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Abstract. Many of exoplanetary systems consist of more than one
planet and the study of planetary orbits with respect to their long-
term stability is very interesting. Furthermore, many exoplanets seem
to be locked in a mean-motion resonance (MMR), which offers a phase
protection mechanism, so that, even highly eccentric planets can avoid
close encounters. However, the present estimation of their initial condi-
tions, which may change significantly after obtaining additional obser-
vational data in the future, locate most of the systems in chaotic regions
and consequently, they are destabilized. Hence, dynamical analysis is
imperative for the derivation of proper planetary orbital elements. We
utilize the model of spatial general three body problem, in order to
simulate such resonant systems through the computation of families
periodic orbits. In this way, we can figure out regions in phase space,
where the planets in resonances should be ideally hosted in favour of
long-term stability and therefore, survival. In this review, we summarize
our methodology and showcase the fact that stable resonant planetary
systems evolve being exactly centered at stable periodic orbits. We ap-
ply this process to co-orbital motion and systems HD 82943, HD 73526,
HD 128311, HD 60532, HD 45364 and HD 108874.

1 Introduction

Nowadays, the quest of exoplanets plays a key role in the field of astronomy. Hereto-
fore (December 2015), within 1293 planetary systems that have been discovered, 504
out of which being multiple planet systems, 2041 extrasolar planets are confirmed.
The most important attributes of them, forcing scientific community to think of our
Solar System as an exception rather than a typical planetary system, are: the orbital
eccentricities, the mass distribution and the semi-major axes.
We observe that a lot of planets have masses very similar to those of planets in our

Solar System, however, they have quite eccentric orbits and they are located closer to
their host stars. The majority has a Jovian mass value, an orbital period of 8–10 days
and circular orbits. Conversely, a minority of them is evolving on highly eccentric
and/or inclined orbits. What is more, multiple planet systems seem to be locked in
MMR with the majority of which in 2/1 and by descending order in 3/2, 5/2, 3/1,
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4/1 and 4/3 [1–5]. However, depending on the method of detection, the observational
errors can usually lead to large uncertainties of the published orbital elements and
planetary masses [6]. This lack in precise knowledge of parameters in turn, in most
cases, locates the exoplanets in chaotic regions, where their survival is not guaranteed.
Observational data for Kepler Objects of Interest (KOIs) indicating trappings in

1/1 MMR of stable and mutually inclined planets are mostly rejected by astronomers
as false-positive, although they are theoretically predicted [7]. A very recent analy-
sis [8] confirmed those predictions and requested more dynamical studies.
Regarding the formation of inclined exoplanets, some possible mechanisms that

lead to excitation of planetary inclinations are the planetary scattering [9,10], the
differential migration [11,12] and the tidal evolution [13]. In these processes, resonant
capture can occur and the evolution of the exoplanetary system can be associated
with particular families of either co-planar or even, mutually inclined periodic orbits
[14–19].
Therefore, extrasolar planetary systems must undoubtedly be tested in reference

to their long-term dynamical stability, the deviations to their orbital elements should
be revised (or proposed, in case the observational method fails to provide them) in
order for such distributions of planets to be justified and trappings, in MMR being
observed, to be achieved.
It is well-known, that planets evolving in MMR prompt the investigation of reso-

nant dynamics in the framework of the general three-body problem (GTBP) [20–25].
Utilizing the GTBP as a model, the computation of families of periodic orbits in
a suitable rotating frame of reference can help ascertain information regarding the
phase space in their vicinity [26].
In this review, we firstly provide the fundamentals of our dynamical analysis, apply

it to co-orbital motion and exoplanetary systems HD 82943, HD 73456, HD 128311
(locked in 2/1 MMR), HD 60532 (trapped to 3/1 MMR), HD 45364 (evolving in
3/2 MMR) and HD 108874 (captured in 4/1 MMR) and exhibit the fact that families
of stable periodic orbits consist the backbone of stability domains in phase space; the
essential regions where planetary systems can evolve regularly for long timescales.

2 Model, periodic orbits and stability

We herein introduce the model used to simulate three body systems and present the
way orbits of long-term stability are determined, after having computed the families
of periodic orbits and determined their linear stability.

2.1 The spatial general three body problem

Let us consider two mutually inclined planets revolving around a star under their
mutual gravitational attraction and consider their masses, m0, m1 and m2 as point
masses. Subscripts 0, 1 and 2 shall always refer to the star, S, the inner planet, P1
and the outer one, P2, respectively. We should note though, that chaotic motion may
change the initial location of the planets. These bodies move in an inertial frame of
reference, OXY Z, whose origin is their fixed center of mass and its Z-axis is parallel
to the constant angular momentum vector of the system. Given the former, we can
determine the position and velocity of the star via those of the planets. Consequently,
the system will be of 6 degrees of freedom and possess the integrals of the energy and
the angular momentum.
The degrees of freedom can be reduced to 4 by introducing a suitable rotating

frame of reference, Gxyz, such that: a) its origin is the center of mass of S and P1,
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b) these bodies shall always move on the xz-plane and c) its Gz is parallel to the
OZ. Also, by defining the rotation of this frame through the angle θ between OX
and Gx axes and by assuming always that θ(0) = 0, it always holds that y1 = 0.
Thus, the Lagrangian that corresponds to the system, having previously normalized
the gravitational constant G and the total mass, m = m0 +m1 +m2 to unity, is:
L = 12μ[a(ẋ

2
1 + ż

2
1 + x

2
1θ̇
2) + b[(ẋ22 + ẏ

2
2 + ż

2
2) + θ̇

2(x22 + y
2
2) + 2θ̇(x2ẏ2 − ẋ2y2)]]− V,

(1)
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V = −m0m1r01
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− m1m2r12
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and since no angular momentum is considered regarding the Gx and Gy axes (LX =
LY = 0) two more restrictions arise:
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ż1 =
b

ax1
(ẋ2z2 − x2ż2 − θ̇y2z2) + ẋ1
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Thus, such a spatial three body system can be simulated by 4 equations of motion

ẍ1 = −m0m2(x1 − x2)
μr312

− m0m2(ax1 + x2)
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− μx1
r301
+ x1θ̇

2
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ÿ2 = −mm1y2
μr312

− mm0y2
μr302

+ y2θ̇
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·

(5)

The planar problem is simply derived by setting the third dimensions (z1,2 and ż1,2)
equal to zero. Nevertheless, we should remark some essential differences between the
restricted1 (3D-RTBP) and the general spatial three body problem described in the
rotating frame. On the GTBP the primaries do not remain fixed on the rotating Gx-
axis, but move on the rotating plane xz. The rotating frame does not revolve on a
constant angular velocity since

θ̇ =

pθ
μ
− b(x2ẏ2 − ẋ2y2)
ax21 + b(x

2
2 + y

2
2)

(6)

and its origin G does not remain fixed with respect to OXY Z.
Last but not least, it has been proved [27] that the equations of motion (both

in the planar and the spatial case) remain invariant under a change in units, if for
instance, one wishes to use different units of time, (T ∗), masses, m∗, distances, a∗,
etc. Particularly, the term T∗2Gm∗

a∗3 should equal to unity.

1 One body has a negligible mass, in comparison to the rest, the primaries, in a way that
does not perturb their motion, which can be either circular (CRTBP) (under a constant
radius and θ̇ = 1) or elliptic (ERTBP).
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Fig. 1. A xz-symmetric 1/1 periodic orbit of planetary mass ratio ρ = m2/m1 = 0.01 and or-
bital elements: a1 = 1.00, e1 = 0.056, i1 = 0.061

◦, �1 = 90◦,Ω1 = 90◦,M1 = 180◦, a2 = 1.00,
e2 = 0.782, i2 = 9.87

◦, �2 = 90◦,Ω2 = 270◦,M2 = 0◦. The planetary orbits in a the inertial
and b the rotating frame together with the projection to the planes of the frame.

2.2 Periodic orbits and mean-motion resonances

Given a Poincaré surface of section in phase space, e.g. π̂ = {y2 = 0, ẏ2 > 0},
considered in Gxyz, the periodic orbits are defined as the fixed or periodic points on
this map, as long as they fulfill the periodicity conditions

x1(0) = x1(T ), x2(0) = x2(T ), z2(0) = z2(T ),

ẋ1(0) = ẋ1(T ), ẋ2(0) = ẋ2(T ), ż2(0) = ż2(T ), ẏ2(0) = ẏ2(T ),
(7)

provided that y2(0) = y2(T ) = 0 and T is the period.
The Lagrangian (1) is invariant under four transformations and therefore, there

exist four symmetries to which the periodic orbits obey:

Σ1 : (x1, x2, y2, z2, t)→ (x1, x2,−y2, z2,−t),
Σ2 : (x1, x2, y2, z2, t)→ (x1, x2,−y2,−z2,−t)
Σ3 : (x1, x2, y2, z2, t)→ (−x1,−x2, y2, z2,−t),
Σ4 : (x1, x2, y2, z2, t)→ (−x1,−x2, y2,−z2,−t).

(8)

If a periodic orbit is invariant under Σ1 is called xz-symmetric (see Fig. 1) and is
represented by the initial conditions

x1(0) = x10, x2(0) = x20, y2(0) = 0 z2(0) = z20,

ẋ1(0) = 0, ẋ2(0) = 0, ẏ2(0) = ẏ20, ż2(0) = 0.
(9)

Accordingly, if it is invariant under Σ2 is called x-symmetric and is represented by
the set

x1(0) = x10, x2(0) = x20, y2(0) = 0, z2(0) = 0,

ẋ1(0) = 0, ẋ2(0) = 0, ẏ2(0) = ẏ20, ż2(0) = ż20.
(10)

Similarly, we can define yz- or y-symmetric periodic orbits.
All the rest initial conditions (7) correspond to asymmetric periodic orbits.
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By changing the value of z2 (for the xz-symmetry) or ż2 (for the x-symmetry) a
monoparametric family of periodic orbits is formed. Also, a monoparametric family
can be formed by changing the mass of a planet, P1 or P2, but keeping the value z2
(or ż2) constant.

In the 3D-CRTBP, x1 is constant defined by the normalization adopted for the
system and in our computations is taken equal to 1− m1

m0+m1
. Thus, the xz-symmetric

periodic orbits can be represented by a point in the three-dimensional space of initial
conditions Π3 = {(x20, z20, ẏ20)} and the x-symmetric ones by Π′3 = {(x20, ẏ20, ż20)}.
Families of periodic orbits can either be circular or elliptic. The circular ones

consist of symmetric periodic orbits and n1
n2
varies along them. The elliptic ones

are formed by symmetric or asymmetric periodic orbits and along them the MMR
n1
n2
= p+q

p
= rational2, q being the order of the MMR, remains almost constant.

Therefore, it is the resonant periodic orbit, which identifies the location of the exact
MMR in phase space.

In the neighbourhood of the stable (see Sect. 2.3.1) resonant periodic orbits the
resonant angles

θ1 = (p+ q)λ2 − pλ1 − q�1
θ2 = (p+ q)λ2 − pλ1 − q�2
θ3 = (p+ q)λ2 − pλ1 − q2 (�1 +�2)

(11)

and the apsidal difference, Δ�, librate about 0 or π, if the orbit is symmetric, or
around other angles, if it is asymmetric. A significant attribute of the latter ones, is
the fact that they come in pairs; one being the mirror image of the other in phase
space [28,29]. Thus, a precession of 2π −�1,2 will also be observed and the location
of mean anomalies in phase space at 2π −M1,2 will be valid, as well.
The libration of the above resonant angles showcases the eccentricity resonance

(e-resonance).

There exist four different symmetric configurations, if we assume aligned, Δ� = 0,
and anti-aligned, Δ� = π planets, which do not change along the families of periodic
orbits. Thus, we represent them on the eccentricities plane. When q = 2k+1, k ∈ Z∗,
we use the pair (θ1, θ2) and when q = 2k, k ∈ Z∗, we use the pair (θ3, θ1), in order
to distinguish the different groups of families (see [24]). For small planetary masses,
it has been shown by [30,31] that the characteristic curves belonging to the same
configuration differ one another in planetary mass ratio ρ = m2

m1
.

When the two planets are not co-planar, we may introduce the resonant angles
that define the inclination resonance (i-resonance) for at least second order resonances

ϕ11 = (p+ q)λ1 − pλ2 − qΩ1
ϕ22 = (p+ q)λ1 − pλ2 − qΩ2. (12)

We may further define the mixed resonance angle

ϕ12 = (p+ q)λ1 − pλ2 − Ω1 − Ω2 = (ϕ11 + ϕ22)/q (13)

as well as the zeroth order secular resonance angle

ϕΩ = Ω1 − Ω2 = (ϕ11 − ϕ22)/q. (14)

2 If the periodic orbits correspond to planetary motion the mean-motion ratio is approxi-
mately equal to this rational number.
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2.3 Order and chaos

Deciphering an 8D phase space, in the 3D-GTBP, in terms of location of regular or
chaotic orbits can be demanding, unless a clue is given. Periodic orbits can guide
this research and expedite the tracing of regions of stability. Evolution of dynamical
systems in the neighbourhood of stable periodic orbits takes place within invariant tori
and the orbits are quasi-periodic. In the vicinity of unstable periodic orbits, chaotic
domains exist. Therefore, the characterization of the periodic orbits in this respect
is imperative. We hereby define the linear horizontal and vertical stability and then,
explore the extent of regular regions in phase space by the construction of dynamical
stability maps.

2.3.1 Linear horizontal stability

The linear stability of the spatial periodic orbits can be found by computing the
4 pairs of conjugate eigenvalues of the 8 × 8 monodromy matrix of the variational
equations of system (5). More precisely, if the variational equations and their solutions
are of the form

η̇ = J(t)η ⇒ η = Δ(t)η0 (15)

where J is the Jacobian of the right part of the system’s equations and Δ(t) the
fundamental matrix of solutions, then, according to Floquet’s theory, the deviations
η(t) remain bounded, iff all eigenvalues (one pair is always equal to unity, due to the
existence of the energy integral) lie on the unit circle [32,33]. Then, the respective
spatial periodic orbit is called linearly stable. Otherwise, it is linearly unstable.
The linear horizontal stability of the planar periodic orbits can be retrieved in

the above mentioned way, if the third dimensions are set equal to zero. Then, the
location of the 3 pairs of eigenvalues of the 6×6 monodromy matrix of the respective
variational equations can classify the periodic orbits as linearly horizontally stable, or
linearly horizontally unstable.

2.3.2 Linear vertical stability

The linear vertical stability of a planar periodic orbit is computed, if we linearize the
last equation of the set (5) and compute the variational equations

ζ̇1 = ζ2 ζ̇2 = Aζ1 +Bζ̇2 (16)

where

A = −
mm0[1− m2(θ̇x2+ẏ2)mθ̇x1

]

(m0 +m1)[(
m1x1
m0
+ x2)2 + y22 ]

3/2
−

mm1[1 +
m0m2(θ̇x2+ẏ2)

mm1θ̇x1
]

(m0 +m1)[(x1 − x2)2 + y22 ]3/2

B =
m0m2y2

(m0 +m1)θ̇x1[(x1 − x2)2 + y22 ]3/2
− m0m2y2

(m0 +m1)θ̇x1[(
m1x1
m0
+ x2)2 + y22 ]

3/2
·
(17)

Then, after obtaining the monodromy matrix, Δ(T ) = ζij , i, j = 1, 2 we can compute
either the pair of eigenvalues, or the vertical stability index

av =
1

2
(ζ11 + ζ22). (18)

Any periodic orbit of the planar problems with |av| = 1 is vertical critical (v.c.o.) and
can be used as a starting orbit for analytical continuation to the spatial problems.
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Fig. 2. DS-maps on the a) (e1, i2), b) (Ω2, i2), c) (Ω2,M2) and d) (Ω2, �2) plane.

If |av| < 1 or |av| > 1 the planar periodic orbit is characterized linearly vertically
stable or vertically unstable, respectively.

2.3.3 Dynamical stability maps

Dynamical stability maps (DS-maps) offer a straightforward visualization of phase
space. Grids of initial conditions on a plane are created by varying two parameters
of the system and keeping the rest variables fixed. Then, for each point of the grid a
chaotic indicator is computed and according to the output the point is coloured.
In Fig. 2, we present DS-maps in the neighbourhood of the stable spatial 1/1

resonant periodic orbit shown in Fig. 1 (see also [7,34–36] and references therein).
The grids are of size 50× 50 and of different combinations of the orbital elements of
the planets. We compute the de-trended Fast Lyapunov Indicator (see [28,37]) for a
maximum time of 200Ky. Dark coloured regions represent the orbits with long-term
stability and the white crosses represent the stable periodic orbit.
In Fig. 3, we exemplify the location of regular and chaotic orbits in phase space

given a stable periodic orbit.
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Fig. 3. Evolution in the neighbourhood of the stable periodic orbit of Fig. 1. Based on
Fig. 2c and altering M2 and Ω2 we observe a regular (M2 = 15

◦,Ω2 = 280◦) and b chaotic
orbits (M2 = −33◦,Ω2 = 220◦). The outer planet is scattered in the latter case.

3 Evolution of resonant exoplanets

We show the relation between the long-term evolution of extrasolar planetary systems
trapped in MMRs and the evolution in the vicinity of resonant stable periodic orbits
discussed previously. The equations of motion in the rotating frame were solved nu-
merically with a minimum accuracy 10−14 by using the Bulirsch-Stoer integrator. The
periodic orbits were computed with an accuracy of 12 decimal digits after successive
differential approximation of the periodicity conditions. Throughout the study, we
normalized the total mass of the system and the semi-major axis of the inner planet,
a1, to unity (a2 was computed, in order to satisfy the resonance studied in each case).

3.1 HD 82943

We study the system HD 82943(b,c) of masses m1 = 0.004018224, m2 = 0.004035037
and m0 = 0.991946, whose planets are locked in 2/1 MMR and use the initial condi-
tions [38]:

a1 = 1.00, e1 = 0.425, �1 = 133
◦, M1 = 256

◦

a2 = 1.5951, e2 = 0.203, �2 = 107
◦, M2 = 333

◦.
(19)

In Fig. 4, we observe regular libration around the initial values (19) of the orbital
elements and the angles 0◦, 0◦ and 0◦ of the resonant angles θ1, Δ� and θ2, re-
spectively. Thus, this system can be considered as stable evolving around the stable
symmetric periodic orbit of the family of mass ratio ρ = 1.004 in the configuration
(θ1, θ2) = (0, 0) shown in Fig. 10a. The periodic orbit is linearly both horizontally
and vertically stable (the v.c.o. is depicted by the magenta coloured dot) and con-
sequently, these exoplanets could survive, if they were mutually inclined. Moreover,
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Fig. 4. The evolution of orbital elements ai, ei, resonant angles θ1, Δ� and θ2 of the
planetary system HD 82943 with initial conditions (19). Red and black line stands for inner
(P1) and outer planet, P2, respectively.

such an evolution in the neighbourhood of a planar stable periodic orbit can only ex-
hibit e-resonance, namely the resonant angles indicating i-resonance will not librate.
These resonant angles librate, iff the evolution takes place in the neighbourhood of
a spatial periodic orbit (see e.g. [19]). In Fig. 11a, we depict the island of stability
which hosts this planetary system.

3.2 HD 73526

We examine the system HD 73526(b,c) of masses m1 = 0.0021668, m2 = 0.0020192
and m0 = 0.995813, whose planets are evolving in 2/1 MMR and use the initial
conditions [39]:

a1 = 1.00, e1 = 0.244, �1 = 198.3
◦, M1 = 105

◦

a2 = 1.5846, e2 = 0.169, �2 = 294.5
◦, M2 = 153.4

◦.
(20)

Due to the regular librations shown in Fig. 5, this system can be considered evolving
around a planar asymmetric periodic orbit of the family of mass ratio ρ = 0.86 gen-
erated by a symmetric periodic orbit in the configuration (θ1, θ2) = (0, 0) (see also
Fig. 10b). The computed DS-map around this asymmetric periodic orbit (where the
evolution is precessing about) revealed the hosting island of stability (see Fig. 11b).
Regarding the resonant angles, there exists an island of stability, around this asym-
metric periodic orbit, which is centered at ΔM = 180◦ and Δ� = 0 and hence,
confirms the observed oscillations. Likewise HD 82943, this periodic orbit is linearly
both horizontally and vertically stable and in the context described in Sect. 3.1 the
planets could be mutually inclined. In [40], simulations of arbitrarily chosen initial
conditions in the neighbourhood of the observational data have been performed and
they found -although not disrupted for 10Gy- irregular evolutions. It is the stable
periodic orbit that should guide the extent of deviations from the orbital elements,
in order for regular evolutions to be found.
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Fig. 5. The evolution of the planetary system HD 73526 with initial conditions (20)
(presentation as in Fig. 4).

Fig. 6. The evolution of HD 128311 with initial conditions (21) (presented as in Fig. 4).

3.3 HD 128311

We consider the system HD 128311(b,c) of masses m1 = 0.0025786, m2 = 0.003797
and m0 = 0.993624, whose planets are trapped to 2/1 MMR and use the initial
conditions [41]:

a1 = 1.00, e1 = 0.25, �1 = 110.9
◦, M1 = 159.4

◦

a2 = 1.601455, e2 = 0.17, �2 = 195.5
◦, M2 = 0

◦.
(21)

In Fig. 6, we observe that the orbital elements evolve regularly around their initial
values (21), while the resonant angles, θ1, Δ� and θ2 librate around the angles 0

◦, 0◦
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Fig. 7. The evolution of HD 60532 with initial conditions (22) (presented as in Fig. 4).

and 0◦, respectively. Thus, this system can be considered as stable evolving around
the symmetric family of mass ratio ρ = 1.47 in the configuration (θ1, θ2) = (0, 0)
(Figs. 10c, 11c). Similarly to the previously described systems, the evolution takes
place about a linearly both horizontally and vertically stable periodic orbit. Thus,
initial conditions for a regular evolution of a non-planar configuration (only irregular
evolutions were reported in [40] for arbitrarily chosen initial conditions) could only
exist in the vicinity of the planar stable symmetric periodic orbit.

3.4 HD 60532

We examine the system HD 60532(b,c) of masses m1 = 0.0021748, m2 = 0.0051450
and m0 = 0.99268, whose planets are captured to 3/1 MMR and use the initial
conditions [1]:

a1 = 1.00, e1 = 0.278, �1 = 352.83
◦, M1 = 21.95

◦

a2 = 2.0844, e2 = 0.038, �2 = 119.49
◦, M2 = 197.53

◦.
(22)

In Fig. 7, we observe that the orbital elements evolve regularly around their initial val-
ues (22), while the resonant angles, θ1, Δ� and θ3 librate around the angles 180

◦, 180◦
and 0◦, respectively. Thus, this system can be considered as stable evolving around
the symmetric family of mass ratio ρ = 2.36 in the configuration (θ3, θ1) = (0, π)
(Figs. 10d, 11d). The stability of this system was, also, verified by [1]. Regarding
non-planar regular configurations, sought in [40], the linearly horizontally and ver-
tically stable symmetric periodic orbit can guide the initial conditions chosen in its
vicinity.

3.5 HD 45364

We analyze the system HD 45364(b,c) of masses m1 = 0.0002280, m2 = 0.0008014
and m0 = 0.99897, whose planets are locked in 3/2 MMR and use the initial
conditions [42]:

a1 = 1.00, e1 = 0.1684, �1 = 162.58
◦, M1 = −56.82◦

a2 = 1.3168, e2 = 0.0974, �2 = 7.41
◦, M2 = 262.11

◦.
(23)
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Fig. 8. The evolution of HD 45364 with initial conditions (23) (presented as in Fig. 4).

Fig. 9. The evolution of HD 108874 with initial conditions (24) shown for a small amount
of time (presented as in Fig. 4).

In Fig. 8, we observe that the orbital elements evolve regularly around their initial
values (23), while the resonant angles, θ1, Δ� and θ2 librate around the angles 0

◦,
180◦ and 180◦, respectively (also confirmed by [42]). Thus, this system can be con-
sidered as stable evolving exactly centered at a stable symmetric periodic orbit of
the family of mass ratio ρ = 3.51 in the configuration (θ1, θ2) = (0, 0) (Figs. 10e,
11e). The stable non-planar configuration found in [40] is due to the existence of a
horizontally and vertically stable periodic orbit in the vicinity of the initial conditions
chosen.
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Fig. 10. The evolution (brown) of a) HD 82943, b) HD 73526, c) HD 128311, d) HD 60532,
e) HD 45364 and f) HD 108874 shown for 5Myr, exactly centered at a stable periodic orbit.
The v.c.o. is depicted by a magenta coloured dot. Up to that orbit the planar orbits are
vertically stable. Blue and red lines correspond to horizontally stable and unstable orbits.
A and S depict the asymmetric and symmetric periodic orbits, respectively.
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Fig. 11. DS-maps on the plane (a2, e2) in neighbourhood of stable periodic orbits (white
crosses), which create the islands of stability that host a) HD 82943, b) HD 73526,
c) HD 128311, d) HD 60532, e) HD 45364 and f) HD 108874 (white stars). The periodic
orbits were chosen so that e1 equals to the eccentricity value of the periodic orbit where
the evolution is centered (compare with Fig. 10). The fixed orbital elements, yielded by the
suitably selected periodic orbits, are shown on each plot.
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3.6 HD 108874

We consider the system HD 108874(b,c) of masses m1 = 0.00136, m2 = 0.0010183
and m0 = 0.997622 and use the initial conditions [41]:

a1 = 1.00, e1 = 0.07, �1 = 248.4
◦, M1 = 83.13

◦

a2 = 2.549952, e2 = 0.32, �2 = 17.3
◦, M2 = 0

◦.
(24)

In Fig. 9, we observe that the semi-major axes and eccentricities evolve regularly
around their initial values (24), while the resonant angles, θ1 and θ2 rotate. How-
ever, Δ� librates around the angle 180◦, which indicates a secular resonance. Thus,
the orbital elements should be revised, in order for a 4/1 MMR to be dynamically
confirmed (see Figs. 10f, 11f).

4 Conclusions

We reviewed the basic notions of periodic orbits in the GTBP, their association with
MMRs through the repetitive relative configuration of the bodies and showed the way
the phase space around them is built given their linear stability.
The importance of periodic orbits in the field of celestial mechanics has long been

highlighted. Stable periodic orbits are of particular importance in planetary dynamics,
since even highly eccentric planets being close to an exact MMR [43] can survive close
encounters and collisions and not least, they can attract planetary systems during
their formation and drive their migration process [19].
Presently, we exhibited the necessity of their knowledge, during fitting procedure

of the observational data regarding exoplanets. Phase space for high dimensional
dynamical systems, like mutually inclined planets locked in MMR, can be complicated.
Periodic orbits can help unravel it and we can complement or revise published data
and not least, propose viable parameters, should the observational methods fail to
provide.

This research has been co-financed by the European Union (European Social Fund – ESF)
and Greek national funds through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) – Research Funding Program:
Thales. Investing in knowledge society through the European Social Fund.
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14. S. Ferraz-Mello, C. Beaugé, T.A. Michtchenko, CeMDA 87, 99 (2003)
15. M.H. Lee, ApJ 611, 517 (2004)
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