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Abstract. This paper investigates fractional Kalman filters when time-
delay is entered in the observation signal in the discrete-time stochastic
fractional order state-space representation. After investigating the com-
mon fractional Kalman filter, we try to derive a fractional Kalman filter
for time-delay fractional systems. A detailed derivation is given. Frac-
tional Kalman filters will be used to estimate recursively the states of
fractional order state-space systems based on minimizing the cost func-
tion when there is a constant time delay (d) in the observation signal.
The problem will be solved by converting the filtering problem to a
usual d-step prediction problem for delay-free fractional systems.

1 Introduction

Fractional Calculus (FC) is a generalization of classical calculus that produces simi-
lar meanings and effects, but with more applications, by using the real (non-integer)
order derivative and integral operations [1]. It is already known that non-integer or-
der systems or fractional order systems can model dynamical behavior of different
systems and processes in the time and frequency domain more accurately than tra-
ditional integer models [1–3]. Nowadays, the applications of fractional calculus have
extended to various approaches, including control theory [4–9]. Regarding state and
signal estimation and Kalman filter in [10–14], one of the most popular areas of frac-
tional calculus is chaos theory and chaotic oscillations in nonlinear dynamic systems
[15–23]. It is well known that chaos occurs in nonlinear systems with a total order
greater than or equal to three, and that chaotic systems can be modeled with three
fractional order differential equations while the total order of these fractional differ-
ential equations is less than three [24,25]. A Kalman filter is an optimal recursive
estimator introduced by R. Kalman [26]. It infers the states of state-space representa-
tions of linear and nonlinear systems from a series of measurements which are observed
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over time, and these observations are contained with statistical noise and other in-
accuracies. If all noise is Gaussian, a Kalman filter for a linear system can find an
optimal solution by minimizing the mean square error (MSE) of the estimated states.
State estimation and Kalman filter for classical integer systems have been investigated
widely, for example in [27–30]. The Kalman filter for time-delay systems has often
been investigated using the augmented state method in [31,32], we know this method
produces a heavier computational burden when the dimension of the system is high
and the time-delay in the measurement equation is large The first attempt to design
Kalman filters for discrete-time fractional order systems was done by Sierociuk and
Dzielinski [12]. Sierociuk considered the square of the estimation error as the cost
function and, with some simplifying assumptions, estimated accurately the states of
linear and nonlinear fractional discrete-time systems and also the order of commen-
surate fractional systems. To get rid of some simplifying assumptions, Sierociuk [13]
improved the method by augmenting the states, and designed the fractional Kalman
filter for linear and nonlinear systems. Although the augmented state vector provides
a simple method of estimating the states of systems, one important drawback of this
method is that the order of the system and the size of the different matrices are
increased.
In this article, Grunwald-Letnikov’s definition of the fractional derivative is used

and, by applying a fractional Kalman filter, we try to estimate the states of discrete
time fractional order systems with time-delay observations from a sequence of noisy
measurements. For this purpose, we convert the filtering fractional problem to the
d-step ahead prediction fractional problem which is free of time delay (i.e. a delay
free observation).

2 Preliminaries

2.1 Fractional calculus

Basic definitions required in the following sections are given below: [33,34]
Definition 21. The Grunwald-Letnikov fractional derivative of function f , based on
the generalization of backward difference, is defined as:

GL
a D

α
t f(t) = lim

1

h→ 0
1

hα

[ t−ah ]∑

j=0

(−1)j
(
α
j

)
f(t− jh) (1)

×
[
t− a
h

]
→ integer

(
α
j

)
=

α!

j!(α− j)! =
Γ(α+ 1)

Γ(j + 1)Γ(α− j + 1) (2)

where the Euler Gama function is given by Γ(n) =

∞∫

0

tn−1e−tdt. (3)

Definition 22. The continuous time state-space model of linear fractional order
systems is given by:

Dαx(t) = Ax(t) +Bu(t)
(4)

y(t) = cx(t) +Du(t)

where α = [α1, . . . , αn] is a fractional derivative order.
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Discrete time state-space representations of (4) using a Grunwald-Letnikov defin-
ition are given by:

Dαx(KT ) ≈ 1
Tα

k+1∑
i=0

(−1)i
(
α
i

)
x((k + 1− i)T )

= 1
Tα

(
x(k + 1)T −

(
α
1

)
x(kT ) +

k+1∑
i=2

(−1)i
(
α
i

)
x((k + 1− i)T )

) (5)

where T is sampling time. Substituting (5) into (5) yields (6):

x(k + 1) = (ATα + αI)x(k)−
k+1∑
i=2

(−1)i
(
α
i

)
x(k + 1− i) +BTαu(k)

y(k) = cx(k) +Du(k) k ≥ 1.
(6)

Definition 23. The one-step backward difference is defined as Δ1x(k + 1) = x
(k + 1) − x(k) and if we define Ad = A − I, where I is the identity matrix, we
have:

Δ1x(k + 1) = Adx(k) +Bu(k) + ω(k)

x(k + 1) = Δ1x(k + 1) + x(k)

y(k) = Cx(k) + v(k).

(7)

Definition 24. The generalized discrete-time fractional stochastic system in a state-
space representation is given by

Δnx(k + 1) = Adx(k) +Bu(k) + ω(k)

x(k + 1) = Δnx(k + 1)−
k+1∑
j=1

(−1)j
(
n
j

)
x(k + 1− j)

y(k) = Cx(k) + v(k).

(8)

3 System description

For the case when equation orders are not identical in the fractional order system,
the following equations are introduced [12]

ΔΨx(k + 1) = Adx(k) +Bu(k) + ω(k)

y(k) = Cx(k) + v(k)
(9)

Ψj = diag

[(
n1
j

)
. . .

(
nn
j

)]
, ΔΨxk+1 =

⎡

⎢⎣
Δn1x1,k+1
...

ΔnNxN,k+1

⎤

⎥⎦ (10)

[n1, . . . , nN ] are orders of the fractional order system. The number of equations is
N, as stated before the dynamic equation (9) for the case when the equation orders
are not equal in (9), k is discrete time, Ψ is fractional order, x(k) ∈ Rn, y(k) ∈ Rm
and u(k) are the state vector, measurement or observation signal and known control
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OPTIMAL FILTER
y1,y2,y3,y4,…. x1,x2,x3,x4,..

Fig. 1. Optimal filter.

Fig. 2. Three types of estimation problem [35].

input, respectively. ω(k)and υ(k)are the system noise and measurement noise. For
the system described in (9) we also consider some assumptions as follows:

Assumption 1. x(0)is uncorrelated with ω(k) and υ(k), the mean and covariance
matrix in k=0 are

E [x(0)] = m and E
[
(x(0)−m) (x(0)−m)T

]
= P0. (11)

Assumption 2. ω(k) and υ(k) are white noises with zero mean and variances Q(k)
and R(k)as follow:

E

{[
ω(k)

υ(k)

]
.
[
ωT (j) υT (j)

]}
=

[
Q(k) 0

0 R(k)

]
δ(k − j). (12)

Where E denotes mathematical expectation, T is transpose and δ(k − j) = 1(k = j)
is the impulse function.

Assumption 3. E[(x(l)− �
x(l))(x(m)− �

x(m))T ] = 0 when l �= m which means that
there is no correlation between past state vectors.

4 Estimation, optimal filter and Kalman filter

The optimal filter, shown in Fig. 1, computes the (marginal) posterior distribution of
the state given the measurements p (x (tk) |y1, y2, . . . , yk ), we know that the filtered
state x̂ (tk) is often the posterior mean E (x (tk) |y1, y2, . . . , yk ). The estimation
problem is divided into three categories, namely prediction, filtering and smoothing.
Figure 2 displays these three modes and their differences completely [35].

Prediction:
Prediction distributions are the marginal distributions of the future states, n steps
after the current time step, k:

p (xk+n |y1, y2, . . . , yk ) , k = 1, 2, . . . , T, n = 1, 2, ..
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Filtering:
The purpose of filtering is to compute the marginal posterior distribution of the state
on the current time step, k:

p (xk |y1, y2, . . . , yk ) , k = 1, 2, . . . , T

Smoothing:
The purpose of smoothing is to calculate the marginal posterior distribution of the
state at the time step k after receiving the measurements up to a time step T, where
T > k:

p (xk |y1, y2, . . . , yT ) , k < T.

A Kalman filter is a recursive algorithm that uses a sequence of measurements ob-
served over time, containing statistical noise Zk = {y0, y1, . . . , yk;u0, u1, . . . uk}, and
produces estimates of unknown states x̂(k). The Kalman filter is the closed form so-
lution to the optimal filtering equations of the discrete-time filtering model, where
the dynamic and measurements models are linear Gaussian [35].

5 State estimation for fractional order stochastic system with time
delay in the measurement equation

Before we state our problem, we need to review two main lemmas, which we will use
afterwards in the proof of our problem.

Lemma 1 [12]. For the discrete-time fractional order stochastic system introduced
in definition 24, with the assumptions 1–3, the simplified Kalman predictor and filter
(called the fractional Kalman filter) are given by the following set of equations

ΔΨx̃(k + 1|k) = Adx̂(k|k) +Bu(k)

x̃(k + 1 |k) = Adx̂(k |k) +Bu(k)−
k+1∑

j=1

(−1)j Ψj x̂(k + 1− j)

x̂(k |k ) = x̃(k |k − 1) +Kk (y(k)− cx̃(k |k − 1))

Kk = P̃ (k |k − 1) cT (cP̃ (k |k − 1) cT +R)−1

P̃ (k |k − 1) = (Ad +Ψ1)P (k − 1) (Ad +Ψ1)T +Qk−1 +
k∑

j=2

ΨjP (k − j)ΨTj

P (k |k) = (I −Kkc) P̃ (k |k − 1)

where P̃ (k |k − 1)and P (k |k) are prediction and filtering error covariance matrices,
respectively.

⎧
⎪⎨

⎪⎩
x(k + 1) = Adx(k) +Bu(k) + ω(k)−

k+1∑

j=1

(−1)j Ψjx(k + 1− j)
y(k) = Cx(k) + v(k).

(13)
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The Fractional order Kalman filter algorithm for system (9) was derived in [12,13,36],
we know that x̃(k |k − 1) = E [x(k) |Zk−1 ] is the predicted state and obtains as:

x̃(k + 1 |k) = E [x(k + 1)|Zk]

= E

⎡

⎣Adx(k) +Bu(k) + ω(k)−
k+1∑

j=1

(−1)j Ψjx(k + 1− j)|Zk
⎤

⎦

x̃(k + 1 |k) = Adx̂(k |k) +Buk −
k+1∑

j=1

(−1)j ΨjE [x(k + 1− j)|Zk] (14)

by using the simplifying assumption below [12]:

E [x(k + 1− j)|Zk] ∼= E [x(k + 1− j)|Zk+j−1]
j = 1 . . . (k + 1).

(15)

This simplification means discarding of some measurements; consequently we obtain
a suboptimal solution for the fractional order Kalman filter. So the one-step predicted
state obtains as:

x̃(k + 1 |k) = Adx̂(k |k) +Bu(k)−
k+1∑

j=1

(−1)j Ψj x̂(k + 1− j) (16)

so the state estimation obtains from the following relation:

x̂(k |k ) = x̃(k |k − 1) +Kk (y(k)− cx̃(k |k − 1)) (17)

where Kk is the Kalman gain matrix and y(k) is the measurement in time step k,
Kalman gain matrix obtains as:

Kk = P̃ (k |k − 1) cT (cP̃ (k |k − 1) cT +R)−1. (18)

The prediction error covariance matrix obtains as follows:

P̃ (k |k − 1) = E (x̃(k |k − 1) − x(k)) (x̃(k |k − 1) − x(k))T →

P̃ (k |k − 1) = (Ad +Ψ1)P (k − 1) (Ad +Ψ1)T +Qk−1 +
k∑

j=2

ΨjP (k − j)ΨTj (19)

and the estimation error covariance matrix is:

P (k |k) = E (x̂(k |k) − x(k)) (x̂(k |k) − x(k))T →
P (k |k) = (I −Kkc) P̃ (k |k − 1) (20)

The details of this proof are found in [12].

Therefore, Lemma 1 represented the filtering problem in the fractional order systems
while in Lemma 2, the smoothing problem in the fractional order systems is stated.
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So the fractional Kalman smoother for the linear discrete-time fractional systems is
presented as:

Lemma 2 [37]. For a linear discrete-time fractional order stochastic system, the fixed
point Kalman smother is given by

x̂(t |t+N ) = x̂(t |t+N − 1) +K(t |t+N) ε(t+N), N = 1, 2, . . . ,

K(t|t+N) =
⎧
⎨

⎩P (t |t− 1)
⎧
⎨

⎩

N−1∏

j=0

ΦT (t+ j)

⎫
⎬

⎭−
⎡

⎣
t+1∑

j=1

(−1)j ΨjP (t+ 1− j |t+ 1− j )
⎤

⎦

×
⎧
⎨

⎩In −
N−1∑

k=1

⎡

⎣
N−1∏

j=k

ΦT (t+ j)

⎤

⎦

⎫
⎬

⎭

⎫
⎬

⎭H
T

× [HP (t+N |t+N − 1)HT +R(t+N)]−1

K(t |t) = P (t |t− 1) HT [HP (t |t− 1)HT +R(t+N)]−1 = K(t)
where Φ is the transition matrix. K(t+ j) is the Kalman filtering gain and x̂(k |k ) is
the Kalman filter state estimation, which are calculated from lemma 1.
K(t |t+N) is smoothing gain and ε(t+N) is the innovation signal obtains as:

ε(t+N) = y(t+N)−Hx̂(t+N |t+N − 1).

The smoothing error x̃ (t |t+N ) = x(t)− x̂(t |t+N) and the smoothing covariance
matrix P (t |t+N ) = E [x̃ (t |t+N ) .x̃T (t |t+N )] can be recursively calculated as:

P (t |t+N ) = P (t |t+N − 1)−K(t |t+N)
× [HP (t+N |t+N − 1)HT +R(t+N)]KT (t |t+N).

Proof: The proof of Lemma 2 is given in [37], which is omitted.

Now, by extending the method in [29] we state our problem which is filtering
in the fractional order system with time-delay d in the observation signal.

Problem 1. The problem is to find the state estimation x̂(k |k ) = E [x(k) |Zk ]
for a fractional system with time-delay, presented in (21), based on a sequence of
measurements Zk = {yd, yd+1, . . . , yk;ud, ud+1, . . . uk},

ΔΨx(k + 1) = Adx(k) +Bu(k) + ω(k)

y(k) = Cx(k − d) + v(k) (21)

where d is time-delay in the measurement equation.

Proof :
If we define the new variables as:

{
Y (k) = y(k + d)

V (k) = v(k + d)
(22)
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so the new state-space representation for fractional system can be achieved as follows:

ΔΨx(k + 1) = Adx(k) +Bu(k) + ω(k)

Y (k) = Cx(k) + V (k).
(23)

It is obvious from (22) that the sequence of measurements {y(d), y(d+ 1), . . . , y(k)}
is equal to {Y (0), Y (1), , Y (k − d)}, in other words the spanned space with these two
sets are equivalent. Therefore we can conclude:

�
x (k |k ) = E {x(k) |y(d), y(d+ 1), . . . , y(k)} (24)

x̃d (k |k − d ) = E {x(k) |Y (0), Y (1), . . . , Y (k − d)}
since the sequences of measurements are equivalent, we have:

x̃d (k |k − d ) = �
x (k |k ) (25)

QV (k) = Q(k + d)

so the problem will be solved if we can find x̃d (k |k − d ), accordingly the filtering
problem will be converted to the d-step ahead prediction problem. From (13) and
(14) we find the one-step ahead prediction for a fractional order system:

x̃d (k + 1 |k ) = E [xd(k + 1) |Zk ]

= AdE [xd (k) |Zk ] +G.E [ω(k) |Zk ]−
k+1∑

j=1

E [xd (k + 1− j) |Zk]. (26)

Since ω(k) is white noise with mean zero and is also independent of Zk, we have
E [ω(k) |Zk ] = E [ω(k)] = 0, and with regard to (14) we can obtain:

x̃d(k + 1|k) = (Ad +Ψ1)�xd (k |k )−
k+1∑

j=2

(−1)j Ψjxd(k + 1− j|k) (27)

where
�
xd (k |k ) = x (k |k + d ) and x (k |k + d ) is the smoothing in time step k when

the measurements are available up to time step k+d, that can be computed from
lemma 2, and from (26) we have xd(k + 1 − j|k) = x (k + 1− j|k + d), which is
calculated from lemma 2.
The covariance matrix of the one−step ahead prediction error is calculated from

(27) as follows:

Pd(k + 1|k) = (Ad+Ψ1)P (k|k+d)(Ad +Ψ1)T +
k+1∑

j=2

ΨjP (k + 1− j|k + d)ΨTj . (28)

By continuing this approach and calculating the two-step ahead prediction:

x̃d (k + 2 |k ) = (Ad +Ψ1I)x̃d (k + 1 |k )−
k+2∑

j=2

(−1)jΨjE [xd (k + 2− j) |Zk ]

x̃d (k + 2 |k ) = (Ad +Ψ1I)x̃d (k + 1 |k )−
k+2∑

j=2

(−1)jΨjxd (k + 2− j|k) (29)
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and the two-step ahead prediction error covariance matrix:

Pd(k + 2|k) = (Ad +Ψ1)Pd(k + 1 |k) (Ad +Ψ1)T +
k+2∑

j=2

ΨjP (k + 2− j|k)ΨTj (30)

where x̃d (k + 1 |k ) in the (29) is a one-step ahead prediction that obtains from (27),
and xd(k+2−j|k) = x(k+2−j|k+d) obtains from (25) and lemma 2, the calculations
continue in the same way, so for a d-step ahead prediction we have:

x̃d(k + d|k) = (Ad +Ψ1I)x̃d(k + d− 1|k)−
k+d∑

j=2

(−1)jΨjE [xd(k + d− j) |Zk ]

= (Ad +Ψ1I)x̃d(k + d− 1|k)−Ψ2E [xd(k + d− 2) |Zk ]
+Ψ3E [xd(k + d− 3) |Zk ] + . . .+ (−1)d−1Ψd−1E [xd(k + 1)|Zk]

−
k+d∑

j=d

(−1)jΨjxd(k + d− j|k)→ x̃d(k + d|k)

= (Ad +Ψ1I)x̃d(k + d− 1|k)−Ψ2x̃d(k + d− 2|k)
+Ψ3x̃d(k + d− 3|k) + . . .+ (−1)d−1Ψd−1x̃d(k + 1|k)

−
k+d∑

j=d

(−1)jΨjxd(k + d− j|k). (31)

Therefore we obtained d–step ahead prediction in (31), easily by substituting k with
(k-d) in (31) we can find x̃d(k|k − d) as follows:

x̃d(k|k − d) = (Ad +Ψ1I)x̃d(k − 1|k − d)−Ψ2x̃d(k − 2|k − d)
+Ψ3x̃d(k − 3|k − d) + . . .+ (−1)d−1Ψd−1x̃d(k − d+ 1|k − d) (32)

−
k∑

j=d

(−1)jΨjxd(k − j|k)

also from (25) we find:

⎧
⎪⎨

⎪⎩

Pd(k|k − d) = E
[
(x(k)− x̃d(k |k − d) ) (x(k)− x̃d(k |k − d) )T

]

P (k |k) = E
[(
x(k)− �

x(k |k)
)(
x(k)− �

x(k |k)
)T]
.
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It is obvious that Pd(k|k − d) = P (k |k) , so we only need to calculate Pd(k|k − d),
using (32) and assumption 3 we find prediction error as follows:

x(k)− x̃d(k|k − d) = x(k)− (Ad +Ψ1I)x̃d(k − 1|k − d) + Ψ2x̃d(k − 2|k − d)
−Ψ3x̃d(k − 3|k − d) + . . .+ (−1)d−1Ψd−1x̃d

×(k − d+ 1|k − d) +
k∑

j=d

(−1)jΨjxd(k − j|k)

= (Ad +Ψ1I)xd(k − 1) + w(k − 1)−
k∑

j=2

(−1)jΨjxd(k − j)

−(Ad +Ψ1I)x̃d(k − 1|k − d) + Ψ2x̃d(k − 2|k − d)
−Ψ3x̃d(k − 3|k − d) + . . .+ (−1)d−1Ψd−1x̃d(k − d+ 1 |k − d)

+

k∑

j=d

(−1)jΨjxd(k − j|k)→ x(k)− x̃d(k|k − d)

= (Ad +Ψ1I) (x(k − 1)− x̃d(k − 1|k − d)) + w(k − 1)
−Ψ2(x(k − 2)− x̃d(k − 2|k − d)) + Ψ3(x(k − 3)
−x̃d(k − 3|k − d)) + (−1)d−1Ψd−1(x(k − d+ 1)

−x̃d(k − d+ 1|k − d)) +
k∑

j=d

(−1)jΨj (x(k − j)− xd(k − j|k)).

(33)

The product of each side of (33) with itself and after applying the expectation oper-
ator, we find:

Pd(k|k − d) = (Ad +Ψ1I)Pd(k − 1|k − d)(Ad +Ψ1I)T +Ψ2Pd(k − 2|k − d)ΨT2
+Ψ3Pd(k − 3|k − d)ΨT3 + . . .+Ψd−1Pd (k − d+ 1 |k − d )ΨTd−1

+
k−d∑
j=0

ΨjPd(k − d− j|k − d)ΨTj +Q(k − 1)
(34)

as regards all the cross-terms are zero, and Pd(k − d − j|k − d) = P (k − j|k) which
is the smoothing covariance matrix, obtains from lemma 2, and the terms Pd(k −
1|k−d),Pd(k−2|k−d),. . . , Pd (k − d+ 1 |k − d ) have been calculated in the previous
steps. So the proof is completed.

6 Simulation and results

We want to estimate the states of a fractional order system with process and mea-
surement noise covariance matrices and time-delay in the measurement equation. The
discrete-time fractional order system is expressed as follows:

Ad =

[
0 1
−0.1 −0.2

]
, B =

[
0
1

]
, C =

[
0.1 0.3

]

N =
[
0.7 1.2

]
d = 25, T = 1

E
[
vkv

T
k

]
= 0.3 , E

[
wkw

T
k

]
=

[
0.3 0
0 0.3

]
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Fig. 3. Real states x1 and x2 and their estimation.

and the initial parameters for fractional Kalman filter are:

P0 =

[
100 0
0 100

]
, Q =

[
0.3 0
0 0.3

]
R = [0.3] .

Using problem 1, the results of fractional Kalman filter state estimation for the above
fractional order system are shown in Fig. 3. as can be seen, the states have been
estimated accurately.

7 Conclusions

This paper has presented the fractional Kalman filtering for time-delay fractional
order systems when a constant time-delay is entered in the observation signal. This
filter, for example, can be applied in multi-sensor data fusion when one of the sensors
has a delay in data processing unit. Using this filter we can fuse information from
different sensors with unequal processing speeds.
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