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Abstract. The study of one-dimensional particle networks of Classi-
cal Mechanics, through Hamiltonian models, has taught us a lot about
oscillations of particles coupled to each other by nearest neighbor (short
range) interactions. Recently, however, a careful analysis of the role of
long range interactions (LRI) has shown that several widely accepted
notions concerning chaos and the approach to thermal equilibrium need
to be modified, since LRI strongly affects the statistics of certain very
interesting, long lasting metastable states. On the other hand, when
LRI (in the form of non-local or all-to-all coupling) was introduced in
systems of biological oscillators, Kuramoto’s theory of synchronization
was developed and soon thereafter researchers studied amplitude and
phase oscillations in networks of FitzHugh Nagumo and Hindmarsh
Rose (HR) neuron models. In these models certain fascinating phe-
nomena called chimera states were discovered where populations of syn-
chronous and asynchronous oscillators are seen to coexist in the same
system. Currently, their synchronization properties are being widely
investigated in HR mathematical models as well as realistic neural net-
works, similar to what one finds in simple living organisms like the
C.elegans worm.

1 Introduction

1.1 Long range interactions in mechanical oscillators

As is well-known, many problems in theoretical physics are expressed in the form
of Hamiltonian systems. Of these the first to be extensively studied were low-
dimensional, possessing as few as two (or three) degrees of freedom [1]. In the last
20 years, however, great attention has been devoted to Hamiltonian systems of high
dimensionality. Among these perhaps the most famous are those that deal with the
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dynamics and statistics of a large number N of mass particles coupled to each other
by nearest neighbor interactions [2]. In such systems, certain local phenomena like
the “stickiness” of chaotic orbits near tori of regular motion gave rise to important
questions concerning the system’s global behavior in the long time limit, at mod-
erate values of N and total energy E. In particular, long-lasting quasi-stationary
states (QSS) were discovered, which may be termed “weakly chaotic” since they
are described by probability density functions (pdfs) which are significantly different
than the purely Gaussian pdfs associated with Boltzmann Gibbs (BG) ergodicity, or
“strong chaos” [3,4].
Realizing that such metastable phenomena are due to long-tail correlations and

intrinsic interactions of longer range than had been expected, a number of researchers
decided to introduce long range interactions (LRI) explicitly into the Hamiltonian and
study the dynamics in the thermodynamic limit, where E → ∞ and N → ∞ with
E/N = constant [5–12]. Perhaps the best known example in this class is the so-called
Hamiltonian Mean Field model, where the Maximal Lyapunov Exponent (MLE) was
shown to decrease with increasing number of degrees of freedom N , according to a
specific power law [6,7,10,11]. This signified that, at least in that model, a more orga-
nized “global” behavior appears to exist, which has important implications regarding
the thermodynamics of the system.
More recently, another famous example in this category, the Fermi Pasta Ulam

(FPU) 1-dimensional lattice of N nonlinearly coupled oscillators was studied in the
presence of long range interactions [13]. The Hamiltonian of this system may be
written in the general form

H(p, x) = 1
2

N∑

n=1

p2n +

N∑

n=0

V2(xn+1 − xn) +
N∑

n=0

V4(xn+1 − xn), (1)

with V2 and V4 representing the quadratic and quartic functions V2(u) = au
2/2

and V4(u) = bu
4/4 under purely nearest-neighbor interactions. The pn, xn are the

canonical conjugate pairs of momentum and position variables assigned to the nth

particle, with n = 1, 2, ..., N and fixed boundary conditions, i.e. x0 = xN+1 = p0 =
pN+1 = 0.
Let us now modify the above form of the FPU Hamiltonian by allowing interac-

tions among all particles in the V2 and V4 parts of the potential with coefficients that
decay with distance as 1/rα1 and 1/rα2 respectively. In particular, the Hamiltonian
that describes this generalized FPU β-model has the form

H = 1
2

N∑

n=1

p2n +
a

2Ñ1

N∑

n=0

N+1∑

m=n+1

(xn − xm)2
(m− n)α1

+
b

4Ñ2

N∑

n=0

N+1∑

m=n+1

(xn − xm)4
(m− n)α2 , (2)

where a and b are positive constants. Note that the rescaling factors Ñi, i = 1, 2 in (2)

Ñi(N,αi) ≡ 1
N

N∑

n=0

N+1∑

m=n+1

1

(m− n)αi , (i = 1, 2) (3)

serve to make the Hamiltonian extensive, i.e. proportional to N . Indeed, without them
the sums of V2 and V4 in (2) would increase as (N+1)(N+2)/2 in the thermodynamic

limit, while the kinetic energy grows like N [13]. Notice that Ñi � 1 when αi → ∞,
which, in the N →∞ limit, reduces Hamiltonian (2) to (1).
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Fig. 1. The Maximal Lyapunov Exponent MLE = λ versus the size N , for various α = α2
values and α1 =∞ in (2). We have set ε = 9, b = 10 and fixed boundary conditions. (Figure
taken from [13].)

Fig. 2. Time-averaged momentum distributions for the system (2) with α = α2, α1 = ∞,
ε = 9, b = 10 and N = 8192: Top figure corresponds to α = 1.4 and bottom figure to
α = 0.7. (Figure taken from [13].)

The parameters α1 and α2 control the range of interactions and play a crucial role
in the dynamics of the system. In fact, if we set α1 = ∞ and α2 = α, it was shown
in [13] that the MLE λ displays a crossover at the value α = 1 below which λ starts to
decrease towards zero as N increases. This is shown in Fig. 1 (in double logarithmic
scale for several values of α), where λ is seen to decay vs. N by a power law for α < 1,
while it appears to converge to a positive value for α ≥ 1. The calculations presented
here have been made keeping the specific energy ε = 9 fixed.
Observe that Fig. 1 provides strong evidence of a transition from strong to weak

chaos, when the interactions decay as 1/r with respect to the inter-particle distance.
Now let us explore the implications of LRI regarding the statistical behavior of these
types of chaotic behavior, with regard to what was referred to above as “strong” vs.
“weak” chaos. For this purpose, we will start at t = 0 with positions equal to zero
and momenta drawn randomly from a uniform distribution and evaluate pdfs of the
sums of the the momenta in the spirit of the central limit theorem. Thus, as seen in
Fig. 2, we assign to each pj-interval on the horizontal axis the number of times that
the momenta fall in the j-th band, calculated over long time intervals. In Fig. 2 we
show two representative examples of such pdfs, one for the case of short range (i.e.
α > 1) and one for long range interactions (i.e. α < 1). The difference in the two
pdfs is distinct: For α > 1 a Gaussian is quickly formed indicating BG ergodicity and
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Fig. 3. Crossover boundary between the Gaussian and q-Gaussian regimes, when N =
1024, 2048, 4096, 8192 for the systems with ε = 9, and all b values. The fitting straight line is
1/N = Dbδ/tγc , with D = 2.3818×104, δ = 0.27048, and γ = 1.365. (Figure taken from [13].)

“strong” chaos, while for α < 1 the data is well fitted by a q-Gaussian pdf of the form

pq(x) = Ae
−βx2
q = A(1− (1− q)βx2)1/(1−q), (4)

with q = 1.249. This pdf maximizes the Tsallis entropy [14]

Sq = −k 1−
∑W
i=1 p

q
i

1− q , (5)

under the constraint
∑W
i=1 pi = 1, where q is the entropic index, β is a free parameter

and A a normalization constant. Expression (4) is a generalization of the Gaussian,
since in the limit q → 1, eq → e. The Tsallis entropy is not additive, and, in general,
non-extensive and thus offers the possibility of studying cases whose subsystems are
always correlated, as is the situation with many realistic physical systems [14].
The value of q, in fact, reveals how far the system is from thermal equilibrium. It

is not generally constant, as it often tends to become 1 (Gaussian pdf) over intervals
that correspond to the lifetime of the QSS at hand. Let us denote by t = tc the
time after which q starts decreasing to its BG value (q = 1). The transition from the
weakly chaotic QSS to ergodicity and Boltzmann’s statistics is shown by a schematic
diagram in Fig. 3, where a crossover boundary is drawn as a straight line between
the Gaussian and q-Gaussian regimes, for N = 1024, 2048, 4096, 8192, ε = 9, and
all b values. The straight line is given by 1/N = Dbδ/tγc , with D = 2.3818 × 104,
δ = 0.27048, and γ = 1.365 (see also [13]).
In a recent paper, H. Christodoulidi et al. [15] examined the generalized FPU

β–Hamiltonian in the form (2), taking α1 and α2 to vary over all allowed values ≥ 0
and obtained a number of interesting results concerning the dynamics and statistics of
the system under LRI. Most importantly, they found that in the absence of quadratic
terms V2 and for full LRI on V4 (i.e. α2 = 0), the system obeys Tsallis statistics and
is weakly chaotic in the thermodynamic limit of tc → ∞ and N → ∞, as the index
q in that limit is extrapolated to q∞ values that are strictly greater than 1. These
results are briefly reviewed here in Sect. 2.
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1.2 Long range interactions in biological oscillators

About ten years ago, a novel dynamical phenomenon was discovered in populations
of identical and symmetrically coupled oscillators: Under non-local coupling that
generally decays with distance, a surprising coexistence of synchronized and asyn-
chronous populations was revealed and given the name chimera state after the Greek
mythological creature made up of different animals.
Chimera states were first reported by Kuramoto and Battogtokh in a model of

densely and uniformly distributed oscillators, described by the complex Ginzburg-
Landau equation in the weak coupling limit and one spatial dimension, with non-
local coupling of exponential form [20]. This was followed by the work of Abrams
and Strogatz [21], who observed this phenomenon in a 1-dimensional ring contin-
uum of phase oscillators assuming non-local coupling with a cosine kernel and gave
it the name “chimera”. The same authors also found chimera states in networks of
identical, symmetrically coupled Kuramoto phase oscillators [22] by considering two
populations with all-to-all coupling, assuming stronger coupling within each popula-
tion and weaker coupling between them.
More recently, Laing and co-authors used the same model to demonstrate the

presence of chimeras in coupled Stuart-Landau oscillators [27] and investigated the
effect of random removal of network connections on the existence and stability of
chimera states [28]. Chimeras have also been observed in many other systems, in-
cluding coupled chaotic logistic maps and Rössler models [29]. The first experimental
evidence of such states was subsequently reported in populations of coupled chemi-
cal oscillators, as well as optical coupled-map lattices realized by liquid-crystal light
modulators [30,31].
Concerning the importance of chimera states in brain dynamics, it is believed that

they could potentially explain the phenomenon of unihemispheric sleep observed in
birds and dolphins which sleep with one eye open, suggesting that one hemisphere
of the brain is synchronous while the other is asynchronous [32,33]. For this rea-
son it is particularly interesting that such states have been recently observed in
FitzHugh–Nagumo [34] and Hindmarsh–Rose [24] networks of coupled oscillators
modeling neuron dynamics. The results of the latter study are briefly reviewed here
in Sect. 3.
Synchronization in phase oscillator systems with an inertial term involving a sec-

ond order derivative multiplied by a mass parameter m > 0 has been theoretically
studied by some researchers (see e.g. the review [19]). In some of these works an
external periodic driving is included and a Fokker-Planck analysis is performed re-
lating critical behavior and synchronization transitions to those of the corresponding
Kuramoto model in the limit m → 0. This raises the interesting question whether
chimera states can actually be observed in physical systems of this type.
Recently, this question was answered affirmatively in an experiment involving two

populations of identical mechanical metronomes, whose inter-population coupling is
weaker than the coupling within each subpopulation [35]. In this setting, chimeras
were shown to emerge in a thin region of parameter space as a competition between
two fundamental synchronization states. A variety of complex chimera-like states was
observed and a mathematical model was proposed with variable damping and all os-
cillator masses equal to unity.
In the paper [38] Bountis et al. demonstrated the existence of chimera states in

two non-locally coupled populations of pendulum-like elements, in which dissipation
is modeled by a first derivative term multiplied by a parameter ε > 0. As in other
studies, the coupling within each population is weaker than the one between the pop-
ulations. The results of this work are summarized in Sect. 4. Finally, this review ends
with our conclusions listed in Sect. 5.
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2 LRI in an FPU-β model with quadratic and quartic terms

Analyzing the solutions of the generalized FPU-β Hamiltonian systems (2),
Christodoulidi et al. showed in [15] that typical momentum pdfs attain a classical
Gaussian shape, either under purely short range interactions, or when LRI apply
only to the quadratic part. On the other hand, when LRI applies to the quartic inter-
actions independently of interactions in the quadratic part, a clear q-Gaussian shape
emerges, as BG thermodynamics and strong chaos prevail. As is evident from these
results, the mechanism of LRI drives the system’s behavior away from BG statis-
tics, only if the quartic potential is long range. Instead, when LRI apply only to the
quadratic part, purely Gaussian pdfs are obtained.
Now, it is interesting to focus on the q values of the model under LRI with different

exponents α1, α2. What we would like to ask is: How does q change when one applies
LRI to the quartic potential and varies only the range of interactions in the quadratic
part? As we have mentioned, q-Gaussian distributions are associated with weak chaos
and are linked to QSS which persist for very long times, until the system achieves
energy equipartition at complete thermalization. In this regard, the precise value of
q is very significant since the higher the value of q the more the solution remains at a
QSS, as the orbits get trapped for longer and longer times in weakly chaotic regimes
of phase space.
Extrapolating the value of q in the limit N →∞, the authors of [15] estimate the

asymptotic value q = q∞ and also vary α2 to determine the dependence of q∞ on the
interaction range applied to the quartic part of the potential at the thermodynamic
limit. To this end, they consider a given value of α2 < 1 and systematically calculate
the q dependence on N . Plotting these q values in Fig. 4(a) versus 1/ logN it is shown
that their dependence is accurately described by the following expression:

q(N,α2) = q∞(α2)− c(α2)/ logN, (6)

where c(α2) is some constant.
This is important because it shows that the q∞(α2) obtained from Fig. 4(a) by

the intercept of the straight line Eq. (6) with the vertical axis (as N →∞) is larger
than 1, which implies that the q-Gaussians are attractors in that limit. Next, plotting
q∞(α2) vs. α2 in Fig. 4(b), one observes that it starts from 5/3 for α2 = 0, as
predicted numerically and theoretically in [14], and then, after about α2 = 0.2, falls
linearly towards 1. In particular, for 0.2 ≤ α2 ≤ 0.8 the values of q∞(α2) decrease as
q∞(α2) = 1.79− 0.475α2.
Note that the value of q reaches unity at α2 = 1.5 and not at the expected

α2 = 1 threshold between short and long range interactions. This is a very interesting
phenomenon that might be explained by the fact that q takes a very long time to
converge to 1 over the range 1 ≤ α2 ≤ 1.4. Its precise justification, however, remains
open.
A question of central importance in these studies is how long q remains larger than

1. In other words, how long does the system take before it thermalizes? To give an
answer we need to extend the results of [13] for different α2 values. More specifically,
in [13] it was found that for an exponent α2 = 0.7 in the quartic part of the potential,
the critical time tc (defined by the intersection of two fitting lines: one representing
the initial slow decrease and the other the power law behavior with a bigger slope)
at which q starts falling towards one increases with N as N ∝ tγc , for γ � 1.36.
This is a fundamental result because it suggests that tc becomes infinite only in the
thermodynamic limit, where weak chaos in the form of q-statistics changes to BG
thermostatistics.
It would be interesting, therefore, to examine this crossover value tc for various α2

ranges. To this end, the authors of [15] fixed N = 16384, took a1 →∞ and plotted in
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Fig. 4. (a) The linear dependence of q on 1/ logN for N = 4096, 8192, 16384 depicted here
provides an estimate for q∞ in the thermodynamic limit, as α2 changes. (b) The values of
q∞ are plotted here versus α2. Clearly, for α2 above 1.4, one obtains q = 1. (Figures taken
from [15].)

Fig. 5. Evolution of the index q: The plot of q when N = 16384 for various α2 values and
α1 → ∞. The points at which the power laws change slope correspond to the crossover
times tc at which the QSS ends and the approach to BG thermal equilibrium begins. It
seems plausible that tc for very low values of α2 are too large to be numerically accessible.
(Figures taken from [15].)

Fig. 5 q vs. t for different α2 over this range. As we see in the figure, for small values
of α2, q appears to decrease very slowly, following a power law that forms a single
straight line in linear-logarithmic scale (see the top curves in Fig. 5). The shape of
the plots shows that as α2 increases, the initial ‘straight line’ breaks at some point
into a second one that tends faster to q = 1. For example, for α2 = 0.9, this crossover
point is about tc ≈ 1.6× 106, while at α2 = 1 it becomes as small as tc ≈ 5× 105.

3 Chimera states in networks of HR neuron oscillator models

3.1 Synchronization in complex networks

Synchronization in complex systems occurs when an enormous system of oscillators
spontaneously locks to a common frequency, despite the inevitable differences in the
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Fig. 6. A time snapshot of the variables θi(t) of the Kuramoto–Battoktokh solution of
Eq. (8) showing the chimera state. (Figure taken from [20].)

natural frequencies of the individual oscillators. Synchronization processes are ubiq-
uitous in nature and play an important role in the context of biology (networks of
pacemaker cells in the heart), ecology (synchronously flashing fireflies and crickets
that chirp in unison), even technological applications (arrays of lasers and microwave
oscillators).
As has been eloquently described in a number of seminal references [16,17], Arthur

T. Winfree was the first who considered, as early as 1967 [18], biological oscillators as
phase oscillators, neglecting the amplitude, while in 1975 Yoshiki Kuramoto developed
an analytical theory to explain synchronization of globally coupled phase oscillators
of the form

θ̇i = ωi +
K

N

N∑

j=1

sin(θj − θi), i = 1 . . . N (7)

where K is a coupling constant and N represents the total number of oscillators
(for a review of Kuramoto’s theory see [19]). The frequencies ωi ∈ g(ω) are selected
randomly from a natural frequency distribution, symmetric about Ω.
A truly surprising turn of events occurred in 2002, when Kuramoto and Battog-

tokh [20] studied the problem of N → ∞ oscillators, as a reduction of the Complex
Ginzburg-Landau equation for weak coupling:

∂θ(x, t)

∂t
= ω −

∫ 1

0

G(x− x′) sin[θ(x, t)− θ(x′, t) + α]dx′ (8)

where ω is fixed, θ(x, t) is the phase of the oscillator at position x and time t, α is a
time lag parameter and the kernel satisfies

G(x− x′) ∝ e−κ|x−x′| (9)

implying the presence of non-local coupling in the system. Solving this problem ana-
lytically as well as numerically (replacing θ(x, t) by θi(t) for large N) they observed a
remarkable coexistence of coherent and incoherent oscillations in the form of a hybrid
state shown in Fig. 6 under periodic boundary conditions.
Soon thereafter, Abrams and Strogatz [21,22] repeated the analysis using instead

of (9) a cosine kernel

∂θ(x, t)

∂t
= ω −

∫ π

−π
G(x− x′) sin[θ(x, t)− θ(x′, t) + α]dx′ (10)

G(x) =
1

2π
(1 +A cosx), 0 ≤ A ≤ 1 (11)
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which allowed them to solve the model explicitly. They noted that this state had never
been seen in systems with local or global coupling and has nothing to do with par-
tially locked or partially incoherent states that occur in populations of non-identical
oscillators. They were the first who named it a “chimera state” and studied analyti-
cally its fundamental properties such as stability, dynamics and bifurcations. Indeed,
what made the analysis possible was a remarkable ansatz by Ott and Antonsen [23],
which permitted the reduction of the continuum model to a low-dimensional system
of ordinary differential (odes) and showed that the appearance of a chimera could be
viewed as the result of a saddle node bifurcation!
Thus, from what is known so far we may conclude the following: With local or

global coupling, identical oscillators either synchronize or oscillate incoherently, but
never do both simultaneously. However, under non-local coupling, identical oscillators
can split into two coexisting synchronous and asynchronous domains, yielding what
we called “chimera states”.
Chimera states can also be found in networks of two coupled populations as shown

in a case studied by [22], which can be written in the form:

dθ1i
dt
= ω +

μ

N

j=1∑

N

sin(θ1j − θ1i − α) +
ν

N

j=1∑

N

sin(θ2j − θ1i − α) (12)

dθ2i
dt
= ω +

μ

N

j=1∑

N

sin(θ2j − θ2i − α) +
ν

N

j=1∑

N

sin(θ1j − θ2i − α) (13)

where the coupling between populations ν > 0 is somewhat smaller than the coupling
μ > 0 within each population. Interestingly, such two-population chimeras have been
also been recently found in mechanical systems of pendulum-like oscillators [38], as
we discuss in more detail in Sect. 4 below.

3.2 Chimera states in the context of neuroscience

Many birds as well as dolphins sleep with one eye open, in the sense that one hemi-
sphere of the brain may be considered synchronous while the other is asynchronous.
This coexistence of synchrony and asynchrony is what we referred to as a chimera
state.
In this context, J. Hizanidis at al. [24] were the first to study a network of

2-Dimensional (2D) Hindmarsh-Rose (HR) models of neuron oscillators described
by the equations

ẋk = yk − x3k + 3x2k + J +
σx

2R

j=k+R∑

j=k−R
[bxx(xj − xk) + bxy(yj − yk)] (14)

ẏk = 1− 5x2k − yk +
σy

2R

j=k+R∑

j=k−R
[byx(xj − xk) + byy(yj − yk)]. (15)

The above pair of equations assigned to each node was introduced by Hindmarsh
and Rose [25] to describe a single neuron in terms of an x(t) variable that describes
the potential across the neuron membrane and a y(t) variable representing the ion
currents flowing across the membrane. In the above system the parameter J is intro-
duced to denote an externally applied current, while the coupling of each oscillator
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Fig. 7. Phase space analysis of the solutions of the 2D HR model in the plane, at J =
0.(Figure taken from [24].)

to its R neighbors involves, in general, interactions between both x and y variables
of the oscillators given by the elements of a matrix B

B =

(
bxx bxy
byx byy

)
=

(
cosφ sinφ
−sinφ cosφ

)

as suggested in [34].
A simple analysis of the 2D HR model in the x-y phase plane presented in Fig. 7

reveals a case of bistability, where a stable node and a stable limit cycle (to which
different neuron oscillators can be attracted) are simultaneously present. As is also
evident, an unstable node and a saddle point are present in the dynamics at J = 0.
This bistability phenomenon at J = 0 is evident in the behavior of the full system
as seen in the top panel of Fig. 8, where many asynchronous oscillators appear inter-
spersed among the synchronous ones, when the coupling is diagonal with φ = −π in
the coupling matrix B.
As shown by the second row of panels in Fig. 8 complete synchronization may

also be achieved by choosing φ = π/4. Chimeras are discovered when the coupling in
(14) is restricted to the x-terms (i.e φ = 0), and are split in two or three parts as the
bottom two panels in Fig. 8 demonstrate. Now, as the external current J is increased,
the two nodes in Fig. 7 coalesce at the saddle point via a saddle node bifurcation
and the limit cycle is left as the only attractor. In that case, gradually increasing
the coupling constant σx = σ and keeping σ2 = 0, it is possible discover the chimera
shown in the left panels of Fig. 9. Note that this occurrence is accompanied by a
gradual collapse of the limit cycle, as indicated by the right panels of Fig. 9.
Next, the authors of [24] turned to an analogous study of the dynamics of 3D HR

models, in which every neuron is described by three first order odes [26]

ẋ = −ax3 + bx2 + y − z + J (16)

ẏ = c− dx2 − y
ż = r(s(x− x0)− z) (17)

where s = 4, x0 = −1.6, a = 1, b = 3, c = 1, d = 5, r = 0.001, x denotes again the
membrane potential, y describes the activity of fast gated ion channels (Na+ and
K+), and z represents the activity of slow gated ion channels (Ca+ and Cl−). The
interesting feature of these equations, unlike the 2D model, is that their solutions can
exhibit bursting and spiking patterns (see Fig. 10) commonly observed in realistic
neurons.
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Fig. 8. Snapshots of the xk variables at t = 3000, N = 1000, σx = σy = 0.1, J = 0, as the
range R and the angle φ of the coupling matrix are varied. Chimeras were only found for
diagonal coupling as shown in the bottom two panels. (Figure taken from [24].)

Fig. 9. Snapshots of the xk variables at R = 350, N = 1000, σx = σ and σy = 0, at J > 0,
as the value of σ is varied. Single chimeras were found to be associated with a collapse of
the limit cycle oscillations of each neuron. (Figure taken from [24].)

Searching for chimeras, J. Hizanidis et al. [24] examined a network of N=1000
3D-HR oscillators described by the equations

ẋk = yk − xk3 + bxk2 + J − zk + σx
2R

j=k+R∑

j=k−R
(xj − xk)

ẏk = 1− 5xk2 − yk
żk = r(s(xk + 1.6)− zk, k = 1, 2, ..., N,

where again only x to x coupling is assumed, s = 4 adjusts firing frequency adaptation
and burst production, r = 0.01 is the spiking frequency (i.e. number of spikes per
bursting) and b and J are parameters affecting the transition between spiking and
bursting. Interestingly, as shown in Fig. 10, chimeras were found to exist in this case
at coupling constant values about σ = 0.5, when both bursting and spiking behavior
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Fig. 10. Chimeras are observed in the 3D HR network model as the coupling constant
increases and both bursting and spiking are present in the x(t) oscillations. Here b = 3 and
J = 5. (Figure taken from [24].)

are present in the x(t) oscillations. This suggests that chimeras may indeed be found
to exist one day in realistic experiments of interest to neuroscience.
Extending this study to two-population networks of 2D HR neuron oscillators, we

may now proceed to solve the following systems of equations

ẋ1k = y
1
k − (x1k)3 + 3(x1k)2 + J +

σ

N

N∑

j=1

(x1j − x1k) +
ρ

N

N∑

j=1

(x2j − x1k)

ẏ1k = 1− 5(x1k)2 − y1k
(18)

ẋ2k = y
2
k − (x2k)3 + 3(x2k)2 + J +

σ

N

N∑

j=1

(x2j − x2k) +
ρ

N

N∑

j=1

(x2j − x1k)

ẏ2k = 1− 5(x2k)2 − y2k
building on the experience we have accumulated from the one population case. In
other words, we consider again only coupling in the x- variable and ask how does the
above system of two ring networks behave under all-to-all coupling when we vary the
current J and the coupling parameter ρ. Will we observe chimeras in this case?
For small internal coupling σ = 0.1 within each network the two populations

remain unsynchronized, as the inter-network coupling increases from ρ = 0.01 to 0.1,
with R = 340, b = 3 and J = 5. As Fig. 11 demonstrates, however, for larger internal
coupling σ = 0.5, as the inter network coupling increases from ρ = 0.01 in (a) to 0.1
in (j) (R = 340, b = 3, J = 5) chimera states indeed appear!

4 Chimeras in two coupled populations of pendulum-like oscillators

Let us now consider a two population network of non-identical phase oscillators in the
form studied in [27,28,36,37] and extend it by introducing an inertial term propor-
tional to a mass parameter m > 0. We thus obtain a network of two populations of
pendulum-like elements with all-to-all coupling within (and between) the populations,
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Fig. 11. For internal coupling parameter σ = 0.5, as the inter-network coupling increases
from ρ = 0.01 in (a) to 0.1 in (j) chimera states appear (R = 340, b = 3, J = 5.)

governed by the second order odes:

m
d2θ1i
dt2
+ ε
dθ1i
dt
= ωi − d1sin(θ1i ) +

μ

N

N∑

j=1

sin(θ1j − θ1i − α) +
ν

N

N∑

j=1

sin(θ2j − θ1i − α)

(19)

m
d2θ2i
dt2
+ ε
dθ2i
dt
= ωi − d2sin(θ2i ) +

μ

N

N∑

j=1

sin(θ2j − θ2i − α) +
ν

N

N∑

j=1

sin(θ1j − θ2i − α)

(20)

where i, j = 1, ...N , N is the number of oscillators in each population (subnetwork).
The two populations are labeled by the superscripts 1 and 2, while μ > 0 and ν > are
fixed positive parameters representing the coupling strength within the same popula-
tion and between the two populations respectively. The ωi are taken from a Lorentzian
distribution g(ω) [27], while μ and ν satisfy μ + ν = 1, with μ > ν as in [28]. The
oscillators in population 1 are numbered 1 to 500, while those in population 2 from
501 to 1000.
Note that Eqs. (19) and (20) describe the motion of two subnetworks of pendulum-

like oscillators, with each pendulum characterized by a mass m and a damping pa-
rameter ε. In what follows, we first neglect gravity, setting d1 = d2 = 0 in (19) and
(20) and later allow these parameters to be non-zero.
Now, as chimera states represent attractors of the dynamics, one does not expect

that they exist in the conservative limit ε = 0. Thus, in [38] the authors attempted
to locate chimeras in two ways: (a) First they set ε = 1 and increased the value of m
gradually from 0 and (b) they fixed m at a value where a chimera state is observed
and investigated the range of decreasing ε < 1 values over which the phenomenon
persists.
Following [38], let us set N = 500, μ = 0.6, ν = 0.4, α = π/2 − 0.05 and use

the Lorentzian distribution g(ω) = 1
π

γ
γ2+ω2 with γ = 0.001. Varying the α value one

discovers chimeras very close to α = π/2 − 0.05. Moreover, with μ = 0.6, chimeras
cease to exist for inter-population coupling 0 < ν < 0.3.
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Fig. 12. Snapshots of the variable θi for both populations at t = 3000, ε = 1 and increasing
mass values: (a) m = 0.001, (b) m = 0.0095, (c) m = 0.011, (d) m = 0.016, (e) m = 0.018,
and (f) m = 0.02. Gravity is neglected, taking di = 0, i = 1, 2 in Eqs. (19) and (20). (Figure
taken from Ref. [38].)

4.1 A threshold for the onset of chimeras in the m, ε plane

In [38] the authors first investigated the emergence of chimeras by increasing the mass
m above 0, keeping all other parameters constant. Setting ε = 1 and d1 = d2 = 0,
they demonstrated that chimera states are found to exist over a narrow interval of
mass values 0 < m ≈ 0.02, as shown in Fig. 12. They also noted that these results
do not change significantly when di > 0, i = 1, 2 and gravity is taken into account in
Eqs. (19), (20).
Let us now ask what happens when ε is decreased, for a mass value at which

chimeras have been found to exist. For example, let us take m = 0.011 (see Fig. 12)
and start decreasing 0 ≤ ε ≤ 1. What one observes is that at this m value chimeras
persist down to approximately ε = 0.61. Below this threshold value chimeras are no
longer observed and only patterns of nearly synchronized subgroups appear in the
network.
Repeating these calculations for different values of m and estimating approximate

thresholds εth) in the (m, ε(m) plane below which chimera states break down, it was
found in [38] that these thresholds fall on a nearly straight line, as seen in Fig. 13,
for m = 0.011 and decreasing damping rates: (a) ε = 1, (b) ε = 0.9, (c) ε = 0.68, and
(d) ε = 0.56.

4.2 Chimera explanation by reduction to a single pendulum equation

How can we explain these pendulum chimeras in a qualitative way? An attempt in
this direction was made in [38] by first simplifying the notation in Eqs. (19) and
(20) by calling the angle variables in the first and second population as θ1i ≡ φi and
θ2i ≡ θi respectively. Next, a typical chimera atm = 0.011 and ε = 1 is considered (see
Fig. 12), in which the second population is synchronized and the first is asynchronous.
Thus, taking d1 = d2 = 0 and ωi = ω the variables of the synchronized population
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Fig. 13. Setting m = 0.011, 0.013, 0.016, 0.02 and plotting the corresponding ε(m) =
0.61, 0.66, 0.74, 0.82 values in the (m, εth) plane, threshold values εth = ε(m) are determined
below which chimeras cease to exist. Note that ε(m) increases nearly linearly as a function
of the mass m. (Figure taken from Ref. [38].)

can be equated to a single θ(t) obeying the equation:

m
d2θ

dt2
+ ε
dθ

dt
= ω − μ sin(α) + ν

N

N∑

j=1

sin(φj − θ − α), (21)

in which the quantity ω−μ sin(α) on the right hand side is a constant average about
which θ(t) oscillates.
Expanding now the sine in the sum appearing in (21) yields two terms which can be

expressed in terms of quantities averaged over the oscillations of the unsynchronized
population as follows:

s(t) =
1

N

N∑

j=1

sin(φj), c(t) =
1

N

N∑

j=1

cos(φj), (22)

so that Eq. (21) finally becomes

m
d2θ

dt2
+ ε
dθ

dt
= ω − μ sin(α) + νs(t) cos(θ)− νc(t) sin(θ), (23)

where the variable θ → θ − α has been shifted to θ without loss of generality.
As noted in [38], the above analysis is motivated by the the numerical observa-

tion that the asynchronous variables oscillate on the average with the same period
as the synchronous ones, as seen in Fig. 14. Remarkably these quantities have the
same period as the original variables, suggesting that the chimera state represents a
phenomenon of entrainment due to periodic forcing. This is indeed verified by the fact
that the oscillatory terms s(t) and c(t), which represent the effect of the incoherent
population, enter parametrically in Eq. (23).
It is remarkable that the amplitude and form of the θ(t) oscillations are clearly

related to the corresponding quantities of the actual θi(t) oscillations shown in Fig. 15.
Note, however, that there is a certain “deformation” in the oscillations of the reduced
variable and a slightly smaller period than the one of the full system, which may be due
to the imposed simplifications and need to be better understood. Nevertheless, we find
it quite interesting that the above severe reduction of the problem to a single damped
pendulum Eq. (23) has allowed us to propose a plausible qualitative explanation of
such a complex phenomenon as the chimera state of a two-population network of
pendulum-like oscillators.
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Fig. 14. a) The averaged variables s(t) (solid line) and c(t) (dashed line) oscillate with the
same period as (b) the solution θ(t) of Eq. (23). The parameter values here are m = 0.011
and ε = 1. (Figure taken from Ref. [38].)

Fig. 15. The solution of the single pendulum equation Eq. (23) (left) approximates very
well the oscillation of the synchronized variables θi(t) as computed from Eq. (20), for ωi = ω,
m = 0.011 and ε = 1. (Figure taken from Ref. [38].)

5 Discussion and conclusions

Many complex phenomena from physics to biology are modeled by networks of coupled
nonlinear oscillators, which are mathematically expressed by appropriate systems
of first order odes. These phenomena are called complex because, even though at
the level of few oscillators (or nodes) their time evolution is well understood, when
large numbers of nodes are involved, they often display surprising properties and
unexpected global behavior.
In the study of these problems, one starts by assuming that the given equations of

motion correctly describe the dynamics of each individual node. The reasons, there-
fore, why the system as a whole behaves in an unexpected way must be sought in the
details of the coupling between the different variables of the system, often described
also as the connectivity pattern of the network.
In this review, I have examined only one aspect of this connectivity, focusing on

the range of the interactions among the nodes of the network. The specific question
I have asked is in what way does this range affect the global oscillatory dynamics
of the system. More specifically, I have chosen two situations: One regarding the
distinction between what I called “weak” and “strong” chaos in 1-dimensional lattices
of Hamiltonian mechanics and one related to the emergence of the so-called “chimera
states” of coexisting synchronous and asynchronous populations in biological networks
of neuron oscillators.
In the case of Hamiltonian oscillators, we discovered that if we couple all particle

pairs by terms proportional to r−α, where r = |xi − xj | is their mutual distance,
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the dynamics and statistics of the system crucially depends on whether the positive
parameter α satisfies 1 < α < ∞ or 0 ≤ α ≤ 1. The first case corresponds to short
range interactions and is characterized by strong chaos, as in the thermodynamic
limit (of increasing energy E and number of particles N with E/N fixed) Lyapunov
exponents grow and Boltzmann Gibbs statistics prevails. On the other hand, in the
second case of long range interactions, taking the thermodynamic limit, we find that
Lyapunov exponents decrease and the statistics becomes of Tsallis type characterizing
what we call weak chaos.
Turning now to our biological networks of coupled neuron oscillators of the

Hindmarsh-Rose type, we showed that these remarkable chimera states of coexist-
ing synchronous and asynchronous oscillating sub-networks are critically affected by
the presence of of long range interactions. For example, in ring networks the very
occurrence of chimeras depends on the number R of left and right neighbors of each
one of the N oscillators, where N and R are sufficiently large. Thus, keeping all
interaction factors equal (usually 1/N for each nodal pair), all we have to do is vary
the coupling strengths between variables (within each sub-network and between sub-
networks) and we will witness the birth and death of chimeras in a great variety
of examples. In fact, one does not have to limit oneself to biological oscillators. As
I showed using specific examples in this review, one can follow the above protocol
and observe analogous chimera states in sub-populations of mechanical networks of
pendulum-like oscillators, as long as one chooses appropriate coupling constants and
pair interactions that are sufficiently long range.
I would like to close with some comments regarding the potential applications

of the results described above as well as those obtained by other researchers using
similar mathematical models. In the realm of mechanics, energy transport in mole-
cular lattices has already produced interesting discoveries which have started to be
observed in experiments particularly in disordered media. On the other hand, me-
chanical pendulum systems were among the first where the occurrence of chimera
states was experimentally verified. Regarding real biological systems, the quest for
the laboratory observation of chimera states is actively pursued at several research
centers around the world. The difficulty here, of course, is that when one deals with
live neuron systems whose dynamics continually changes, chimera states are expected
to be metastable and hence short lived. However, even if they are rare to find, their
ubiquity in mathematical models is very encouraging and has alerted us to new excit-
ing phenomena that may possibly contribute to our deeper understanding of neuron
dynamics.
Finally, it is worth noting that very recently Hindmarsh-Rose models have been

used to study the dynamics on the exactly known neural network of the C.elegans
worm [39]. Even though the true equations of motion connecting the neurons of
the C.elegans are not known, the exact neural network was seen to consist of six
sub-networks, many of which had similar regimes of synchronization in the plane of
coupling parameters of the system. Remarkably, at the boundaries of these regimes,
integrated information estimates are highest and evidence of the occurrence of chimera
states is observed [39,40]. We may, therefore, conclude that the era of exciting research
in the mathematical modelling of brain dynamics is currently entering a new and very
fascinating stage.
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