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Abstract. We study a rate-equation model for two coupled molecular
lasers with a saturable absorber. A numerical bifurcation study shows
the existence of isolas for in-phase periodic solutions as physical para-
meters change. In addition there are other non-isola families of in-phase,
anti-phase and intermediate-phase periodic oscillations. In this model
the unstable periodic orbits belonging to the in-phase isolas constitute
a skeleton of the attractor, when chaotic synchronization sets in for a
set of physically relevant control parameters.

1 Introduction

In this study we consider the dynamics of a coupled optical system which can exhibit
complex mixed mode oscillations. Mixed mode oscillations (MMO) display multiple
time scales and are currently the subject of substantial research, because MMO are
ubiquitous in nature and have been observed for several decades in different chemical,
physical, biological, and engineering experimental systems [1–6]. Quantum optical
systems may also display multiple time scales within the semiclassical description. In
particular, laser devices in the Q-switching operation typically emit short and intense
pulses of light that are followed by time intervals with minimal laser intensity [7–9]. In
this type of lasers, a saturable absorber or an electro-optical element allows the energy
inside the system to be accumulated and stored long enough before it is suddenly
released as an optical pulse. Q-switching operation is a general phenomenon, and has
been achieved in many types of laser gain media, such as in semiconductors and optical
fibers [10,11], where the pulse durations are of the order of microseconds, nanoseconds
and even picoseconds in gas, semiconductor and microchip lasers, respectively [8].
There are several optical coupling schemes, where phenomena related to phase

locking and chaotic synchronization are important issues [8]. In this article we con-
sider a special type of optical coupling for Q-switched lasers, namely, coupling via
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saturable absorbers. This coupling mechanism has been studied theoretically and ex-
perimentally for CO2 lasers [12–14], where one of the main goals was precisely to
achieve optical chaotic synchronization. One of the features of this form of nonlinear
coupling between two lasers is that the resulting model provides an interesting anal-
ogy with the field of neuroscience. The corresponding neuronal systems are pairs of
reciprocally inhibiting neurons, known as half-center oscillators; they typically display
behaviors characterized by anti-phase bursting, and are the building blocks of central
pattern generators that produce various phase-locked bursting rhythms [15,16].
In this article we show that a model for two absorber-coupled Q-switched CO2

lasers predicts that there are isolas of in-phase periodic solutions. This model also
shows characteristic families of in-phase and anti-phase periodic solutions, which arise
from Hopf bifurcations along families of stationary solutions. Periodic solutions with
a fixed intermediate-phase difference, also known as phase-locked solutions, arise from
subsequent symmetry-breaking bifurcations. In our model the unstable periodic orbits
(UPO) that arise from the in-phase isolas constitute the skeleton of the attractor when
chaotic synchronization sets in, for a set of physically relevant control parameters. It
is worthwhile mentioning that these isolas do not exist in the basic rate-equation
model [17]. Our solutions are complemented by two-parameter bifurcation diagrams
in the plane of the pump current and coupling strength, as obtained by a numer-
ical continuation study with the package AUTO [18]. In Sect. 2 we introduce and
discuss the model, and in Sect. 3 we present its bifurcation analysis and numerical
simulations; conclusions and a discussion are presented in Sect. 4.

2 A model for two coupled single-mode molecular lasers

We study the effects of moderate and mutual coupling in class-B single-mode
Q-switched lasers: a symmetric pair of CO2 lasers with a saturable absorber (LSA).
Each of these uncoupled laser devices is described by a model known as the four-level
model [19,20]. The CO2 LSA is an important example of class-B lasers and its giant
laser spikes are known as passive Q-switching (PQS) self-pulsations. The complex in-
stabilities found in this system gave rise to early studies in nonlinear dynamics about
three decades ago [7,9,21–24]. As a result the rich dynamical phenomenology of the
CO2 LSA made it an interesting object for study in nonlinear dynamics [25–33].
We consider the dynamical effects caused by a special type of optical coupling of

Q-switched lasers, namely coupling via saturable absorbers, which is also a form of
incoherent coupling. This coupling mechanism between laser devices has been imple-
mented theoretically and experimentally in previous studies of CO2 lasers [12–14].
The coupling is based on the injection of the electric field of one laser device into the
absorber of the symmetric device, such that the laser modes (field polarizations) are
not injected into the symmetric cavity. This partially saturates the transition levels
of the symmetric absorber, which in turn couples the lasers.
Under suitable approximations [19,20] each of the two laser devices is described

by a reduced four-level model and can be coupled via fast saturable absorbers. This
system is modeled in Eq. (1), where Ii stands for the field intensities within the laser
cavities, the fast variables, and vi and wi denote the effective populations of the lower
and upper (excited) rotational energy levels in the gain medium, respectively, i = 1, 2.
vi and wi are the slow variables. Q is the incoherent pump induced by the excitation
current in the gain medium, and z is the effective number of reservoir rotational lev-
els in each vibrational band in the gain medium. The last term in the equations for
Ii stands for the saturable absorber, the parameter α is proportional to the density
of absorber molecules and β is known as the saturability [19,20]. c stands for the
coupling parameter via fast saturable absorbers. The vibrational relaxation rates for
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the upper (excited) and lower vibrational levels in the CO2 molecules are called γ2
and γ1, respectively. The relaxation constants γi have been suitably normalized in
Eq. (1).

dI1

dt
= I1

(
−1 + (z + 1)Ω1

z
(w1 − v1)− α

1 + 2β(I1 + cI2)

)
,

dv1

dt
= Ω1I1(w1 − v1)− γ1v1 ,

dw1

dt
= Ω1I1(v1 − w1)− γ2w1 + zγ2Q ,

(1)

dI2

dt
= I2

(
−1 + (z + 1)Ω2

z
(w2 − v2)− α

1 + 2β(I2 + cI1)

)
,

dv2

dt
= Ω2I2(w2 − v2)− γ1v2 ,

dw2

dt
= Ω2I2(v2 − w2)− γ2w2 + zγ2Q .

Also in Eq. (1), we have defined

Ωi =
z + 1

(z + 1)2 + 2zIi/γR′
, i = 1, 2,

where γ
′
R stands for the characteristic rotational relaxation rates of CO2 molecules

within the same vibrational band [19,20].
Physical processes similar to those that take place in the active medium may also

occur in the saturable absorber of a gas cell, but the absorber may also have a different
nature, such as in semiconductor saturable absorbers (SESAM) devices [10]. In our
model we assume that a fast saturable absorber is described by a two level model
with fast relaxation rates.
For numerical purposes it is useful to rewrite the equations for I1 and I2 in terms

of log(I1) and log(I2). The fixed parameter values are α = 0.75, γ
′
R = 0.2205, γ1 =

0.0252, γ2 = 0.00315, z = 10, and β = 200, while Q and the coupling strength
c are used as continuation parameters. When c = 0, Eq. (1) decouples into two
independent sets of three equations. When c is nonzero, the synchronous (or in-
phase) solutions, i.e., solutions with I1(t) = I2(t) = I(t) , v1(t) = v2(t) = v(t) , and
w1(t) = w2(t) = w(t) , satisfy

dI

dt
= I
(
−1 + (z + 1)Ω

z
(w − v)− α

1 + 2β(1 + c)I

)
,

dv

dt
= ΩI(w − v)− γ1v , (2)

dw

dt
= ΩI(v − w)− γ2w + zγ2Q ,

which is not identical to the uncoupled case. To be specific, the synchronous solution

structure for given value of β in Eq. (1) corresponds to taking β̂(c) = β(1 + c).
Moreover, the stability properties of periodic solutions can be different for Eq. (1)
and Eq. (2), for the same values of the coupling strengths.
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Fig. 1. Top-left: The black curve represents nonzero stationary states with two Hopf bi-
furcation (solid red squares), from which bifurcate a family of in-phase periodic solutions
(blue) and a family of anti-phase periodic solutions (red), respectively. Top-right: A detail of
the in-phase family, also showing a bifurcating intermediate-phase family (orange). Bottom:
Representative solutions from the top panels. Coupling parameter c = 0.14.

In our case of two mutually and symetrically coupled CO2 lasers, the geometrical
configuration is similar to the case of two unidirectionally coupled CO2 lasers [13].
Moreover, the saturable absorber is assumed to be fast and identical in both lasers.

3 Numerical bifurcation analysis and synchronization

In this section we describe the solution structure of Eq. (1). We do this for a moder-
ate value of the coupling constant c, namely, c = 0.14. This value is large enough for
stable, synchronous solutions to exist, while it is also small enough for the presence
of stable asynchronous behavior. Since the solution structure is significantly more
complex than that of the single laser equations [19], we will explain this structure
through a sequence of diagrams, that together provide an overview of the basic solu-
tion families and their bifurcations. In our bifurcation diagrams, solid/dashed curves
represent stable/unstable solutions, respectively, Hopf bifurcations are shown as solid
red squares, branch points as small open squares, period-doubling bifurcations as
open diamonds, and torus bifurcations as solid red diamonds.
Two bifurcation diagrams for c = 0.14 are shown in the top panels of Fig. 1,

while the bottom panels show the actual solutions at the labeled points in the
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bifurcation diagrams. The black curve in the top-left diagram represents nonzero
stationary states, which are stable beyond the Hopf bifurcation (solid red square) on
the right, from which bifurcates a family of synchronous periodic solutions (blue). A
family of anti-phase periodic solutions (red) emanates from the Hopf bifurcation on
the left. A representative anti-phase solution is shown in the bottom-left panel. The
upper part of the anti-phase family (red) in Fig. 1 contains a region of stable periodic
solutions (solid red curve), delimited on the right by a torus bifurcation. Along the
anti-phase family the period increases as Q decreases. It is important to mention that
these “stable” anti-phase orbits are only marginally stable. Due to phase invariance
there is always one Floquet multiplier that is equal to 1. However, the “stable” anti-
phase orbits have another Floquet multiplier that, although less than 1, is extremely
close to 1, due to the fact that the two lasers in anti-phase mode become nearly un-
coupled as the period increases. Along the in-phase family (blue) in Fig. 1 is a branch
point (open square) that is very close to the Hopf bifurcation point, as seen more
clearly in the blow-up in the top-right panel. Also shown in the top-right panel is the
bifurcating family (orange) that consist of intermediate-phase solutions. A representa-
tive solution along this intermediate-phase family is shown in the bottom-right panel.
The intermediate-phase family actually consists of two symmetric branches, where
the symmetry consists of interchanging the two lasers. In Fig. 1 these two branches
coincide, due to the fact that an integral L2-norm is used to represent solutions on
the vertical axis. Note that the intermediate-phase family contains two regions of
stability (solid orange). One of the stability intervals is bordered on the left by a
period-doubling bifurcation (open diamond) and on the right by a fold. (The bifur-
cating period-doubled family is not shown.) The other, very small stability interval
is bordered on the left by a fold and on the right by a torus bifurcation (solid red
diamond). Note also the coexistence of stable stationary solutions, stable anti-phase
solutions, and stable intermediate-phase solutions; for example, at Q = 2.2.
The top-left panel of Fig. 2 again shows the in-phase (blue) family, omitting

the anti-phase and the intermediate-phase families, but now indicating a bifurcat-
ing period-doubled family (brown) consisting of unstable solutions, one of which is
shown in the bottom-left panel. The top-right panel of Fig. 2 shows another fam-
ily of intermediate-phase solutions (orange). This family is shown together with the
unstable in-phase family (blue), even though the two families are not connected in
this region. The upper part of this intermediate-phase family consists of stable orbits
(solid orange), delimited by a fold on the right. The stable solution with label 4 is
shown in the bottom-right panel, where it can be observed that the two lasers are
“almost in phase”, i.e., they have an almost identical output, with only a small phase
shift, as is typical of the stable solutions of this family.
The top-left panel of Fig. 3 shows isolas (purple) of in-phase periodic orbits, with

a blow-up in the top-right panel. For reference, the stationary family (black), the
in-phase family (blue), and its period-doubled family (brown), are also shown, but
the anti-phase family and the two intermediate-phase families are omitted. The isolas

are like the isolas that exist in the single laser model for β̂ = β(1 + c) ∼= 228.
However, unlike the single laser model, the isolas now contain branch points, and cor-
respondingly the orbits along the isolas have different stability properties compared
to the single laser case. Two representative solutions are shown in the bottom panels,
namely, solutions along the isolas designated as I03 and I04. These solutions corre-
spond to period-doubling points that border stability regions, but they look much
like the stable solutions that are observed strictly inside the stability regions.
The branch points along the isolas are of pitchfork type, i.e., they give rise to two

symmetric branches of symmetry-related orbits, which coincide with each other in the
bifurcation diagram. A few families that bifurcate from the isolas have been partially
computed, namely the initial, stable portion of these families (green), as seen in the
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Fig. 2. Top-left: The stationary family (black) and the in-phase family (blue), also indicat-
ing a bifurcating period-doubled family (brown). Top-right: Another family of intermediate-
phase solutions (orange), shown together with the stationary family (black) and the in-phase
family (blue). Bottom: Representative solutions from the top panels. For the solution
labeled 4, note the small phase shift between the two lasers. Coupling parameter c = 0.14.

top-left panel of Fig. 4. Three representative solutions, labeled 7,8, and 9, are shown
in the remaining three panels. For example, the solution labeled 7 lies along the family
that bifurcates from the isola I03, whose periodic orbits are in-phase and have three
maxima. As seen in the top-right panel of Fig. 4, the two lasers that correspond to
orbit 7 have a small phase shift relative to each other. Similarly, the two orbits labeled
8 and 9, which lie along families bifurcating from I04 and I05, respectively, display a
similar phase shift. As indicated in the bifurcation diagram in Fig. 4, the solutions
labeled 7,8, and 9 actually correspond to period-doubling bifurcation points where
the green families become unstable. However, these solutions are representative of
nearby stable solutions.
Solutions along the isolas (purple) are in-phase solutions, i.e., the orbits of the

two lasers are identical and have the same phase. For solutions along the green fam-
ilies, which bifurcate from the isolas, the individual orbits of the two lasers appear
to be phase-shifted. In reality the individual orbits are not exactly the same, when
each is projected to 3D space. The green families continue to exist beyond the small
portions shown in Fig. 4, and they give rise to a very complex solution structure that
will be investigated in a future study. Figure 5 shows loci of folds, branch points, and
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Fig. 3. Top-left: Isolas of in-phase periodic orbits (purple), shown together with the sta-
tionary family (black), the in-phase family (blue), and its period-doubled family (brown).
Top-right: A blow-up of the top-left panel. Bottom: Representative solutions from the upper
panels, namely, solutions along the isolas I03 and I04. Coupling parameter c = 0.14.

period-doubling bifurcations along the isolas, as the coupling strength c changes. The
loci of period-doubling bifurcations remain close to the loci of folds. Most of these
can be continued to very small c; in fact, the continuation was stopped at c = 0.0010.
However, none of the branch points persist until small c. Indeed, as as seen in Fig. 5,
each locus of branch points encounters a fold with respect to c. When they exist,
namely for larger values of c, there is a region of stable periodic solutions on the
corresponding isola; see, for example, Fig. 3. The principal observation is that these
regions of stability along the isolas disappear as c becomes smaller.
Laboratory experiments [12–14] show that chaos synchronization of the character-

istic PQS pulses is possible for moderate coupling. Our analysis predicts this typically
happens for values of the pump (Q) larger than the Hopf bifurcation (HB) of the anti-
phase family, and smaller than the HB of the in-phase family; where both HBs are
on the nontrivial stationary family. Figure 6 confirms this for c = 0.14. Panel (a)
shows a time series for log(I1) where intermittency can be identified. Panel (b) shows
complete synchronization between the coupled lasers when c = 0.14. Finally, the his-
togram in panel (c) shows the probability for the neighborhoods of the UPOs on the
in-phase isolas to be visited by the trajectory. This is in agreement with the presence
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Fig. 4. The top-left panel shows a portion of the isolas I03, I04, and I05 (purple), as well
as a portion of bifurcating families (green). The other panels show representative solutions
along these bifurcating families. Coupling parameter c = 0.14.

Fig. 5. Loci of folds (blue), period-doubling bifurcations (orange), and loci of branch points
(purple) along the isolas I3 through I12, as dependent on Q and the coupling parameter c.
The regions of stability disappear as c becomes smaller, namely at the folds with respect to
c along the purple curves.
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Fig. 6. (a) Time series for log(I1). (b) Complete synchronization between the laser oscilla-
tors: log(I1) versus log(I2). (c) Histogram for the number of maxima m characterizing the
neighborhoods of visited UPOs (see text). Coupling parameter c = 0.14.

of these UPOs in the bifurcation diagram for the pump Q in the top-right panel of
Fig. 3. Thus the UPOs of the in-phase isolas constitute the skeleton of the attractor
when chaotic synchronization of PQS sets in.

4 Conclusions and discussion

In this article we presented a bifurcation analysis for a model of two coupled CO2
lasers with a saturable absorber (LSA). The model for each uncoupled laser device
displays mixed-mode oscillations with one fast variable and two slow variables, and
the phenomenon of period adding cascades. The model for symmetric laser devices in-
cludes nonlinear coupling via fast saturable absorbers. In the bifurcation diagrams we
show the onset, transition and multistability of in-phase, anti-phase and intermediate-
phase oscillations of the system. Relevant new families of periodic orbits are organized
along isolas of in-phase, passive Q-switching pulses (PQS). Such isolas have not been
observed in a more basic model of coupled lasers with saturable absorbers [17]. As
observed in numerical simulations and the bifurcation analysis multistability between
new different types of periodic orbits (resonances) and chaotic solutions is a typical
feature for moderate coupling strength, where chaotic synchronization may occur. We
find that the unstable periodic orbits belonging to the in-phase isolas constitute the
skeleton of the attractor when chaotic synchronization of PQS sets in.
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