤ � are identical. In the rotational diffusion
approximation, in an isotropic liquid, we expect the functions for different � to be
related by

c�(t) = exp
[−�(�+ 1)Drt], (5)

where Dr is the rotational diffusion coefficient, given by

D−1r = �(�+ 1)
∫ ∞
0

dt c�(t) ∀� . (6)

In this approximation, it is also possible to relate Dr to the normalized correlation
function of angular velocities ω

Dr =
kBT

I

∫ ∞
0

dt cω(t) =
kBT

I

∫ ∞
0

dt
〈ω0 · ωt〉
〈|ω|2〉 (7)
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where T is the temperature, kB Boltzmann’s constant, and I the moment of inertia.
More sophisticated models of rotational motion exist [7,8] but will not be discussed
here.
In the nematic phase, however, the c�m(t) functions with the same � but different

m are in general different. The combination of ±m indices in Eq. (4a) guarantees
invariance with respect to rotation about the Z-axis. The c�0(t) functions describe
end-over-end rotation of the molecule in the orienting mean field provided by the
surrounding molecules, which favour alignment along the director. The higher values
of m include contributions from reorientation about the director.

3 Simulation details

We use the interaction potential originally suggested by Gay and Berne [9], a coarse-
grained single-site potential representing the interaction energies between two elon-
gated (or disk-shaped) molecules. It can be regarded as a shifted, anisotropic Lennard-
Jones potential, i.e. it depends on the relative orientation of the particles as well as
their separation. For identical uniaxial particles it can be written as [10,11]

UGB(ui,uj ,Rij) = 4ε(ui,uj , rij)
[
�(ui,uj ,Rij)

−12 − �(ui,uj ,Rij)−6
]
, (8)

where

�(ui,uj ,Rij) =
Rij − σ(ui,uj , rij) + σ0

σ0
· (9)

As before, ui and uj are unit vectors along the principal axes of the two particles i and
j, whileRij = Ri−Rj is the vector connecting their centres of mass, Rij = |Rij |, and
rij = Rij/Rij . σ0 is a parameter representing the width of the particle. σ(ui,uj , rij)
is the orientation-dependent range parameter

σ(ui,uj , rij) = σ0

[
1− χ
2

(
(rij · ui + rij · uj)2
1 + χui · uj +

(rij · ui − rij · uj)2
1− χui · uj

)]−1/2
· (10)

Here χ is given by

χ =
κ2 − 1
κ2 + 1

, (11)

where κ is the length-to-width ratio of the particle. The strength anisotropy function
ε(ui,uj , rij) used in Eq. (8) is given by

ε(ui,uj , rij) = ε0 ε
ν
1(ui,uj) ε

μ
2 (ui,uj , rij) . (12)

ε0 is the well depth parameter determining the overall strength of the potential, while
ν and μ are two adjustable exponents which allow considerable flexibility in defining
a family of Gay–Berne potentials. ε1 and ε2 are given by

ε1(ui,uj) =
[
1− χ2(ui · uj)2)

]−1/2
, (13)

ε2(ui,uj , rij) = 1− χ
′

2

[
(rij · ui + rij · uj)2
1 + χ′ui · uj +

(rij · ui − rij · uj)2
1− χ′ui · uj

]
· (14)

Here

χ′ =
κ′1/μ − 1
κ′1/μ + 1

(15)
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Table 1. Simulation details. For each system GB(κ, κ′, μ, ν) with reduced moment of inertia
I = 0.5, at density ρ and target temperature T , with the indicated system size N , we
report: the average temperature 〈T 〉; nematic order parameter 〈S〉; and the root-mean-
square angular deviation θrms (in radians) of the director from its average, over the whole
production run of 106 steps. Numbers in parentheses represent estimated errors in the last
reported digit. Simulation units are defined in the text.

system GB(3,5,2,1), ρ = 0.32, T = 0.90 GB(3,5,1,3), ρ = 0.30, T = 3.40

N 8000 64 000 512 000 8000 64 000 512 000

L 29.240 58.480 116.960 29.876 59.752 119.504

〈T 〉 0.9051(2) 0.8992(1) 0.9000(1) 3.394(1) 3.3968(3) 3.4007(1)
〈S〉 0.667(2) 0.662(1) 0.6590(4) 0.616(1) 0.607(1) 0.6018(4)

θrms 0.06 0.03 0.02 0.3 0.1 0.02

where κ′ = εS/εE is the ratio of well depths for the side-to-side configuration, εS, and
the end-to-end configuration, εE, of two molecules. Different versions of the potential
are identified by the GB(κ, κ′, μ, ν) notation of Bates and Luckhurst [12]. As in our
previous work [13,14] we have simulated GB(3,5,2,1), the original suggestion of Gay
and Berne [9], for which the phase diagram has been well studied [15], and GB(3,5,1,3),
proposed by Berardi et al. [10]. For each system we chose a single state point in the
nematic phase (see Table 1). We used the simulation program gbmoldd [16] which
employs a cut-and-shifted form of the potential

UGB(ui,uj ,Rij)− UGB(ui,uj , Rcrij) (16)

with spherical cutoff distance Rc = 5σ0. We adopt units in which σ0 = 1, ε0 = 1,
and the molecular mass m0 = 1. This leads to a basic unit of time τ0 = σ0

√
m0/ε0.

All results reported here are referred to these units. The molecules were treated as
linear rotors, with no rotation about the u axis, and a single moment of inertia
I corresponding to rotation about any axis perpendicular to u. Most results were
obtained using I = 0.5m0σ

2
0 , corresponding to uniform mass distribution within the

ellipsoidal particle. All runs were carried out in the constant-NV E microcanonical
ensemble with a time step δt = 0.002. Consequently, in all reported results, one time
unit corresponds to 500 time steps. All production runs were of length 106 steps, i.e.
2000 units of time. In order to study system size effects, we used “small”, N = 8000,
“medium”, N = 64 000, and “large”, N = 512 000 systems, chosen to make the linear
dimensions of the periodic simulation box in the ratio 1:2:4. Simulation details are
summarized in Table 1. A few comparison runs were conducted with an enhanced
moment of inertia, I = 2.5m0σ

2
0 , for N = 64 000, using the same other parameters as

above.
In a nematic phase we define an average order tensor Q as

Qαβ =
1

N

N∑
i=1

(
3

2
uiαuiβ − 1

2
δαβ

)
· (17)

Here δαβ is the Kronecker delta, and we define Cartesian components α, β = x, y, z in
the frame of the simulation box. The largest eigenvalue of Q is the order parameter S
and its corresponding normalized eigenvector represents the director n. This is used
to define the Z-direction in the Cartesian coordinate system described in Sect. 2; the
X and Y directions are defined perpendicular to Z and to each other. One technical
issue concerns director drift. Ideally, the XY Z system would remain fixed throughout
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Fig. 1. Angular velocity correlation functions for the systems under study, for N = 64 000.
(These results are almost independent of system size.) Solid (black) lines correspond to
I = 0.5, dashed (red) lines to I = 2.5. The insets show the same functions plotted against
t/
√
I to illustrate the initial quadratic decay, which is determined by the mean-squared

torque. Estimated errors are comparable with the line width.

the run; in practice this is not the case, and the director tends to reorient very slowly.
It is possible to introduce a set of Lagrangian constraints to fix the director [17].
Here, we prefer to leave the equations of motion unmodified, and allow Z to follow
small variations in the director, while changes in X and Y are kept to the minimum
necessary to ensure orthogonality with Z. This approach is justifiable for the medium
and large systems, for which the root-mean-square variation of the director, even
during the course of the very long runs undertaken here, amounts to no more than a
few degrees (see Table 1). However for the N = 8000, specifically in the GB(3,5,1,3)
system, the director drift is larger, and must be borne in mind when interpreting the
results.

4 Results

In Fig. 1 we show the normalized angular velocity correlation function for the two
systems of interest. This function decays rapidly due to the strong orientational caging
in the nematic phase. The short time behaviour is given by

〈ω0 · ωt〉
〈|ω|2〉 = 1−

1

2

〈|ω̇|2〉
〈|ω|2〉 t

2 +O(t4) = 1− 1
4

〈|τ |2〉
IkBT

t2 +O(t4)

where 〈|τ |2〉 is the mean-squared torque, and we use equipartition of energy to set
〈|ω|2〉 = 2kBT/I for two degrees of rotational freedom. Accordingly, plots of the
correlation function against t/

√
I should be superimposable at short times, and this
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Fig. 2. Orientational correlation functions c�0(t) for end-over-end rotation, plotted on a log-
linear scale, for N = 64 000. (These results are almost independent of system size.) Solid
(black) lines: � = 1; long-dashed (red) lines: � = 2; short-dashed (green) lines: � = 3; dot-
dashed (blue) lines: � = 4. We show results for both I = 0.5 (faster-decaying curves) and
I = 2.5 (slower-decaying curves). The insets show the same functions plotted on linear scales
at short times. The I = 2.5 curves for even � are omitted in the main graphs for clarity (they
approach the same constant values as I = 0.5 on this time scale). Estimated errors are
comparable with the line width.

is illustrated in Fig. 1. However, even on this plot, functions corresponding to the
different moments of inertia diverge quite quickly from one another; the negative
minimum and long-time approach to zero for I = 2.5 occur on a timescale roughly
3.5× that of the I = 0.5 system, in both cases.
In Fig. 2 we show plots of the orientational correlation functions c�0(t) correspond-

ing to end-over-end rotation. At short times, all the functions decay from their initial
values, with the higher-ranked functions varying most quickly. The curves, however,
are not particularly well fitted by exponential functions of the time, and do not su-
perimpose well if the time is scaled according to t → �(� + 1)t, and so a simple
rotational diffusion picture is not appropriate. Instead, the dominant motion is likely
to be libration inside the mean-field orientational potential provided by the surround-
ing nematic. The even-� functions quite rapidly equilibrate to the non-zero long-time
values dictated by the nematic ordering:

lim
t→∞ c

�
0(t) =

〈
P �(cos θ)

〉2
〈
P �(cos θ)2

〉 =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S22
1
5 +

2
7S2 +

18
35S4

� = 2

S24
1
9 +

100
693S2 +

162
1001S4 +

20
99S6 +

490
1287S8

� = 4

where S� = 〈P �(cos θ)〉. The odd-� functions, on the other hand, decay slowly,
and exponentially, towards zero. This decay is essentially independent of �, and is
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Fig. 3. Orientational correlation functions c�m(t) plotted on a log-linear scale, forN = 64 000.
Solid (black) lines: c20(t); long-dashed (red) lines: c

2
1(t); short-dashed (green) lines: c

2
2(t).

Estimated errors are comparable with the line width. Faster-decaying curves correspond to
I = 0.5, slower-decaying ones to I = 2.5.

characterized by a time tjump between end-over-end jumps which invert the molec-
ular orientation u → −u. This time is strongly influenced by the free energy bar-
rier occurring when the molecular orientation is perpendicular to the director. For
the GB(3,5,2,1) system a least-squares fit gives tjump = 216 ± 1 (I = 0.5) and
tjump = 271 ± 1 (I = 2.5); for the GB(3,5,1,3) system, the jumps are much more
frequent: tjump = 30±0.5 (I = 0.5) and tjump = 41.5±0.5 (I = 2.5). The GB(3,5,1,3)
system has a somewhat smaller nematic order parameter, which is consistent with
these observations. This type of motion may be associated with dielectric relaxation
in nematics [18] and it is possible to relate the activation barrier for jumping to the
orientational distribution and hence to the order parameter. However, as pointed out
by de Gennes [19], the reorientation may not be strictly a single-molecule process,
and so we postpone further investigation of this for later.
Now, to set the scene for what follows, we compare in Fig. 3 the different corre-

lation functions for � = 2. The essential feature is that both c21(t) and c
2
2(t) decay to

zero as t → ∞ (in contrast to c20(t)) but in qualitatively different ways. The decay
of c22(t) is rapid, and approximately exponential. In contrast, c

2
1(t) exhibits a slower

decay than exponential, and we turn to this in detail next. Although we do not show
it, this behaviour is shared by c41(t), and we expect all even-� functions with m = 1
to couple in a similar way to director fluctuations at all wave-numbers, producing
similar algebraic long-time tails. Mode-coupling theory [2–4] predicts a long-time tail
of the form t−1/2. To see this in more detail, these functions are plotted in Fig. 4
for the two systems of interest on log–log scales. In this case, a study of system size
dependence is illuminating. The plots provide strong evidence for a limiting algebraic
long-time tail, but this is moderated by an exponential decay which becomes more im-
portant for smaller system sizes. This would be expected if the single particle motion
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Fig. 4. Orientational correlation functions c21(t) plotted on a log-log scale, for the two
systems of interest with I = 0.5. We show results for different system sizes: solid (black) lines:
N = 512 000; long-dashed (red) lines: N = 64 000; short-dashed (green) lines: N = 8000.
Estimated statistical uncertainties are indicated by error bars on selected points. In the insets
we plot the same data on log-linear scales to investigate the exponential decay at long times.
Also shown as guides to the eye are: dot-dashed (blue) lines: the algebraic decay ∝ t−1/2;
double-dot-dashed (magenta) lines: the expected finite-size cutoff form, Eq. (18), for each
system size, with a single parameter λ ≈ 0.2 for GB(3,5,2,1) and λ ≈ 0.6 for GB(3,5,1,3).
The vertical position of these guide lines is arbitrary: we have slightly offset them from the
data for clarity.

couples to director fluctuations of wave-number k, whose timescales vary as
exp(−λk2t), where λ is a transport coefficient related to orientational elastic con-
stants and Leslie coefficients. Such behaviour is exactly what is predicted by standard
nematodynamics [20–24], and we have explicitly verified it by molecular simulation
[13,14]. The mode-coupling theory relies on an integration over all such modes. In a
finite-size system, there is a lower limit kmin = 2π/L imposed by the box length. Con-
sequently, we anticipate that the t−1/2 tail will be cut off by a decaying exponential
giving an overall form

c21(t) ∝ t−1/2 exp(−λk2mint) . (18)

Although the data at long times is quite noisy, especially for the N = 8000 systems,
log–linear plots (see Fig. 4 insets) suggest that there is indeed an exponential cutoff.
Because of the noise, and because of the director drift forN = 8000, we do not attempt
to extract the parameter λ directly from our results. Instead, we have drawn guide
lines in Fig. 4 corresponding to Eq. (18) with parameters λ ≈ 0.2 for GB(3,5,2,1) and
λ ≈ 0.6 for GB(3,5,1,3). Both these values are extremely close to the values reported
for the hydrodynamic decay of splay and twist deformations at these state points [13]:
(λsplay, λtwist) = (0.15, 0.17) for GB(3,5,2,1) and (0.64, 0.66) for GB(3,5,1,3). These
modes are the slowest-varying ones; the bend mode decays by a factor 3–9 faster, and
is also oscillatory. It is not possible to make a closer quantitative comparison, since the
simple mode-coupling theory assumes isotropy in the elastic constants and transport
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coefficients. We note that, if the t−1/2 tail persists in the limit of infinite system size,
the integral of Eq. (6) which usually defines an inverse rotational diffusion coefficient
would diverge, and so Dr = 0 for c

2
1(t).

5 Conclusions

In this work we have examined several aspects of single-particle reorientation in
nematic liquid crystals. The angular velocity correlation function typically decays
quickly, due to the strong caging effects of the neighbouring molecules. The orienta-
tional correlation functions characterizing end-over-end rotation show the expected
behaviour: even-rank functions approach, quite quickly, a non-zero limiting value re-
flecting the non-vanishing orientational order parameters in this phase. On the other
hand, odd-ranked functions decay very slowly to zero, due to infrequent rotations
between the stable configurations parallel and antiparallel to the director. Finally,
we have shown for the first time, by simulation, evidence in support of a long-time
t−1/2 tail in the function c21(t), due to coupling with hydrodynamic director fluctua-
tion modes. The situation is complicated by the long-time exponential cutoff which
is expected to result from finite size effects; however, our studies of different system
sizes are consistent with this effect, and with the magnitudes of the relevant trans-
port coefficients, as determined in a previous study [13]. Assuming that the long-time
tail persists in the limit of infinite system size, it would be impossible to define a
rotational diffusion coefficient from the c21(t) orientational correlations. It would be
interesting to take this study further, and obtain a more precise correspondence be-
tween the collective and single-particle dynamics. Before doing so, however, it will
be necessary to re-examine the underpinning mode-coupling theory [2–4], so as to
relax the usual assumptions of a single elastic constant, and orientationally averaged
transport coefficients.

Computer facilities were provided by Warwick University Centre for Scientific Computing.
Support from the Engineering and Physical Sciences Research Council is gratefully acknowl-
edged. We are grateful to Jaroslav Ilnytskyi for discussions regarding the gbmoldd program.
This paper is dedicated to Kurt Kremer on the occasion of his 60th birthday. May there

be many more years of inspiration in soft matter simulation ahead!
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