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Abstract. A number of rather unexpected behaviours in various sys-
tems are reviewed. Namely, it is shown that a macroscopic system hav-
ing chaotic dynamics may nevertheless display undamped harmonic
radial oscillations. Next, we show that small systems in an external
field may have spatially dependent kinetic temperatures in equilibrium.
Further, we can also show that the kinetic temperatures of different
particle species in the same region of space will in general not assume
the same values. Finally, we discuss the remarkable way in which the
zero’th law of thermodynamics can sometimes appear to be violated in
systems having long-range interactions.

1 Introduction

Since Alberto Robledo has often shown us unusual behaviour in statistical mechanics,
whether related to the edge of chaos, or anomalous statistics, it is surely fitting
to honour him by a discussion of anomalies in various systems which have come
to our notice. To do this, we shall consider situations neither far from equilibrium
nor involving dissipation. Rather, we shall look at ordinary Hamiltonian system, at
equilibrium or close to it, and see whether we find a worthy birthday present for
Alberto.
We shall look at three different systems. The first will simply be an arbitrary

N -particle system, in arbitrary dimension, including the “physical” three-dimensional
case. The only restriction on the system is that the interparticle interactions be homo-
geneous of degree −2. We shall additionally assume that, instead of being confined by
a box, as is usual in statistical mechanics, this system is confined by a harmonic
potential. In that case [1–3], we shall see that the system displays undamped, har-
monic radial oscillations. In other words, the radius of gyration of the system oscillates
in a purely harmonic manner. Thus this oscillation displays no noise. This is not the
result of some approximation, but an exact consequence of the Hamiltonian equations
of motion.
Why should this qualify as “strange”? As follows from the results presented in

[2,3], the oscillation is found to be adiabatic, defining entropy appropriately. Under
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these circumstances it can be shown that the temperature oscillates together with the
radius of gyration. Hence, if the amplitude of the radial oscillations does not diminish,
neither does that of the temperature oscillation. The system thus does not approach
thermodynamic equilibrium.
We might look for several “excuses” for such behaviour: perhaps the system is not

sufficiently chaotic? That is not generally the case. In three dimensions, it has been
shown numerically that the system is quite chaotic, having clearly positive Lyapunov
exponents. It is true that there exists a case in which the system is fully integrable:
if the system is one-dimensional and all the interactions between the particles are
identical (something we did not assume above) then the system does have the following
amazing feature, as shown by Calogero [4]: it is isochronous, in other words, starting
from any given microscopic configuration, after a given period, which is the same as
that of the confining harmonic oscillator potential, the same microscopic configuration
is recovered, that is, the orbit is periodic. In this case, therefore, it is not merely the
collective variable describing the radius of gyration of the system which oscillates over
a short period: it is the entire microscopic configuration which thus recurs periodically.
But in the general case we are discussing, this is most definitely not the case.

So what is happening? In fact, as we shall show, the system in question displays an
unusual symmetry, related to a kind of conformal invariance, which allows the radius
of gyration, as well as some other collective variables, to decouple completely from the
microscopic variables. So, whereas the latter may, and in fact generally do, display
irreversible behaviour, this remains unconnected to the behaviour of the radius of
gyration and a few other related collective variables. But, whereas the microscopic
variables are without influence on the collective ones, the reverse is not true: such
quantities as the temperature depend, via a scaling law, on the radius of gyration.
The consequences of such behaviour, for example, on thermodynamics, are up to

now still rather unclear. In any case, it appears to be some kind of counterexample to
the claim often made that a macroscopic system, started in any initial condition, will
eventually reach thermal equilibrium. This claim was made, for example, by Hänggi
and baptised as the −1’st law of thermodynamics [5].
Let us now consider an altogether different system: we assume that we have a

comparatively small system (we may think, say, of a system with N ∼ 100). The
peculiar effects which we shall be examining will be of order 1/N , so they will be of
no real interest for truly macroscopic systems.
Consider such a system at fixed energy, hence in the microcanonical ensemble.

Let us further assume the system to be subjected to an external field E acting on the
various kinds of particles present in the system according to their respective charges.
We then [6] claim that the kinetic temperature of these particles show unexpected
features: first, it displays a spatial gradient in thermal equilibrium. Under the normal
definition of temperature, this clearly should not be the case, since temperature is, by
definition, an equilibrium parameter. In other words, the very nature of equilibrium
is synonymous with the constancy of temperature. It will, most correctly, be objected
that the kinetic temperature is not the thermodynamic temperature in the micro-
canonical ensemble.1 This is, of course, correct. Yet this leads to another question:
how could we, in any way, say that there is no spatial gradient for thermodynamic
temperature? Whereas it is straightforward to define local kinetic temperature, it is
not obvious how to do the same for the microcanonical thermodynamic temperature.
An additional remarkable fact in this context is the following: not only is the

kinetic temperature spatially dependent, it also does not reach the same value between

1 In the canonical ensemble, it follows from the equipartition theorem that kinetic temper-
ature and thermodynamic temperature coincide. This remains true independently of system
size.
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different species having different charges, even at the same height. Thus, if we look
at the average kinetic energy of a highly charged particle at sufficient height, we find
that this will markedly differ from the average kinetic energy for a neutral, or less
charged particle, at the same height. This arises even though the two particle species
interact.
This clearly goes very much against the usual views: we ordinarily think – ever

since Boltzmann [7] gave us the insights embodied in his equation – that interactions
between particles of whatever nature will always eventually result in equilibration
of the various species’ kinetic energies, yielding thereby the unique concept of tem-
perature. That these arguments might actually fail in the presence of an external
field, such as the one provided by gravity, was argued in a highly interesting paper
by Loschmidt [9]. Unfortunately, his arguments were not fully cogent2, but the small
system results we obtain may, perhaps, be viewed as a small-scale realisation of his
claims.
Finally, to round off this tour of marvels (or, depending on your attitude, repellent

anomalies) in statistical mechanics, we review a well-known set of results involving
systems having long-range interactions and the zero’th law of thermodynamics. In
particular, an example is been given, in which, if a weak thermal contact is estab-
lished between two identical systems – same energy per particle, same Hamiltonian
with the same coupling constants – the composite system shows a non-trivial time
evolution. Since identical systems should, under any possible view, have the same tem-
perature, this tells us that a weak thermal contact between two systems having the
same temperature can nevertheless lead to changes in the values of the macroscopic
variables characteristic of the system.
Finally, we may ask what the point of the whole exercise is. Surely, it cannot

be to state that the laws of thermodynamics are wrong, or worthless. Indeed, if
one looks carefully at all these instances, none contradict flatly thermodynamics.
We did try, we admit, to get a perpetual motion machine of the second kind out
of some of these systems. As none of you will be surprised to hear, we failed in all
cases. So, at the very least, the Second Law remains untouched, recalling Eddington’s
remarks [8]: “If someone points out to you that your pet theory of the universe
is in disagreement with Maxwell’s equations, then so much the worse for Maxwell’s
equations. If it is found to be contradicted by observation, well, these experimentalists
do bungle things sometimes. But if your theory is found to be against the second law
of thermodynamics, I can give you no hope; there is nothing for it but to collapse in
deepest humiliation”.
Nevertheless, we believe some deeper understanding can be gleaned from concrete

examples in which we see the laws of thermodynamics play out, at least, in a way we
might not have expected. It broadens, perhaps, our horizons, and may make us less
prone to shout our opponents down with the argument that their claims “go against
the laws of thermodynamics”.

2 Undamped oscillations

We discuss now the system with undamped oscillations. The system under consider-
ation is characterised by the Hamiltonian

H(−→r ;−→p ) = 1
2

N∑

n=1

(
p2n +Ω

2r2n
)
+ V (−2) (−→r ) , (1a)

Ω ≡ Ω(N) = ωN−1/d. (1b)

2 in other words, wrong.
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Here the notation is as follows: the positive integer N denotes the number of particles;
the “coordinates” d-vector −→rn ≡ (xn1, ..., xnd) identifies the position in d-dimensional
space (with d a positive integer) of the n-th particle and depends on the time variable
t, −→rn ≡ −→rn(t) (but often this time dependence is suppressed); the notation −→r de-
notes the N × d-matrix with elements xnj where n = 1, ..., N and j = 1, ..., d; likewise
for the “momentum” N -vector −→pn ≡ (pn1, ..., pnd) ≡ −→pn(t) and the −→p (t); of course
p2n =

−→pn · −→pn ≡
∑d
j=1 p

2
nj and r

2
n =
−→rn · −→rn ≡

∑d
j=1 x

2
nj ; superimposed dots indicate

time-differentiations; ω is a positive constant (independent of N ), while the N -
dependence of Ω (see (1b)) is introduced to scale the size of the container so that
it entails an equilibrium configuration of the system the volume of which is propor-
tional to the number N of particles, as appropriate in order to eventually discuss the
thermodynamic limit N →∞; and we trust the rest of the notation to be self-evident.
The crucial limitation consists in considering only potentials V (−2)(−→r ) such that

V (−2)(λ−→r ) = λ−2V (−2)(−→r ) (2)

for all λ.
We now argue that such a system has undamped radial oscillations. To this end,

we introduce the following three quantities:

Q =

N∑

n=1

r2n =

N∑

n=1

d∑

j=1

x2nj , (3a)

D ≡ D (−→r ,−→p ) =
N∑

n=1

−→rn · −→pn . (3b)

H0 =
1

2

N∑

n=1

p2n + V
(−2) (−→r ) . (3c)

It is straightforward to verify that the Poisson brackets of Q, H0 and D, defined via
{piqj} = δij , close to a Lie algebra, as follows:

{H0,D} = 2H0, {H0, Q} = 2D, {Q,D} = −2Q. (4)

From this follows immediately that, if the dynamics is defined by the Hamiltonian
(1), which is given by a linear combination of H0 and Q, the three quantities defined
in (3) satisfy a closed set of equations, which are easily solved; the quantity Q then
displays harmonic oscillations. If the center of mass is at the origin, then Q is equal
to the radius of gyration, so that its oscillations correspond to radial compressional
oscillations.
Let us discuss the meaning of these results: it follows from the commutation

relations between Q, H0 and D, that the following quantity is conserved:

Ξ = QH0 − D
2

2
. (5)

If we therefore wish to do statistical mechanics for such a system, we should limit
ourselves to constant values of Ξ, in the same manner as is done in systems having
rotational invariance, for which we must specify the value of angular momentum.
But there is a problem with defining the “thermodynamic equilibrium state” as

the “energy surface” Σ defined by the energy E and the extra conservation law Ξ.
Indeed, to each point of Σ, there is a macroscopic orbit describing the variation of Q,
H0 and D due to the dynamics of H. This orbit remains inside Σ, so that Σ contains
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elements which have macroscopically different values for such macroscopic observables
as D, H0 and Q. This means that this “equilibrium state” cannot be viewed as the
description of a specific system, since macroscopic observables are not sharply peaked.
The way to escape this problem would be, of course, to specify, additionally to Ξ, the
values of Q and H0, for example. Doing this, however, leads to nonstationary states.
Thus, the system, as presented, does not approach thermodynamic equilibrium.

3 The kinetic temperature of small systems in an external field

Let us now discuss the problem of a small system of N particles, in an external field
E . The Hamiltonian is

H =

N∑

i=1

p2i
2m
+ V (−→x 1, . . . ,−→x N ) + qE

N∑

i=1

xi,1 (6)

with notation similar to that introduced in Section 2. The field is in the x direction
and the system is unbounded in the direction of positive x, whereas it is confined by
a hard wall at x = 0.
Let us first make an obvious remark on this system in the canonical ensemble:

due to the equipartition theorem, the kinetic temperature, that is, the time average
of the kinetic energy of any given particle, is equal to the thermodynamic tempera-
ture, which itself is necessarily constant throughout any system at equilibrium. As a
consequence, it follows that the kinetic energy of a particle conditioned on the particle
being at a given height x is independent of x.
Let us now consider this system in the microcanonical ensemble. There, the

equipartition theorem does not hold. Rather we have [12]

kBTM =
2

dN

〈
K−1
〉−1

(7)

where K stands for the total kinetic energy of the system, d is the dimensionality
of ambient space, and N is the number of particles. Here we assume that the micro-
canonical entropy is defined as the logarithm of the volume enclosed by the energy
surface. Other definitions are, of course, possible, leading to minor changes in this
formula.
Of course, whereas it is straightforward to define a local form of the kinetic tem-

perature, it seems impossible to do the same for the microcanonical temperature (7).
It thus becomes a legitimate question to ask whether the kinetic energy, with

its ordinary definition, is in fact independent of the height x. Both numerically and
analytically [6] one finds indeed that kinetic temperature generically decreases with
height, with a gradient of the order of 1/N . The intuitive justification of this effect,
already found in [9], is straightforward: for a single particle to reach a comparatively
high value of x, the remaining particles must have a lesser energy, leading to the fact
that the particle under consideration has itself a lesser average kinetic energy than if
no particle were present at that height.
To analyse this problem, we start from the conditional probability that a particle

has momentum −→p0 given that it is at height x0. This is given by

ρ(−→p0|x0) ∝ ΩN−1
(
E − qEx0 − p

2
0

2m

)
. (8)

Here ΩN−1 is the volume of the energy surface for N − 1 particles. The argument
of ΩN−1 reflects the fact that the remaining energy is in the observed particle. The
proportionality factor is independent of −→p0 and x0, and so does not matter.
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We thus have:

ln ρ(−→p0|x0) = lnΩN−1
(
E − qEx0 − p

2
0

2m

)
− lnΩN−1(E) +K

≈ K −
(
qEx0 + p

2
0

2m

)
∂

∂E
lnΩN (E) +

1

2

(
qEx0 + p

2
0

2m

)2
∂2

∂E2
lnΩN (E)

= K ′ − p20
2mkBTM

− 1

2CV kBT 2M

(
qEx0 + p

2
0

2m

)2

= K ′′ − p20
2mkBTM

(
1 +

qEx0
CV TM

)
− p40
8m2CV kBT 2M

. (9)

Note that in the third line we have discarded an additive constant depending only
on x0, since we want the

−→p 0 dependence of ρ(−→p0|x0) at fixed x0. Here TM is the
microcanonical temperature and CV is the heat capacity at constant volume of the
whole system, which is therefore proportional to the number of particles N . This
shows that the kinetic temperature TK(x0) as a function of x0 is given by

TK(x0) ≈ TM
(
1− qEx0
CV TM

)
. (10)

From this follow both the apparently paradoxical claims made in the Introduction.
Indeed, we see first that the kinetic temperature has a spatial variation. But we
also see that the actual value of the gradient depends on q. If we thus have two
different species with different charges, then at sufficient height, both species will
have markedly different kinetic temperatures. Under such circumstances, particles of
different species will not tend to have the same kinetic energy on the average, even
though they interact with each other. See reference [6] for the numerical study of a
model in which two such species of particles, of which one is charged and the other not,
coexist. The constancy of the kinetic temperature of the neutral species is confirmed,
as well as the kinetic temperature gradient for the charged species.

4 The zero’th law for long-range systems

Finally, we turn to the systems with long range interactions. The partition function
of a broad class of systems having long-range interactions can be expressed in the
form [13,14]

Z(β) =

∫
dm exp [−Nβf(β,m)] . (11)

The free energy φ(β) is then given by

φ(β) = min
m
f(β,m). (12)

From this follows, by the definition of the Legendre transform, that the canonical
entropy is given by

sc(ε) = min
β
max
m
[βf(β,m)− βε] . (13)
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On the other hand, the microcanonical partition function Ω(ε) is given by

Ω(ε) =
1

2πi

∫ i∞

−i∞
dβ Z(β)eNβε

=
1

2πi

∫
dm

∫ i∞

−i∞
dβ exp [−N (βf(β,m)− βε)] . (14)

Here ε = E/N is the energy per particle.
Considering that a minimum of an analytic function along the real axis corre-

sponds to a maximum along the imaginary axis, we are led [14] to the following
expresion for the microcanonical entropy

sm(ε) = min
m
max
β
[βf(β,m)− βε] . (15)

The concavity of sc(ε) follows from the fact that it is given by the minimum over β of
a set of functions linear in ε, see (13). On the other hand, the microcanonical entropy
is not necessarily concave, since it is defined, by (15), as a minimum (over m) of
functions that, by the same token, are convex in ε. But this does not allow to draw any
conclusions concerning sm(ε). Indeed, the non-concavity of entropy is equivalent to
the well-known phenomenon of negative specific heat, which was reviewed by Lynden-
Bell in [15] and discussed numerically for metal clusters, for example, in [16].
It is also readily follows from (13, 15) that sm(ε) ≤ sc(ε), which is compatible

with the intuition that sm(ε) corresponds to the entropy of a restricted system, so
that lifting the restriction of fixed energy may lead to a spontaneous evolution of the
system.
Let us now consider two identical copies of a system at a value ε0 at which sm(ε)

is not concave. Let us allow the two systems to exchange energy, maintaining the
total energy of the composite system constant all the while. The composite system
can thus be described by the energies per particle of both subsystems, given by ε0 − δ
and ε0 + δ, as follows from the fact that the total system remains at constant total
energy. The entropy of the compound system is then given by

s(comp)m (δ) =
1

2

[
sm(ε0 + δ) + sm(ε0 − δ)

]
. (16)

If ε0 is such that the entropy sm(ε) is non-concave (convex) around ε = ε0, it follows

that s
(comp)
m (δ) has a minimum at δ = 0, so that the system spontaneously evolves to

a state in which the two subsystems differ.
In references [10,11] this effect was confirmed in the system

H =

N∑

i=1

p2i
2
− J

2N

N∑

i,j=1

cos (θi − θj)−K
N∑

i=1

cos(θi+1 − θi), (17)

which represents an XY -model in one dimension, with a ferromagnetic long-range
interaction and a nearest-neighbour interaction. For this model the function f(β,m)
exists and can be evaluated [17] explicitly3. The model has a tricritical point for some
K < 0, and close to it, we have a region with negative specific heat.

3 Well, more or less: it is defined as the largest eigenvalue of a linear integral operator with
a kernel given by a modified Bessel function.
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Fig. 1. Temporal evolution of energy density (top) and magnetization (bottom) of system 1

(black) and system 2 (red), using the momentum couplingH
(p)
int. The curves were obtained by

averaging over a sliding time window. The values of parameters are J = 1,K1 = −0.178, N =
5000, η = 0.1, Nint = 10, ε0 = 0.55597. Note how the 2 systems interchange roles due to finite
size effects.

Let us now do what is described above: we take two copies of the system, with
the same values of J , K, N and E, and couple them weakly in such a way as to allow
for energy exchange between the two systems. We use the interaction

H
(p)
int = η

Nint∑

i=1

p1i p
2
i , (18)

where pγi is the momentum of rotor i of system γ, η > 0 is the inter-system coupling
constant and Nint 	 N is the number of rotors that interact in both systems. The
result of the corresponding molecular dynamics simulations (performed with a sym-
plectic algorithm) is shown in Figure 1. We see that the system does indeed evolve
spontaneously out of its initial state.

5 Conclusions

As we have seen, the apparently outlandish claims made in the Introduction can
readily be sustained. They do not rely either on high-level mathematics nor do they
arise from the consideration of highly special, pathological systems. Rather, once the
analysis is understood, the reader’s reaction may well be “Of course, if that was what
you meant, it is not remarkable at all. In fact, after understanding it, I find it quite
trivial”.
That last statement is, almost by definition, correct. Nevertheless, the examples

described above may serve as a set of cautionary situations in which the possibility
of unexpected effects arises. Further, such situations may be useful if one wishes to
prove with mathematical rigor, for example, that any system tends to thermodynamic
equilibrium, or that identical systems remain in equilibrium when put in weak thermal
contact. The proof must then take care to exclude in some way, examples as those
described here.
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