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Abstract. Migration of planetary systems caused by the action of dissi-
pative forces may lead the planets to be trapped in a resonance. In this
work we study the conditions and the dynamics of such resonant trap-
ping. Particularly, we are interested in finding out whether resonant
capture ends up in a long-term stable planetary configuration. For two
planet systems we associate the evolution of migration with the exis-
tence of families of periodic orbits in the phase space of the three-body
problem. The family of circular periodic orbits exhibits a gap at the
2:1 resonance and an instability and bifurcation at the 3:1 resonance.
These properties explain the high probability of 2:1 and 3:1 resonant
capture at low eccentricities. Furthermore, we study the resonant cap-
ture of three-planet systems. We show that such a resonant capture
is possible and can occur under particular conditions. Then, from the
migration path of the system, stable three-planet configurations, either
symmetric or asymmetric, can be determined.

1 Introduction

The study of long-term stability of planetary systems involves numerical simulations
of N -body models consisting of a large body of mass m0 (the star) and N −1 planets
Pi of masses mi << m0, i = 1, . . . , N − 1. All bodies are affected by their mutual
gravitational interactions and if N is large then we have to face a complex system
with collision singularities. In such systems choreographical solutions can be found
by assuming particular central configurations [1]. For real planetary systems it is a
challenge to obtain stable solutions along which planets avoid collisions, but this is not
feasible starting with a system of many planets. If N is small, then we can model the
system with a near integrable Hamiltonian of few degrees of freedom, where stability
issues are also important. For the simplest case, N = 3, we have the classical three
body problem (TBP), which has been studied widely and is well known for its complex
dynamics. Nevertheless, particular methods applied to the TBP and for two-planet
systems, can be extended in order to study the dynamics of systems with three or
more planets.

a e-mail: voyatzis@auth.gr

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2016-02655-2


1072 The European Physical Journal Special Topics

New interesting questions about the evolution of planetary systems have arisen in
the last twenty years after the discovery of many exo-solar systems with many planets.
Presently, about 500 multiple planet systems have been confirmed but, generally,
observational data are not sufficient for an accurate determination of the orbital
elements of the planets i.e. the semimajor axes, ai, eccentricities, ei, angles of apside,
�i, and the location of the planets on their ellipse given e.g. by the mean anomalyMi.
In the following the index i starts counting from the inner planet to the outer one. It is
reasonable to assume that multiple planet systems are located at stable configurations
that guarantee the long-term stability of planetary orbits. Considering a two-planet
system and the TBP model, long term stability generally requires regular trajectories
winding invariant tori in phase space. On the other hand chaotic orbits may lead
the planets to close encounters, which destabilize the system causing collisions or
escapes. Various Hill’s type stability criteria have been proposed, which ensure that
the planets cannot suffer close encounters (see e.g. [2]). In many cases of real systems,
Hill’s criteria are not established and stability is offered by other mechanisms. An
important dynamical mechanism is based on the mean motion resonances (MMR)
i.e. when the planetary periods have almost rational ratio, T2

T1
≈ p
q
, p, q are integers

[3]. Thus, the observation of many resonant exosolar systems may be explained due
to this stability mechanism.
From a dynamical point of view, resonances are indicated by periodic orbits of the

particular model, which are called also exact MMR resonances, in order to distinguish
them from the orbits that simply satisfy the rational period ratio. Particularly, for
the planar general TBP of planetary type, we define a non-uniformly rotating frame
Oxy, whose x-axis is the line star − P1 and the origin O is located at the center of
mass of the two bodies. Thus the position of P1 is determined by the coordinate x1
and P2 by (x2, y2). If at t = 0 the inner planet is at an apside, e.g. at x1(0) = x10
with ẋ1(0) = 0 and ẍ1(0) > 0, then a periodic orbit is defined by the conditions

x2(0) = x2(T ), y2(0) = y2(T ), ẋ2(0) = ẋ2(T ), ẏ2(0) = ẏ2(T ), (1)

where T is the time (period) for P1 to be found again in its apside with ẍ1(0) > 0 and
certainly, by taken into account the energy integral, at the same position x10. The
period T may corresponds to k revolutions of the inner planet; k is called the multi-
plicity of the orbit. System (1) is solved numerically by using differential corrections
starting close to a known periodic orbit with x1(0) = x10 and seeking a solution for
x1(0) = x10 + δ, where δ is a small deviation. In the case where y20 = ẋ20 = 0 we
obtain a periodic orbit which is symmetric with respect to the Ox axis. Otherwise, a
periodic orbit is called asymmetric. In Fig. 1, we present some periodic orbits in the
rotating and inertial frame. We note that in the inertial frame the orbits are almost
Keplerian ellipses which rotate slowly. Periodic orbits are studied with respect to their
linear stability and are classified as stable or unstable. For more details see [4,5].
By continuing the variation of x10 we obtain a monoparametric set of solutions

or, equivalently, a family of periodic orbits. Families are classified as circular or el-
liptic. A circular family consist of of almost circular planetary orbits and the ratio
T2
T1
varies along the family. Along a family of elliptic orbits it is T2

T1
≈ p
q
= const and,

thus, elliptic families are resonant. The orbits presented in Fig. 1 are 2:1 resonant.
Generally, the continuation process starts from the known periodic orbits of the cir-
cular restricted TBP [6] or the elliptic one [7,8], where the mass m1 (or m2), which
is initially zero, is used as the continuation parameter.
Resonant families may bifurcate from circular periodic orbits but they gener-

ally extend up to very eccentric planetary orbits, which may cross each other (e.g.
Fig. 1b,c). However, the resonance can offer a phase protection mechanism that pre-
vents the planets from coming close to each other. Additionally, if a periodic orbit is
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Fig. 1. Some samples of 2:1 resonant periodic orbits in the rotating (top) and inertial
frame (bottom). Red and blue color indicates the orbit of the inner planet and the outer
planet, respectively. In the rotating frame the inner planet oscillates periodically on the Ox
axis. Dots indicate the initial planetary position and “p” the periastron of (a) a symmetric
periodic orbit with aligned periastra (the lines of apsides coincide with the Ox axis) (b) a
symmetric periodic orbits with anti-aligned periastra (c) an asymmetric periodic orbit, the
lines of apsides form an angle Δ� �= 0 or π (see also Sect. 3.2).

Fig. 2. The evolution of the orbits and the eccentricities of a two-planet system (similar to
HD 82943) with masses m1 ≈ m2 ≈ 0.004 and initial conditions a2/a1 = 1.595, e1 = 0.425,
e2 = 0.16 in the symmetric configurations �1 = �2 = 0

◦ and M1 = M2 = 0◦ (top) and
M1 = 180

◦, M2 = 0◦ (bottom).

linearly stable then orbits which are located in its neighborhood are stable for long-
term evolution (assuming that possible Arnold diffusion is not apparent in reasonable
time spans). Therefore, in a particular resonance it is important to determine the
initial planetary phases (planetary configurations) that correspond to a stable evo-
lution. In Fig. 2 we consider the evolution of the orbits and the eccentricities of the
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two planets, for parameters related to the exosolar system HD 82943 (see e.g. catalog
exoplanets.eu). In the top panel, the system starts close to a stable periodic orbit and
we get a regular evolution. In this configuration both planets are initially located at
their periastron (M1 =M2 = 0

◦) and their orbits are aligned (�2 −�1 = 0◦). In the
bottom panel, we take the same initial conditions except that we initially place the
inner planet at its apastron (M2 = 180

◦). Now we get a very unstable configuration
and the system is destabilized.
The permanent trapping of a planetary system in resonance seems possible when

dissipative forces act in the system [9]. Such dissipative forces act in the early stage
of a planetary system when the protoplanetary disk of gas and dust causes drag and
torques to the planetary motion. This has as a consequence the inward migration of
the planets from their initial region of formation [10,11]. Numerical simulations in two-
planet systems showed that, during migration, planets can be trapped in resonance
[12,13]. Particularly it has been shown that after the resonance capture the system
evolves in such a way that it follows particular paths in phase space which consist
of families of centers of librations or, equivalently families of stable periodic orbits
[14,15]. Notably, if non-planar motion is considered, an increase of the inclinations is
observed at vertically critical periodic orbits [16]. After the disk has vanished and the
dissipative forces disappear, the planetary system may end up in a stable configuration
and continue to evolve regularly.
In the present study we address the dynamics of migration and resonant capture

in two- and three-planet systems. Our model is presented in Sect. 2. It takes into
account the gravitational interactions and a Stoke’s dissipative force. In Sect. 3, we
study the migration of two-planet systems and the conditions for resonance trapping.
In Sect. 4, we consider migration of three-planet system and study the stable planetary
configurations, which result after the resonant capture. Particular results for the 1:2:4
resonance are presented. Finally, we conclude in Sect. 5.

2 The model

We consider the planar N -body problem of planetary type. We have a central star of
mass m0 and N − 1 planets of mass mi << m0, i = 1, . . . , N − 1. In a barycentric
inertial frame the position of the bodies is given by ri(t) = (xi(t), yi(t)). Assuming
that besides the gravitational force between the planets an external dissipative force
Fd may also act on the planets and the equation of motion are

mir̈i = ∇iU + Fd,i (2)

where U = U(rij) is the potential function of gravitational forces

U =
∑

0≤i<j<N

∑ mimj

rij
, rij = ||rj − ri||.

Considering that the gas and the dust in the protoplanetary disk both move in cir-
cular orbits around the star we can assume as a dissipative force a Stoke’s like drag
proportional to the relative velocity between the planet and the disk, which is of the
form [9]

Fd,i = −ci(vi − αivc,i), (3)

where vi = ṙi is the velocity of the planet i and vc,i = (m0/ri)
1/2eθ is the velocity

of the circular orbit of radius ri in the two body (star-planet) approximation. The
factors ci > 0 depend on physical properties of the gas and the size of the planet and
are assumed to be constant in the range 10−5 < c < 10−10. The parameters αi are
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Fig. 3. Evolution of orbital elements of a two-planet system (m1 = m2 = 10
−4) with

dissipation, C1 = 210
−5, C2 = 10−5, α1 = α2 = 0.9.

introduced in order to include the effect of a possible radial pressure gradient in the
disk and are assumed to be positive and a bit less than 1. Finally, the equations of
motion on the xy plane of the planet Pi are written as

ẍi = −m0xi − x0
r30i

−
N−1∑

j=1,j �=i
mj
xi − xj
r3ij

− Ci
(
ẋi + αi

yi

r
3/2
i0

)
,

ÿi = −m0 yi − y0
r30i

−
N−1∑

j=1,j �=i
mj
yi − yj
r3ij

− Ci
(
ẏi − αi xi

r
3/2
i0

)
,

(4)

where Ci = ci/mi and the masses are normalized such that
∑N−1
i=0 mi = 1.

In simulations we may assume that some planets are not affected by the
dissipation, so in these cases we set Ci = 0. The divergence of the vector field of
system (4) is

divf = −2
N−1∑

i=1

Ci < 0,

thus, the system is dissipative. It has been shown that for an one-planet system and
in a first order approximation in eccentricity, such dissipation causes the exponential
decrease of the semimajor axis and the eccentricity of the planet [14,17],

a(t) = a0 exp(−At), e(t) = e0 exp(−E t), (5)

where
A = 2C(1− α), E = C α. (6)

As the semimajor axes vary during migration, the same holds for the Keplerian periods

Ti of the planets, which are proportional to a
3/2
i . Thus, the ratios of Ti between

the planets or, equivalently, the ratios of the mean motions ni = 2π/Ti vary along
the migration. In Fig. 3, we present the variation of semimajor axes, eccentricities
and the mean motion ratio of two planets, which interact mutually with gravitation
too and are affected by the external dissipative force (3). We obtain an exponential
decrease of both semimajor axes and eccentricities. The mean motion ratio increases
but when it passes by the value n1/n2 = 3 (i.e. the 3:1 resonance) it shows a short
plateau, i.e. a temporal resonant capture. In Fig. 4, we present the migration of a
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Fig. 4. Evolution of orbital elements of a three-planet system (mi = 10
−4, i = 1, 2, 3) with

dissipation, C1 = 210
−5, C2 = C3 = 10−5, α1 = α2 = 0.9, α3 = 0.

three-planet system. After 2Ky we obtain a strong gravitational interaction between
the planets P2 and P3. A second strong interaction appears at about 8Ky between P3
and P1. Certainly, the previous strong gravitational interactions affect the evolution
of eccentricities and mean motion ratios but, finally, the system seems to enter a
regular smooth migrating evolution.
Apart from dissipative forces of the form (3), other types of dissipation have been

used, e.g. two-body tidal interactions [18,19]. Regardless of the type of dissipative
forces, the evolution of planetary systems seems qualitatively the same.

3 Migration of two-planet systems

3.1 Resonance capture

For a system of two planets, according to the Kepler’s third law and in the ab-
sence of mutual gravitational interactions between planets, it is (a2/a1) = (n1/n2)

2/3.
A necessary condition for the system to be captured in a particular resonance p : q,
i.e. n1/n2 ≈ p/q, is to meet during migration the semimajor axis ratio

(a2/a1) ≈ (p/q)2/3. (7)

In numerical simulations we set initially the system in a position with (a2/a1) >
(p/q)2/3 and apply the dissipative force (3) only to the outer planet P2. In this case we
expect that the semimajor axis a1 will remain almost constant while a2 will decrease
due to the dissipative force. Thus, the ratio a2/a1, or equivalently the ratio n1/n2,
decreases too and the condition (7) should be fulfilled after some time of evolution.
In Fig. 5, we present two typical examples of migration and capture in resonances

2:1 and 3:1 (left and right panels, respectively). The initial eccentricities of the planets
are almost zero (circular orbits). In both cases, the semimajor axis, a1, is initially
constant, while a2 decreases. When we obtain the condition (7), the outer planet
seems to drag the inner one to an orbit with smaller and smaller semimajor axis.
However, the ratio a2/a1 remains almost constant and the capture is achieved. After
the resonant capture the eccentricities increase. Their rate of increment and the final
value that they reach depend on the parameter α, which is related with the eccentricity
damping parameter E according to Eq. (6).
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(a) (b)

Fig. 5. Evolution of the semimajor axis (top), the mean motion ratio (middle) and eccentric-
ities (bottom) for a two-planet system (a) 2:1 resonance trapping, m1 = 0.001, m2 = 0.005,
C2 = 10

−6, α2 = 0.7 (b) 3:1 resonance trapping, m1 = 0.001, m2 = 0.0005, C2 = 10−6,
α2 = 0.6.

During the trapping in 3 : 1 resonance, we should note the change in the evolution
of eccentricities for t > 40Ky (see Fig. 5b). The eccentricities start to show oscilla-
tions and the average rate of their increment changes. This change in the evolution is
caused by a change in the migration path as it will be explained in next subsection.
Apart from the condition (7), which is necessary for resonance capture, the de-

creasing rate of the mean motion ratio n1/n2 plays also an important role. According
to the setup of simulations used above (where we have set C1 = 0), this rate depends
on the parameter A2 = 2C2(1 − a2), which estimates the damping of the semima-
jor axis, a2, of the outer planet. In Fig. 6 we present the evolution of n1/n2 of a
system of two planets with m1 = m2 = 0.001 by setting α2 = 0.9 in all cases but
different values for parameter the C2 (or A2, equivalently). The system starts at the
value n1/n2 = 4.2 and initially decreases along the evolution of the planetary orbits.
For C2 ≤ 5 10−6 the system is captured in the 3:1 resonance. When the decreasing
rate becomes sufficiently fast (C2 ≥ 6 10−6) the system passes through the 3:1 reso-
nance without capture. In these cases the system approaches the 2:1 resonance and
is trapped there.
It is worthy to note that the system is neither captured in the 4:1 nor the 5:2

resonance. This situation is also the case in many other simulations where capture in
2:1 and 3:1 resonances is the most probable [18]. Capture in the 4 : 1 resonance may
be possible for very slow damping rates. On the other hand, the capture in the 5:2
resonance is observed only temporarily [20] and for very specific values of the system
parameters and initial conditions. In [21] some cases of capture in the resonances
4:1, 5:1, 5:2 and 7:2 are reported for higher initial eccentricities but it is not clarified
whether such captures are temporal or stable for long time intervals.

3.2 Migration paths and families of periodic orbits

As we mentioned in the introduction, in the general TBP we can compute families of
periodic orbits in a rotating frame of reference [6]. These families are classified in two
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Fig. 6. Resonance capture after planetary migration for different damping rate values A2.
There is a critical value, 10−6 < A∗2 < 1.2 10

−6, above or below to it the system is captured
in the resonance 2:1 or 3:1, respectively.

Fig. 7. The elliptic families S and the segments CI and CII of the circular family for
planetary masses m1 = 0.001, m2 = 0.002. The families are projected in the plane
n1/n2 – x1, where x1 indicates the initial distance of the inner planet P1 from the center
of mass P1-star. Blue (red) sections indicate stable (unstable) orbits. The dashed lines
indicate the elliptic families S.

types (i) families of circular periodic orbits and (ii) families of elliptic periodic orbits.
Along any family of circular orbits the ratio of semimajor axes a2/a1 (and equiva-
lently the ratio n1/n2) varies but the planetary eccentricities are almost zero, ei ≈ 0.
The circular family has gaps at resonances of the form p+1

p
, where p is a positive

integer. The circular family consist in general of linearly stable periodic orbits except
for some sections at the resonances n1

n2
= p+2

p
, where p is an odd positive integer.

In Fig. 7, we present the segments CI and CII of the circular family for planetary
masses m1 = 0.001, m2 = 0.002, which are separated with a gap at the 2:1 resonance.
At this resonance, the circular segments continue smoothly as families of elliptic or-

bits, S
2/1
I and S

2/1
II , which extent up to high eccentricities. Along elliptic families

the mean motion ratio n1/n2 remains almost constant and, therefore, elliptic families
are called also resonant families. At the 3:1 resonance the circular family exhibits
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(a) (b)

Fig. 8. Families of (a) 2:1 and (b) 3:1 resonant periodic orbits for the indicated mass ratios.
Families Si are symmetric and Ai are asymmetric, which bifurcate from symmetric families
at the points Bi. Blue (red) sections indicate stable (unstable) orbits. Gray lines show the
migrating evolution of the system to higher eccentricities after its trapping in the resonance
at about (0, 0).

an unstable segment but the stable family S
3/1
4 bifurcates from there. This family is

elliptic and along it we have n1/n2 ≈ 3 and the eccentricities increase [22].
In the simulations of the previous subsection, we start with almost zero eccentric-

ities i.e. we are close to an orbit of the circular family. As the system migrates, the
ratio n1/n2 decreases, while the eccentricities remain close to zero (see the arrows in
Fig. 7). Thus, the system migrates along the circular family [15,23]. When the system
reaches the 3:1 resonance there are two possibilities: either continue along the circu-

lar family or follow the resonant family S
3/1
4 . In the second case, we obtain trapping

in the 3:1 resonance and increase of the eccentricities. In the first case, the system
continues towards the 2:1 resonance and, due to the gap there, the only possibility

for the system is to follow the resonant family S
2/1
I . As we have mentioned above, the

case which is selected by the system depends on the migration rate. At the resonances
between the 2:1 and 3:1 (e.g. the 5:2) there are also bifurcations of resonant families
without the presence of instabilities. These bifurcating families consist of orbits of
higher multiplicity [24]. These properties of the circular family explain why the sys-
tem is hardly captured in such resonances.
When the system leaves the circular family, it follows the elliptic - resonant families

along which the resonance remains almost constant. These families are symmetric, S,
i.e. in the rotating frame they are symmetric with respect to the x-axis (see Fig. 1a,b).
In the inertial plane of motion, symmetric orbits correspond to almost Keplerian or-
bits which are aligned (�2 − �1 = 0) or anti-aligned (�2 − �1 = 180◦) and the
planets are initially (and periodically) in conjunction, i.e. Mi = 0 or 180

◦. From
these symmetric families asymmetric families, A, may bifurcate [4]. At the bifurca-
tion points the symmetric families become unstable, while the bifurcated asymmetric
families are stable. For particular mass values the families form characteristic curves
in phase space. The periodic orbits in these families correspond to elliptic orbits with
eccentricities that vary along the families and we can present them as curves on the
plane e1− e2. The form of these curves depends on the mass ratio m1/m2 (up to first
order in masses) [14].
If Fig. 8, we present the 2:1 and 3:1 resonant families for the indicated mass ratio

values (see [7] and [25], respectively). The families bifurcate from the circular family
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Fig. 9. Evolution of resonant angles along the 2:1 resonant families for planetary mass ratio
(a) m2/m1 = 0.3 (b) m2/m1 = 0.6 (c) m2/m1 = 5.0.

at (e1, e2) = (0, 0) and are symmetric and stable. At the points Bi the families become
unstable and bifurcation of asymmetric families occurs. Particularly, for the mass ra-
tio m2/m1 = 0.6 the symmetric family S2 becomes unstable at B21 and stable, again,
at B22. The asymmetric family A2 forms a bridge between the two points. In the same
figures, we present the migrating evolution of the planetary system under the Stoke’s
dissipation with C2 = 10

−6 and α2 = 0.7 (2:1 case) and 0.6 (3:1 case). Initially the
system evolves along the circular family at (0,0). When the system is captured in the
resonance then the stable resonant families are followed. It is clear that the families
of stable periodic orbits guide the migration of the planetary system. The migration
stops asymptotically at a point (e∗1, e∗2), which depends on the eccentricity damping
parameter α. Then the system oscillates around the stable periodic orbit at (e∗1, e∗2)
and, consequently, the migration ends in a stable resonant planetary configuration.
In a p : q (p �= q) resonance we can define the resonant (slow) angle variables [26]

θi = pλ2 − qλ1 − (p− q)�i, (i = 1, 2), Δ� = �2 −�1, (8)

where λi = Mi + �i is the mean longitude of the planet Pi. The apsidal difference
Δ� is easily derived from θi. At the exact resonance or, equivalently, at a periodic
orbit, θi are almost constant and this is also called apsidal corotation resonance. For
elliptic symmetric periodic orbits θi = 0

◦ or 180o and this value characterizes all the
periodic orbits in family sections where ei �= 0. Instead, in asymmetric periodic orbits
θi can take any value which varies along the family. In Fig. 9 we present the evolution
of θ1 and Δ� as the system migrates along the 2:1 resonant families. After resonance
capture the angles librate with small amplitude around the value that corresponds to
the exact resonance. E.g. in the panel (c) the angle θ1 initially rotates but the apsidal
difference Δ� librates even before the capture (this is called apsidal resonance). After
the capture in the exact resonance both angles librate around 0◦ (symmetric configu-
ration). In the panels (a) and (b) we observe the asymmetric planetary configurations
after B1 and between B21 and B22, respectively.

4 Migration of three-planet systems

The dynamics of three-planet systems is described by the four-body problem of plane-
tary type for which only few works can be found in literature. The system of Jupiter’s
satellites Io – Europa – Ganymede has been studied firstly by Ferraz-Mello [27]. This
system is locked in the Laplace resonance i.e. Io-Europa revolves in the 2:1 resonance
and the same holds for the Europa-Ganymedes pair. Also, computation of periodic
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Fig. 10. Evolution of the mean motion ratio of the planet pairs P1−P2 and P2−P3 during
migration. The planetary masses are m1 = 0.001, m2 = 0.002, m3 = 0.0005 and C3 = 10

−5,
α = 0.95. P3 starts from a distant circular orbit (a) The planets P1, P2 are initially in
eccentric 2:1 resonant motion (b) P1, P2 are initially in 2:1 resonant circular orbits (c) P1,
P2 are initially at circular but non-resonant orbits.

orbits for this system are found in [28]. The Laplace resonance of the exosolar sys-
tem Gliese-876 is studied in [29]. Numerical simulations for the study of resonance
trapping have been performed by Libert and Tsiganis [30]. They used the system (4)
by applying the Stoke’s drag to the outer and the middle planet. They indicated the
particular resonances observed and the possible increase of inclinations but they do
not examine the long term stability of the resonant configurations obtained.
In the following we present particular numerical simulations which lead to reso-

nance capture and, finally, to a stable planetary configuration. In our approach, we
set the inner (P1) and the middle planet (P2) in a regular eccentric orbit at the 2:1
resonance, as those described in the previous section (i.e. close to a stable periodic
orbit). We assume that the dissipative force is not applied to these planets. The third
planet (P3) is assumed to migrate due to the Stoke’s force starting at a large distance
from the orbit of P2.
The simulations presented in Fig. 10 are quite typical for planetary masses of the

order of Jupiter’s mass (i.e. mi = O(10
−3)). In panel (a) P1 and P2 are located in

a configuration, which corresponds to a stable symmetric elliptic periodic orbit in
the 2:1 resonance (a1 = 1, a2 = 1.58) and at the eccentricities e1 = 0.4, e2 = 0.11.
P3 starts from an almost circular orbit at a3 = 3.2 (i.e. n2/n3 ≈ 2.8) and migrates
inward due to the drag force with C3 = 10

−5 and α = 0.95, i.e. n2/n3 decreases. The
capture in the three-planet resonance 1:2:4, which is known as Laplace resonance, is
obtained after about 35Ky when n2/n3 ≈ 2. However, the trapping in the resonance
holds only for about 10Ky and then the system leaves the resonance. We mention
that the eccentricities show strong irregular variations after the resonance capture
and the motion becomes strongly chaotic. Under such conditions close encounters are
unavoidable and the system is disrupted. Therefore, in this case the capture is tempo-
ral and the particular planetary configuration during the capture is characterized as
unstable. Many numerical simulations show that if the inner planet pair starts from
an eccentric motion, the capture in a stable three-planet configuration is quite rare.
In the second simulation (Fig. 10b) we consider the same setup as above but now

the inner and the outer planet starts from an almost circular orbit ei ≈ 0 at the 2:1
resonance. During migration the planets P1 and P2 remain in 2:1 resonance. When
n2/n3 ≈ 2, P3 is also trapped in the 2:1 resonance with P2. Thus, we obtain trapping
in the Laplace resonance which lasts for a very long time interval. If the planets P1
and P2 are initially not in resonance but n1/n2 is a bit larger than 2.0, then we ob-
tain the evolution shown in Fig. 10c. The mean motion ratio n2/n3 initially decreases
due to the inward migration of P3 but n1/n2 remains constant in average. When
n2/n3 ≈ 2, P2 and P3 are captured in the resonance and this causes a decreasing rate
for n1/n2. When n1/n2 reaches the 2:1 resonance, too, we get a stable 1:2:4 resonant
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(a) (b)

Fig. 11. (a) Evolution of eccentricities and apsidal angles Δ�ij during the migration pre-
sented in Fig. 10b. (b) The presentation of the migration in the eccentricity space e1−e2−e3
(red crosses). Blue line indicates the running average of the evolution (the migration path).
A symmetric and an asymmetric orbital stage at t = 400Ky (orbit 1 ) and at t = 125Ky
(orbit 2 ), respectively, are indicated.

configuration and the rest evolution is qualitatively the same as in the previous sim-
ulation (panel b). The above results have been verified by many simulations, i.e. in
order to create a stable resonant configuration we should start migration from orbits
with low eccentricities.
For three-planet systems we can define resonant angles, similarly to the two-planet

systems (see Eq. (8)). For the Laplace resonance these angles are defined as [29]

θ1 = λ1 − 2λ2 +�1 θ2 = λ1 − 2λ2 +�2
θ3 = λ2 − 2λ3 +�2 θ4 = λ2 − 2λ3 +�3.

(9)

Note that in the above definition we take separately the angles of the two body
resonances. In the neigbourhood of the exact resonance all resonant angles should
librate. We can easily obtain from Eq. (9) the relations

Δ�12 = �2 −�1 = θ2 − θ1, Δ�23 = �3 −�2 = θ4 − θ3. (10)

Thus, in the resonance the apsidal differences of the separate pairs of planets should
librate too. Also we can derive the Laplace resonant angle, which depends only on
the mean longitudes λi =Mi +�i and is defined as

θL = θ2 − θ3 = λ1 − 3λ2 + 2λ3. (11)

The libration of θL is a strong indication that the system has been trapped in the
resonance.
Next we focus our study on the stable resonant capture presented in Fig. 10b.

In Fig. 11a, we show the evolution of the eccentricities and the apsidal difference
angles along the simulation. We observe three intervals of different behaviour. Before
capture, the eccentricities show small oscillations at small values (larger amplitude is
observed for e1). At this interval Δ�12 and Δ�23 rotate. After the resonance capture,
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(a) (b)

Fig. 12. Evolution of orbital elements and resonant angles for the (a) symmetric orbit 1
and (b) asymmetric orbit 2.

at t ≈ 25Ky, the eccentricities e1 and e2 start to increase while e3 shows some fast
and slow variations of a relatively large amplitude. At this interval the angles Δ�ij
seem to librate around asymmetric values (i.e. different than 0◦ or 180◦). However,
this situation is temporal and for t > 200Ky we get librations around 0◦. Also for
t > 150Ky, e3 starts to increase quite smoothly. Thus the system can be clearly
located at particular orbital elements. Similarly with Fig. 8, if we present the evolution
in the space of planetary eccentricities we obtain the migration path of Fig. 11b. After
the initial large variations at low eccentricities the system seems to follow a particular
characteristic curve. In the arc AB there are asymmetric librations of the resonant
angles while at section BC all resonant angles librate around 0◦. Accordingly with the
systems of two planets, we may conjecture that the migration path reveals families
of stable periodic orbits.
In order to determine initial conditions, ai0, ei0, �i0, Mi0 (i = 1, 2, 3), close to

the exact resonance, we perform a numerical integration by considering as initial
conditions those provided by the migration evolution at particular time values where
the system seems to have reached a stable configuration. After that point we stop
including the dissipative force in the integration and allow, instead, the system to
evolve only with gravitational interactions. If the system is indeed close to the exact
resonance we expect that ai(t) ≈ a0i and ei(t) ≈ ei0. We determine the values a0i and
e0i as the averages < ai(t) > and < ei(t) >, respectively, in the interval of integration
(of about 1Ky). The pericenter angles �0i can be obtained from Eqs. (10) by taking
into account the libration centers of Δ�12 and Δ�23, which are determined again
by averages over the integration interval and by choosing an inertial reference frame
where �1 = 0. In the same way, by using Eqs. (9), we can determine the location
of the planets on their elliptic orbits, e.g. the initial mean anomalies M0i, from the
libration centers of the resonance angles θ2 and θ3 by assuming that the inner planet
is initially at its pericenter (M10 = 0).
As an example we present in Fig. 12 the evolution of some orbital elements for two

orbits with initial conditions taken from the migration evolution at t = 400Ky (orbit
1 ) and at t = 125Ky (orbit 2 ), as they are indicated in Fig. 11. Applying the method
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Fig. 13. The Keplerian planetary orbits for the stable configurations of orbit 1 and orbit 2
and the evolution of the Laplace resonant angle θL.

described above, we take the following initial conditions of stable configurations:

Orbit 1: a10 = 1.0, e10 = 0.695, �10 = 0
◦, M10 = 0◦

a20 = 1.589, e20 = 0.341, �20 = 0
◦, M20 = 0◦

a30 = 2.528, e30 = 0.139, �30 = 0
◦, M30 = 0◦

and
Orbit 2: a10 = 1.0, e10 = 0.400, �10 = 0

◦, M10 = 0
◦

a20 = 1.591, e20 = 0.154, �20 = −30.6◦, M20 = 26.6◦
a30 = 2.536, e30 = 0.081, �30 = 53.7

◦, M30 = −64.5◦.
As expected, orbit 1 is symmetric, particularly all planetary ellipses are aligned and
planets can be set initially at their pericenters. Orbit 2 is asymmetric and lines of
apsides of planetary orbits form angles different than 0◦ or 180◦. Also, the planets
cannot be found in conjunction i.e. they can not be found at the same time at an
apside (pericenter or apocenter). The planetary orbits (for a short time interval) and
a potential initial position of planets is presented in Fig. 13. Also we present the
libration of the Laplace resonant angle (11) along these orbits, which indicates that
the system is inside the 1:2:4 resonance.

5 Conclusions

We studied the possible resonance capture of planets and its consequences in the
evolution of planetary systems. Starting from a planetary system, which, generally,
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is not formed within a resonant domain, we consider a migration process that drives
the planets in a resonant trapping. From a physical point of view we can assume
that planetary migration is caused by the interaction of the planets with the proto-
planetary disk of gas and dust. In our study we use the Stoke’s drag force to simulate
this interaction. The effect of this additional force has as a consequence the damping
of semimajor axes and the damping of eccentricities of planetary orbits.
Our main aim of this study is to determine, due to resonant capture, planetary

configurations that guarantee long-term stability. We showed that resonant capture
is probable when particular initial conditions are assumed and the parameters of the
dissipative forces are restricted in some intervals. The planetary configurations, which
are obtained after migration, may be quite eccentric, since capture in resonance causes
a rise in the eccentricities when eccentricity damping is not very strong.
In Sect. 3, we reviewed the dynamics of 2:1 and 3:1 resonant capture which is

closely related with the periodic orbits of the three-body problem. Such periodic or-
bits are non isolated but they form families of orbits, which mono-parametrically
extend in phase space and along the particular resonance. When the system is cap-
tured in the resonance then its migration continues due to the drag and the average
evolution in phase space is driven by the families of stable periodic orbits. In the
present study we give a possible explanation why the capture in the 2:1 resonance is
very probable and consists a normal limit of the migration process. Capture in 3:1
resonance is also probable due to the existence of a small unstable segment in the cir-
cular family and the bifurcation of a stable family of periodic orbits. However, in this
case the migration rate should be sufficiently slow. On the other hand, and according
to our approach, the permanent capture in the 5:2 resonance is not so probable. Since
the families of periodic orbits depends on the ratio of planetary masses, the same is
true for the migration paths of the planetary systems. This becomes clear in Fig. 8
and we may claim that the same dependence also holds for three-planet systems.
The dynamics of three-planet systems is more complicated and has not been stud-

ied sufficiently yet. Various simulations show that most of such systems are unstable
and disrupted in short time intervals. A first numerical study which considers the ef-
fect of dissipative forces has been done in [30]. In the present paper, we based on the
dynamics of two-planet systems and proposed particular initial and migration con-
ditions in order to obtain trapping in stable three-planet resonances. It seems that,
when we consider slow migration rate and almost circular initial planetary orbits,
the system is driven in a three-planet resonant stable configuration. We studied and
showed a typical simulation with capture in the Laplace resonance 1:2:4. Particular
planetary configurations of long-term stability can be determined by considering lo-
cal averages along the migration process and averages of the orbital elements along
evolution in the absence of the dissipative force. Capture and stable configurations
can be determined also for other resonances, e.g. 1:2:6, 1:3:6 and 1:3:9, by following
the same procedure.
Similarly to the two-planet systems, it seems that migration of three planet sys-

tems follows particular paths in phase space that should be related to the existence
of families of periodic orbits. The only known relevant computed families are those in
[28]. They are symmetric, restricted in low eccentricities and computed for the par-
ticular system of the Galilean satellites Io, Europa and Ganymede. In our study, we
have found strong indications that resonant families exist and extend up to high ec-
centricities in the four-body problem of planetary type. Also, these families are either
symmetric or asymmetric. The computation of the associated families, which should
be done in a future work, will prove definitely the stability of the planetary configura-
tions obtained, when dissipation vanishes. This could provide useful information for
understanding the formation and the orbital configuration of multiple exoplanet sys-
tems. Also, a similar study can be performed for systems of more that three planets.
The determination of stable configurations in such systems is an open question.
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