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Abstract. Insulating particles or drops suspended in carrier liquids
may start to rotate with a constant frequency when subjected to a
uniform DC electric field. This is known as the Quincke rotation
electro-hydrodynamic instability. A single isolated rotating particle
exhibit no translational motion at low Reynolds number, however
interacting rotating particles may move relative to one another. Here
we present a simple system consisting of two interacting and de-
formable Quincke rotating particle covered drops, i.e. deformable
Pickering drops. The drops attract one another and spontaneously
form a counter-rotating pair that exhibits electro-hydrodynamic driven
propulsion at low Reynolds number flow.

1 Introduction

Electric fields can induce steady-state hydrodynamic circulation flows in liquids [1,2].
A particular form of such electro-hydrodynamic flow is the Quincke instability, which
appears when insulating particles or drops suspended in a carrier liquid are subject
to a sufficiently high uniform DC electric field [3,4]. The Quincke rotation instability
has these characteristics: The rotation axis is always normal to the applied electric
field, the frequency of rotation and the critical electric field is independent of the size
of the bead, and the rotation frequency increases with the applied electric field [3,4].
The onset of Quincke rotation in suspensions can lead to several remarkable effects
such as effective viscosity reduction [5,6] and increased effective electric conductivity
of suspensions [7]. Quincke rotating colloidal particles have been observed to “roll”
with a constant velocity on surfaces in liquid crystals and on bubbles [8]. A system
of many such interacting self-propelled Quincke rotors has served as a model system
for collective swarming motion and active matter [9].
It has also been demonstrated that emulsion drops can undergo Quincke rota-

tion [10–12]. Here we investigate the interaction of two Quincke rotating particle cov-
ered drops (i.e. Pickering drops) [13,14] suspended in a bulk liquid, and we find that
two such deformable rotors can spontaneously self-organize into a counter-rotating
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pair, and be propelled as the result of their mutual interacting hydrodynamic flow
fields. This observation is in agreement with recent models for two-rotor systems
of low-Reynolds number swimmers [15,16], and numerical simulations of interacting
Quincke rotating particles [17].

2 Electro-hydrodynamic rotation of a single Pickering drop

2.1 Quincke rotation: Background

Quincke rotation of a particle suspended in a liquid is driven by the electric forces
acting on the free charges that build up at the surface of a particle [4–6,17]. The
instability only occurs if the Maxwell-Wagner electric charge relaxation time of the
particle is longer than that of the surrounding fluid, in which case the effective dipole
moment of the particle is anti-parallel to the applied electric field. The electric field
induces a torque on this dipole, which can create a rotational instability of the particle.
Such a steady state rotation of a spherical particle occurs above a critical electric field
strength:

EQ =

√
2μσ� (R+ 2)

2

3ε�εp (1−RS) (1)

where μ is the viscosity of the suspending liquid, and R =
σp
σ�
, S = ε�

εp
are dimension-

less ratios of electric conductivities, and dielectric constants [4–6,17] . The subscript
“p” refers to the particle, and “�” to the suspending liquid. The angular frequency of
the Quincke rotation is:

ω =
1

τMW

√
E2

E2Q
− 1 (2)

where τMW =
εp+2ε�
σp+2σ�

is the effective Maxwell-Wagner charge relaxation time of the

particle in the liquid [4–6,17]. Notice that Eqs. (1) and (2) are independent of the
size of the particle.

2.2 Experiments on Quincke rotation of a single particle laden drop

Our experimental system consists of silicone oil drops suspended in castor oil, and
the drops are covered with polyethylene (PE) beads. The electric conductivity of
silicone oil is much lower than that of castor oil, and a silicone drop in castor oil
may thus Quincke rotate [10,11]. The PE particles have an even lower conductivity
than the silicone oil, which will further enhance the charge build-up. We will show
in the following that this Pickering drop also exhibit Quincke rotation, however the
dynamics can be more complex than that of a solid particle due the deformability of
the Pickering particle layer.
The preparation of the Pickering emulsion drops was similar to that of refer-

ence [19–21]: Silicone oil (Dow Corning 200/50 cSt, electric conductivity σsilc ∼
0.3 pS/m, relative permittivity εsilc = 2.8, density ρsilc = 0.961 g/cm

3, viscosity
ηsilc = 50 cSt) was mixed with 50 μm polyethylene (PE) particles (Cospheric LLC
with electric conductivity σPE < 10

−20 S/m, relative permittivity εPE ∼ 2.1, den-
sity ρPE = 1.0 g/cm

3). The suspension of PE particles in silicone oil was stirred and
ultra-sonicated to avoid particle aggregation. Drops of this suspension were injected
by a micropipette into a cell (15× 15× 30mm) containing Castor oil (Sigma-Aldrich
83912, density of ρcast = 0.961 g/cm

3, electric conductivity σcast ∼ 56 pS/m, relative
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Fig. 1. A sketch illustrating Quincke rotation of a single Pickering emulsion drop covered
with electrically insulating particles. (a) The free charge build-up at the surface of the
drop results in a dipole moment P that is oriented anti-parallel to the direction of the
applied electric field. (b) The electric field exerts a torque on the dipole, and above a critical
field strength EQ, the drop starts to rotate at constant frequency. The arrows indicate the
direction of the rotation and liquid flow.

permittivity εcast = 4.7, viscosity ηcast ∼ 1000 cSt). The vertical side walls of the cell
consist of two transparent indium tin oxide (ITO) electrodes, in between regular non-
conducting glass side-walls. Videos and pictures were recorded using a commercial
digital camera mounted on a stereoscope, and the observation view was perpendicu-
lar to the applied DC electric field. The PE particles bind irreversibly to the liquid
interface due to capillary forces [14,18].
The concentration of PE particles was tuned such that a drop was fully covered

when all the beads were at the surface. The experimental critical field for steady
Quincke rotation of the Pickering drops was EQ ≈ 340V/mm, and the frequency
of rotation increases with increasing field strength, in agreement with Eq. (2). Two
different modes of rotation is observed, at low fields the Pickering drops rotate like a
solid shell (Fig. 2a), at higher fields the particle monolayer goes from a jammed state
to a fluid state, with “tank-treading” like dynamics (Fig 2b), reminiscent of tank-
treading in fluid bilayer vesicles subject to shear flows [22]. Similar tank-treading
like dynamics has also been computed in simulations of particle-laden drops [22]. We
observe that larger drops are more prone to electric field induced stretching, resulting
in un-jamming of the particle layer and tank-treading like dynamics. For pure drops

the electric stretching deformation is proportional to aε�E
2

γ
, where a is the radius

of the drop, and γ the surface tension [11], which is a result of balance of electric
and capillary forces. A similar electro-stretching behavior is expected for Pickering
drops studied here, explaining why larger drops exhibit more easily tank-treading.
Fig. 2c shows that rotation of solid-shell rotating Pickering drops (Fig. 2a) closely
follow the Quincke rotation for solid spherical particles given by Eq. (2). This is not
surprising, since a jammed Pickering drop effectively is a solid particle. From the slope
in Fig. 2c we obtain an effective Maxwell time τMW,exp ≈ 1 s, which is close to the
theoretical value τMW =

εp+2ε�
σp+2σ�

≈ 0.9 s. To further check our experimental system,
we also looked at Quincke rotation of single PE beads of size 100μm (smallest size for
which rotation frequency can be measured by our microscopy). The critical field was
found to be EQ ≈ 400V/mm, in agreement with the theoretical value given by
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Fig. 2. Pickering silicone drops covered with PE particles (50µm), and suspended in castor
oil. The system was subject to a uniform DC electric field. (a) Quincke rotation of 0.9mm
diameter drops. The electric field strength is initially 350V/mm (slightly above the critical
field needed for Quincke rotation), and was changed to 550V/mm. The particle layer on
the surface of the drop remained jammed (solid layer). The bright particles are differently
colored PE particles (50µm) added to trace the surface flow. (b) Quincke rotation of 2.0mm
diameter drops. The electric field strength was initially 350V/mm. Upon increasing the field
strength to 550V/mm, the particle layer on the surface of the drop went from solid to fluid,
resulting in tank treading like dynamics. (c) Rotation frequency (squared) as a function of
field strength (squared) for the solid Pickering drop in (a) (triangles) and a single PE particle
of diameter 100µm (squares). Both follow the Quincke rotation frequency formula given by
Eq. (2). The triangles drawn on the Pickering drops in figure (a) and (b) indicate relative
positions of tracer particles (PE particles of same size, but different color). (circles) For
larger Pickering drops tank-treading occurs even at low fields, and the frequency deviates
from the Quincke formula for solid spheres.

Eq. (1). The rotation frequency (squared) was plotted as a function of the square
of the applied field (Fig. 2c), and again using the equation for Quincke rotation
we obtain an effective Maxwell time τMW,exp = 0.94 s, which also is close to the
theoretical value. When the Pickering drop layer goes from solid to liquid, we see
deviations from the Quincke rotation formula, leading to more complex dynamics
that will be reported in [24].
If the drop is not fully covered, Taylor electrohydrodynamic circulation flows in

and around the drop would induce the formation of particle ribbons on the drop
surface by convective deposition in the flow field [19–21]. Such flows are not observed
around the fully armored drops studied here since the particle layer absorbs the
tangential electrostatic stresses.

3 Hydrodynamic propulsion of two interacting Quincke rotors

3.1 Self-propulsion of counter-rotating particles: Theory

Symmetry arguments imply that a single rotating bead cannot swim at low-Reynolds
number (unless it interacts with a boundary). However, the combination of two ro-
tors breaks time-invariance symmetry, i.e. reversing the direction of rotation results
in a different configuration. Two Quincke rotating spheres interact both via electric
dipole-dipole interactions, and hydrodynamic interactions. The general equations de-
scribing the motion of two Quincke rotating beads was developed in reference [17],
where the authors also found an approximate series expansion solution to the steady
state dynamics of co-rotating beads. Here we do a similar series expansion for two
counter-rotating beads. The position of sphere 1 and 2 is given by the vectors R1
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Fig. 3. Two possible relative positions of a pair of Quincke counter-rotating solid spherical
particles. (a) The line joining the particles is parallel with the electric field: The direction
of hydrodynamic propulsion is perpendicular to the applied electric field. The dipole-dipole
interaction is attractive. (b) The line joining particles are perpendicular to the direction
of the applied electric field: Hydrodynamic propulsion is in the direction of the field. This
situation is unstable since the dipole-dipole force between the two particles is repulsive in
this case.

and R2 respectively. The unit vector connecting the beads is: R̂ = (R2 − R1)/R.
The radius of the beads is a. The direction of the dipole of each Quincke rotating
sphere is not parallel with the electric field, and the resulting dipole-dipole interac-
tion might be attractive or repulsive depending on the position of the beads, and
the direction of these dipoles. The potential energy of a dipole-dipole interaction

is: V = 1
4πε�R3

[P 1 ·P 2 − 3(P 1 · R̂)(P 2 · R̂)]. The direction of the dipoles is deter-
mined by the rotation direction of the beads. For two counter-rotating beads, the
dipole component perpendicular to the field will be of opposite sign, as indicated in

Fig. 3. Consider the dipole-dipole energy for the two simples cases when R̂ is ei-
ther parallel with the electric field (Fig. 3a) or perpendicular to it (Fig. 3b). The
unit vectors in the coordinate systems are x̂, ŷ, and ẑ (according to Fig. 3). Con-
sider a case of an applied electric field E0 = E0ẑ, and the particle rotation angu-

lar velocity: Ω1 = Ω1x̂. When R̂ is either parallel or perpendicular to the applied
field, symmetry then implies that: P 1 · ẑ = P 2 · ẑ and P 1 · ŷ = −P 2 · ŷ. For the
case R̂ is parallel to E0, the interaction potential is therefore always attractive:

V = − 1
4πε�R3

[(P 1 · ŷ)2 + 2(P 1 · ẑ)2]. For the case R̂ is perpendicular to E0 the po-
tential is always repulsive: V = 1

4πε�R3
[2(P 1 · ŷ)2 + (P 1 · ẑ)2]. For other relative po-

sitions the dipole-dipole interaction may be either repulsive or attractive, depending
on the value of the electric field.
The general electro-hydrodynamic problem of two interacting Quincke rotating

solid spheres has been treated in reference [17], the result is a dynamic equation for
the dipole moment of sphere 1:

dP 1

dt
= Ω1 ×

{
P 1 − 4πε�a3β∞

[
E0 − 1

4πε�R3
Π ·P 2

]}

− 1

τMW

{
P 1 − 4πε�a3β0

[
E0 − 1

4πε�R3
Π ·P 2

]}
(3)
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and torque balance on sphere 1:

Ω1=
1

8πμa3

{
P 1×

[
E0 − 1

4πε�R3
Π ·P 2

]
− a

3

2R3
Π·
[
P 2×

(
E0 − 1

4πε�R3
Π ·P 1

)]}
·
(4)

Where P 1 andΩ1are the dipole moment and angular velocity respectively, of sphere 1.
Similar equations applies for sphere 2. μ is the viscosity of the exterior liquid, the
coefficients β∞ = εp−ε�

εp+2ε�
and β0 =

σp−σ�
σp+2σ�

are the Clausius-Mossotti factors for

spherical particles, and Π = I − 3R̂R̂. Equations (3) and (4) are valid to order 1
R3
.

Numerical solution of these equations gives quite complex dynamics: in steady state
(dP 1
dt
= 0) the beads may either co-rotate, resulting in orbiting motion, or counter-

rotate resulting in propulsion [17]. We find a steady state series expansion solution for
counter-rotating beads. The solution for the angular frequency of sphere 1 and 2 can
be expressed in a series expansion in 1

R
: Ω1 = −ω + c1

R3
+ . . .and Ω2 = ω +

c2
R3
+ . . .,

where ω is the rotation frequency of a single isolated bead, given by Eq. (2). The
expressions for the coefficients c1 and c2 are complicated, however the sum of the two
angular frequencies is a simple expression:

Ω1 +Ω2 =
3a3

τMWR3
(
β0 − β∞) sin (2θ) (5)

where θ is the angle between the applied electric field E0 and the vector R̂ connecting
the two beads. This shows that a steady state motion directed along true straight lines

require R̂ to be either in perpendicular (θ = π
2 ) or parallel (θ = 0) to the applied

electric field. The state perpendicular to the electric field is not stable, since the
electric dipoles repel. Therefore, the only steady state propulsion (in straight lines)
appears to be when the two beads are aligned with the applied electric field (Fig. 3a),
and the beads are propelled perpendicular to the electric field. This is in agreement
with simulations of reference [17], which see propulsion perpendicular to the electric
field. This does not exclude propulsion at other angles; however, the propulsion is not
linear since the beads counter-rotate at slightly different frequencies. In practice this
may be a small deviation from straight lines since the difference is of the order 1

R3
.

The translational speed of two counter-rotating rotors is in the first approximation:
v ≈ Te

8πμR2 , where μ is the viscosity of the liquid, R is the distance between the

rotors and Te is the externally applied torque on the rotors [16,17], resulting in

approximate propulsion speed: v ≈ Ωa3

R2
. This equation is valid when beads are far

apart, however it may give an order of magnitude estimation of the relation between
the applied electric torque and the swimming motion for beads that are close. The
dipole-dipole interaction in the case Fig. 3a is purely attractive; to obtain a stable
counter-rotating pair the attraction must be counter-balanced either by steric (direct
contact) or hydrodynamic repulsion due to the rotation.

3.2 Propulsion of counter-rotating Pickering drops: Experiments

We prepared two near identical Pickering drops, as described above, and then initi-
ated counter-rotating Pickering drops by applying an electric field below the Quincke
threshold field, thus inducing a simple dipole attraction between the drops. The drops
touch, but coalescence is avoided due to the particle armor. The field was subsequently
increased above the threshold for Quincke rotation, which resulted in either a stable
drop pair, or drop repulsion. For the stable pairs, the drops may either co-rotate or
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Fig. 4. Cooperative electro-hydrodynamic self-propulsion of a pair of tank-treading particle
armored drops. (a) Supporting movie S1: Pickering drops (diameter ≈ 1mm, separation
R ≈ 1.3mm) covered with 50µm beads, subject to an electric field of 500V/mm. The
rotational angular velocity of the drops is Ω ≈ 0.7 s−1, and the experimental propulsion
velocity is v ≈ 0.1mm/s (b) Supporting movie S2: Pickering drops (diameter ≈ 1.0mm)
covered with 30µm beads, subject to electric field 450V/mm. The rotational angular velocity
of the drops is Ω ≈ 0.8 s−1, and the experimental propulsion velocity is v ≈ 0.1mm/s.

Fig. 5. Experimental hydrodynamic streamlines (tracer particles) around a pair of self-
propelled electro-hydrodynamic counter-rotating Pickering drops (diameter ≈ 1mm).

counter-rotate with the rotation axis perpendicular to the electric field, and otherwise
it can take any direction in the plane normal to the electric field. This is different
from for example magnetic beads in rotating magnetic fields, where all the beads
are co-rotating [25]. We observe hydrodynamic (as visualized in Fig. 4 and Fig. 5)
propulsion of the two Pickering drops at different angles with the electric field (see
supporting material movies S1 and S2), sometimes approximately normal to the field
(see supporting material movie S3). We also observe that propulsion along the electric
field appears to be unstable in accordance with the discussion above in Sect. 3.1. In
all cases the drops are in the tank-treading regime, as described in Fig. 2b. To first

order, the propulsion velocity is v ≈ Ωa3

R2
≈ 0.7s−1(0.5mm)3

(1.3mm)2
≈ 0.05mm/s, which is

close to the experimental propulsion velocity v ≈ 0.1mm/s.
We were not able to obtain Quincke rotating pairs of solid PE beads used here,

only with tank-treading Pickering drops.
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4 Conclusion

We have shown that electro-rotating armored drops may exhibit two dynamic regimes,
solid and tank-treading rotation. Two drops may attract one another and form
a counter-rotating pair with cooperative hydrodynamic propulsive motion. Future
directions may include studies of many self-propelled pairs, for example Pickering
emulsions with high density of drops. Future directions might also include propulsion
motion using more advanced particle laden drops, such as partly covered drops [26],
Janus or patchy shells.
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