
Eur. Phys. J. Special Topics 225, 171–186 (2016)
c© EDP Sciences, Springer-Verlag 2016
DOI: 10.1140/epjst/e2016-02617-8

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

A mathematical framework for amplitude and
phase noise analysis of coupled oscillators

M. Bonnin1,a, F. Corinto1, and V. Lanza2

1 Politecnico di Torino, Department of Electronics and Telecommunications,
Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2 Normandie Univ. ULH, LMAH, CNRS 3335, ISCN, 25 rue Philippe Lebon,
76600 Le Havre, France

Received 2 October 2015 / Received in final form 11 January 2016
Published online 29 February 2016

Abstract. Synchronization of coupled oscillators is a paradigm for com-
plexity in many areas of science and engineering. Any realistic net-
work model should include noise effects. We present a description in
terms of phase and amplitude deviation for nonlinear oscillators cou-
pled together through noisy interactions. In particular, the coupling
is assumed to be modulated by white Gaussian noise. The equations
derived for the amplitude deviation and the phase are rigorous, and
their validity is not limited to the weak noise limit. We show that us-
ing Floquet theory, a partial decoupling between the amplitude and
the phase is obtained. The decoupling can be exploited to describe the
oscillator’s dynamics solely by the phase variable. We discuss to what
extent the reduced model is appropriate and some implications on the
role of noise on the frequency of the oscillators.

1 Introduction

Periodically driven oscillators and coupled oscillators are classical problems in non-
linear dynamics, with many relevant applications in physics, chemistry, biology and
engineering [1–3]. To make the models more realistic, external inputs can be included,
to represent the unavoidable random fluctuations that occur in real world systems,
due to the physical properties of the oscillators or induced by the environment. Such
disturbances can be modeled by stochastic forces applied to the oscillators, which are
then described by stochastic differential equations [4,5].
Corrupting noise can dramatically affect the performance of oscillators. This is

of particular relevance, for instance, in the field of modern electronic devices. Phase
noise in oscillators can produce distortion or complete loss of incoming information in
traditional receivers, and high bit error rates in phase modulated applications. Tra-
ditionally, the action of noise on electronic oscillators has been described as purely
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diffusive process [6,7]. It is commonly assumed that the effect of white noise on the
spectrum of an oscillator is to produce a broadening of the oscillator’s spectrum with-
out affecting the positions of the peaks. Recently, this assumption has been questioned
by the analysis of some simple solvable models, and by the development of improved
mathematical techniques [8–10]. These works have shown that the phase noise prob-
lem is best described as a convection–diffusion process, i.e. white noise may also be
responsible for a shift in the oscillator’s angular frequency.
It may sound surprising that a random perturbation can produce some kind of

coherent modification to the oscillator’s frequency. In fact one may expect that, as
a result of their random nature, fluctuations have a null net effect and leave the os-
cillation frequency and amplitude unaffected. Random perturbations may produce a
coherent modification to the oscillator’s frequency because of the peculiar character-
istics of oscillators. First, the autonomous nature of oscillators implies that any time
shifted version of a solution is still a solution. The consequence is that phase shifts are
not absorbed, but rather they accumulate in time. Second, oscillators are nonlinear
dynamical systems. Some directions are preferred to others, so that perturbations
along some directions are amplified, while others are attenuated. The result is that
coherent behavior can emerge from random excitations.
In the last few years the idea on the role of noise has also changed at a more

fundamental level. For long time noise has been considered a nuisance to be reduced
as much as possible. Only recently it was figured out that noise can play a con-
structive role in natural phenomena or engineering applications. Important examples
are stochastic resonance, where a periodic signal is amplified by noise [11–13], and
energy harvesting, where noise is used as a power source [14,15]. It has also been
recognized that in particular situations, noise can favor the synchronization of os-
cillators. Synchronization is the result of two competing mechanisms. On the one
hand, differences in the oscillators free running frequencies are destructive to syn-
chronization. On the other hand, couplings between the oscillators favor the emer-
gence of collective rhythms. Similarly, noise can at the same time work both towards
and against synchronization. The phase diffusion produced by noise obviously acts
against the synchronicity, while the frequency shift produced by noise may decrease
the frequency mismatch between oscillators thus enhancing the emergence of locked
states [16,17].
To study the balance between the phase diffusion and the frequency shift, one

needs a mathematical model capable to capture the influence of noise on the phase
of the oscillators. In this paper we present a mathematical framework to reduce a
network of oscillators subject to white Gaussian noise described in terms of state vari-
ables to the equivalent amplitude and phase model. In Sect. 2 we introduce some basic
concepts about noisy oscillators and the theory of stochastic differential equations,
that represents the ideal mathematical framework for the analysis of such problems.
In Sect. 3 we derive the main result of the paper, giving a rigorous description in
terms of amplitude and phase variables for a network composed by nonlinear cou-
pled oscillators of any order, subject to white Gaussian noise. We also show how
the phase dynamics can be partially decoupled from the amplitude dynamics, thus
suggesting the possibility to derive reduced order model analogous to the celebrated
Kuramoto model [1]. In Sect. 4 we discuss some implications of our model on the
phase dynamics, with particular attention to the role of the noise on the expected
frequencies of the oscillators. We discuss the physical origin of the frequency shift
and why such an effect should not be neglected with respect to the phase diffusion
process. In Sect. 5 we present a simple example to show the application of the trans-
formation to amplitude and phase variables. The example chosen admits an analytical
solution to illustrate the influence of noise on a small network. Section 6 is devoted to
conclusions.



Synchronization and Control: Networks and Chaotic Systems 173

2 Noisy oscillators and stochastic differential equations

Nonlinear oscillators can be conveniently described by the differential equation

dX(t)

dt
= a(X(t), ξ(t)) (1)

where x : R �→ Rn is the state of the oscillator, and ξ represents the unavoidable
noise sources, both internal and external, that affect the oscillator. In most practical
situation the noise level is expected to be small with respect to the oscillator state,
so that we are legitimate to linearize Eq. (1) around the noiseless state

dX(t)

dt
= a(X(t), 0) +

∂a(X(t), 0)

∂ξ
ξ(t) + . . . (2)

Another common assumption is that the noise possesses some “nice” statistical prop-
erties. In particular we shall assume that any noise source can be modeled as a
Gaussian white noise. This assumption is justified in a wide range of practical sit-
uations, e.g. molecular dynamics, thermal noise, shot noise and Johnson noise in
electronics. In general, white noise is a good approximation to a colored noise process
in the case where the typical time scales of the underlying deterministic dynamics
are much smaller than the noise correlation time (quasi–white approximation). By
the central limit theorem, it is reasonable to describe ξ(t) as Gaussian distributed.
Equation (2) can be rewritten as the stochastic differential equation (SDE) [4,5]

dX = a(X) dt+ εB(X) dW (3)

where X : R �→ Rn is the state of the oscillator, a : Rn �→ Rn is a vector field that
describes the oscillator dynamics,B : Rn �→ Rn,m is a modulating real valued matrix,
and ε is a parameter that measures the noise intensity. W : R �→ Rm is a vector of
Wiener processes, also called Brownian motions, a continuous time stochastic process
characterized by zero expectation value E[W ] = 0, independent increments, and with
a Gaussian distribution. The vector valued function a(X) is called the drift term,
while the matrix B(X) is called the diffusion term. For matrices B with constant
entries the noise is said additive, while for a state dependent matrices B(X) the noise
is said multiplicative.
Stochastic processes are nowhere differentiable, consequently the SDE (3) should

be interpreted as a shorthanded version of the integral equation

X(t) =X(0) +

∫ t
0

a(X(s))ds+ ε

∫ t
0

B(X(s))dW (s). (4)

The first integral on the right hand side is a Riemann integral, and it does not pose
any particular problem. The second integral is a Riemann–Stieltjes type integral, but
differently from common Riemann–Stieltjes integrals, the point at which the function
is evaluated do matter. The two main interpretation schemes are Stratonovich and

Itô. According to Stratonovich, the stochastic integral1
∫ t
0
B(X(s))◦dW (s) is defined

as the mean square limit of the partial sum [5]

SSn =

n∑
i=1

B

(
X(ti) +X(ti−1)

2

)
[W (ti)−W (ti−1)] .

1 Conforming to the standard notation, we use the symbol B(X) ◦ dW to denote Strato-
novich integral, while we reserve notation B(X)dW for Itô integral.
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By contrast, in Itô interpretation the stochastic integral
∫ t
0
G(s)dW (s) is the mean

square limit of [5]

SIn =

n∑
i=1

G(ti−1) [W (ti)−W (ti−1)] .

Both interpretations have their own pros and cons. The main advantage of
Stratonovich interpretations is that traditional calculus rules apply. The drawback
is that in each time interval, both the initial value X(ti−1) and the final value X(ti)
of the stochastic process X are required to solve the SDE. This feature is known
as the “look in the future property” of Stratonovich integral. As a consequence the
Stratonovich interpretation is not well suited for numerical integration schemes. More-
over, in Stratonovich interpretation the stochastic process and the noise increments
are correlated, making the determination of stochastic expectations difficult. By con-
trast, Itô stochastic integral only requires the initial value of the stochastic process in
each time interval. Therefore Itô interpretation is preferred in the implementation of
numerical integration schemes. In Itô SDEs the stochastic process and the noise incre-
ments are uncorrelated, making the determination of stochastic expectations easier.
The drawback of Itô view is that a new set of calculus rules, known as Itô calculus
must be used.
The relevant consequence of the two different interpretations is that the same

SDE has different solutions whether it is interpreted following Stratonovich or Itô.
However, the two interpretations are linked by a transformation that converts any
Stratonovich (respectively Itô) SDE into an equivalent Itô (respectively Stratonovich)
SDE. By equivalent we mean a different SDE, interpreted with different rules, but
that has the same solution [4,5]. The equivalence opens the possibility to switch from
one interpretation to the other to take advantage of the pros of both the definitions.
The Stratonovich SDE (the apex S and I denote Stratonovich and Itô, respectively)

dX = aS(X) dt+ εBS(X) ◦ dW (5)

is equivalent to the Itô SDE

dX = aI(X) dt+ εBI(X) dW (6)

where (ai is the i-th component of a, Bij the (i, j) element of B)

aIi (X) = a
S
i (X) +

ε2

2

∑
j,k

∂Bij

∂xk
Bjk (7)

and
BS(X) = BI(X). (8)

In the following we shall use Itô interpretation, omitting the apex I for simplicity.

3 Amplitude and phase equations for a network of oscillators with
noisy interactions

A network composed of N weakly coupled nonlinear oscillators with noisy interactions
can be described, similarly to (3), by the (Itô) SDEs

dXi = [ai(Xi) + εci(X1, . . . ,XN )] dt+ εBi(X1, . . . ,XN ) dW i i = 1, . . . , N
(9)
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where Xi : R �→ Rn is a stochastic process describing the state of the i–th oscillator,
ai : R

n �→ Rn is the i–th drift coefficient, Bi : R
n �→ Rm,n is the i–th n × m

diffusion matrix, and W i : R �→ Rm is the i–th vector of Wiener processes. For the
sake of simplicity, in Eq. (9) we assume that all oscillators are of the same order2

(Xi ∈ Rn, for all i), but we allow the interaction to vary for each oscillator both
in the modulating matrix Bi and in the random fluctuation W i. Such a model may
arise, for instance, if both ai and ci have some small stochastic components, and they
are linearized around a noiseless state.
For ε = 0, the SDE (9) reduce to an ordinary differential equation (ODE) describ-

ing N independent, noiseless oscillators. The i–th oscillator is described by the ODE

dxi(t)

dt
= ai(xi(t)). (10)

We assume that the ODE (9) admits an asymptotically stable Ti–periodic solution,
represented by a limit cycle xSi(t) in its state space. For each oscillator we define the
vector

u1i(t) =
ai(xSi(t))

|ai(xSi(t))|
(11)

u1i(t) is the unit vector that at each time instant is tangent to the limit cycle xSi(t).
Together with u1i(t) we consider other n− 1 vectors u2i(t), . . . ,uni(t), such that the
set {u1i(t), . . . ,uni(t)} is a basis for Rn for all t. Let U i(t) = [u1i(t), . . . ,uni(t)]
be the matrix whose columns are u1i(t), . . . ,uni(t). Such a matrix is obviously in-
vertible, and let V i(t) = U

−1
i (t) be the inverse. We define the reciprocal vectors

vT1i(t), . . . ,v
T
ni
(t) to be the rows of V i(t). By construction, the ui and vi vectors are

bi–orthogonal, i.e.
uTαi(t)vβi(t) = δαβ

where δαβ is the Kronecker’s symbol. We shall also use the matrices Y i(t) =
[u2i(t), . . . ,uni(t)], Zi(t) = [v2i(t), . . . ,vni(t)], and the modulus of the vector field
ri(t) = |ai(xSi(t))| evaluated over the limit cycle.
A crucial concept to be defined in the analysis of synchronization of oscillators

is the phase concept. A phase function is intended to represent the projection of the
oscillator’s state onto a reference trajectory, normally the unperturbed limit cycle.
For each oscillator we introduce a phase function θi : R

n �→ [0, Ti), interpreted as
an elapsed time from an initial reference point. Consider a point xSi(0) on the limit
cycle, and assign phase zero to this point, i.e. θi(xSi(0)) = 0. The phase of the point
xSi(t) is θi(xSi(t)) = t, mod Ti. Thus, the phase represents a new parametrization
of the limit cycle. Together with the phase function we shall consider an amplitude
deviation function Ri : R

n �→ Rn−1, with θi,Ri ∈ Cm(Rn), m ≥ 2. The amplitude3
function Ri is interpreted as an orbital deviation from the limit cycle xSi(t), see
Fig. 1.
The following theorem establishes the amplitude and phase equation for the net-

work.

Theorem 1. Consider the Itô diffusion (9), and the reciprocal bases
{u1i(t), . . . ,uni(t)} and {v1i(t), . . . ,vni(t)}, satisfying the bi–orthogonality condition
vTαiuβi = δαβ, for all i = 1, . . . , N . Consider the coordinate transformation

xi = hi(θi,Ri) = xSi(θi(t)) + Y i(θi(t))Ri(t). (12)

2 Oscillators of different order do not pose any particular problem, they only make the
notation more involved. The theorems 1 and 2 can be formulated, mutatis mutandis, for
oscillator of different orders.
3 We shall use the term “amplitude” instead of the more correct “amplitude deviation”
for the sake of simplicity.
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Fig. 1. Two possible decompositions of the stochastic process Xi(t). At the time t1 the
process is decomposed as Xi(t1) = xSi(θi(t1)) + Y i(θi(t1))Ri(t1) using two different basis
vectors. Left: orthogonal basis. Right: “oblique” basis. Red line is the stochastic process Xi,
blue line is the limit cycle xSi(t) shown for reference.

Then in a neighborhood of the limit cycle xSi the phase θi(t) and the amplitude Ri(t)
are Itô processes and satisfy

dθi =
[
1 + aθi(θi,Ri) + ε

2 âθi(θ1 . . .RN ) + εcθi(θ1 . . .RN )
]
dt

+εBθi(θ1 . . .RN ) dW i (13a)

dRi =
[
Li(θi)Ri + aRi(θi,Ri) + ε

2âRi(θ1 . . .RN ) + εcRi(θ1 . . .RN )
]
dt

+εBRi(θ1 . . .RN ) dW i (13b)

where (θ1 . . .RN ) is a shorthanded notation for (θ1,R1, . . . , θN ,RN ) and (we omit
explicit dependence on θi and t for simplicity)

aθi(θi,Ri) =

(
ri + v

T
1i

∂Y i

∂θi
Ri

)−1

×vT1i
[
ai(xSi + Y iRi)− ai(xSi)−

∂Y i

∂θi
Ri

]
(14a)

âθi(θ1 . . .RN ) = −
(
ri + v

T
1i

∂Y i

∂θi
Ri

)−1
vT1i

[
∂Y i

∂θi
BRiB

T
θi

+
1

2

(
∂ai(xSi)

∂θi
+
∂2Y i

∂θ2i
Ri

)
BθiB

T
θi

]
(14b)

cθi(θi,Ri) =

(
ri + v

T
1i

∂Y i

∂θi
Ri

)−1

×vT1ici(xS1 + Y 1R1, . . . ,xSN + Y NRN ) (14c)

Bθi(θ1 . . .RN ) =

(
ri + v

T
1i

∂Y i

∂θi
Ri

)−1

×vT1i Bi(xS1 + Y 1R1, . . . ,xSN + Y NRN ) (14d)

Li(θi) = −ZTi
∂Y i

∂θi
(14e)

aRi(θi,Ri) = −ZTi
[
∂Y i

∂θi
Ri aθi − ai(xSi + Y iRi)

]
(14f)
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âRi(θ1 . . .RN ) = −ZTi
[
∂Y i

∂θi
Ri âθi +

∂Y i

∂θi
BRiB

T
θi

+
1

2

(
∂ai(xSi)

∂θi
+
∂2Y i

∂θ2i
Ri

)
BθiB

T
θi

]
(14g)

cRi(θ1 . . .RN ) = −ZTi
∂Y i

∂θi
Ri cθi(xS1 + Y 1R1, . . . ,xSN + Y NRN ) (14h)

BRi(θ1 . . .RN ) = Z
T
i

[
Bi(xS1 + Y 1R1, . . . ,xSN + Y NRN )−

∂Y i

∂θi
RiBθi

]
(14i)

Proof: See appendix A.

The amplitude and phase Eqs. (13a) and (13b) are exact, since no approximation
is involved in their derivation, and they are valid for any value of the noise intensity ε
as long as the Jacobian matrices Dhi are regular. The amplitude and phase equations
obtained crucially depend on the choice of the basis vectors u2i , . . . ,uni .
In general, the equations for the two Itô processes for the phase and for the ampli-

tude are coupled together. It is possible to show that, making use of Floquet theory, a
partial decoupling between the phase and the amplitude dynamics is obtained. Before
introducing the theorem we recall the main results of the Floquet theory [6,18]. Let

Ai(t) =
∂ai(xSi )

∂xi
be the Jacobian matrix of the i–th oscillator evaluated on the limit

cycle xSi(t), and let Φi(t) be the fundamental matrix of the variational equation

dyi(t)

dt
= Aiyi(t).

Thus, from Floquet theory we get:

Φi(t) = P i(t)e
DtP−1i (0), (15)

where P i(t) is a Ti–periodic matrix, and Di = diag[ν1i , . . . , νni ] is a diagonal matrix
whose diagonal entries are the Floquet characteristic exponents [6,18].

Theorem 2. If the vectors u2i(t), . . . ,uni(t) are chosen such that

[riu1i(t), . . . ,uni(t)] = P i(t),

then the Itô processes (13a) and (13b) become

dθi =
[
1 + ãθi(θi,Ri) + ε

2 âθi(θ1 . . .RN ) + ε cθi(θ1 . . .RN )
]
dt

+εBθi(θ1 . . .RN ) dW i (16a)

dRi =
[
D̃iRi + ãRi(θi,Ri) + ε

2âRi(θ1 . . .RN ) + ε cRi(θ1 . . .RN )
]
dt

+εBRi(θ1 . . .RN ) dW i, (16b)

where D̃i = diag[ν2i , . . . , νni ] and the Taylor series of ãθi(θi,Ri) and ãRi(θi,Ri) do
not contain linear terms in Ri.

Proof: See appendix B.

The asymptotic stability hypothesis of the limit cycle implies that the Floquet
characteristic exponents ν2i , . . . , νni have negative real parts, for all i = 1, . . . , N . As
a consequence, in the limit ε � 1, the amplitude asymptotic dynamics is one order
of magnitude slower than the phase dynamics. This observation suggests the idea to
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neglect the amplitude dynamics given in (41b), and to approximate the stochastic
processes Ri in (41a) with some reasonable (possibly constant) estimate. This ap-
proach leads to the so called “phase reduced models”. For instance, assuming the
unperturbed value Ri ≈ 0, and taking into account that aθi(θi, 0) = 0 we obtain the
simple phase equation

dθi =
(
1 + ε2âθi(θi)

)
dt+ εBθi(θ

(1), . . . , θ(N)) dW i. (17)

We remark that the assumptions leading to (17) is justified only if the amplitudes relax
instantaneously to the unperturbed value, an assumption that is often made more for
mathematical convenience than being physically plausible. In fact, this assumption
relies on linear approximation of manifolds, and nonlinear effects will become stronger
the further we move away from the limit cycle. Moreover, the presence of nearby
invariant structures such as equilibrium points and invariant manifolds may result in
trajectories spending long periods of time away from the limit cycle, thus nullifying
the instantaneous relaxation hypothesis. As a consequence a better solution is to
chose the approximation Ri ≈ E[Ri], provided that the expected amplitude can be
computed [10].

4 Discussion

A full analysis of the amplitude and phase Eqs. (13a), (13b) is a formidable problem
and will not be treated here. We limit ourselves to some considerations and some
general comments.
Equations (13a), (13b), or the phase reduced model (17) suggest that the drift

effects due to ε2âθi become negligible in the limit of vanishing small noise (ε → 0).
The phase model in this limit has been extensively studied both at the single oscillator
and network level [6,7,19]. However, for small but finite values of ε, the drift effects
may become significant if âθi become large enough. That the drift effects should not
be neglected even for small values of ε can be justified as follows. When dealing
with stochastic processes, the single realization is not very much significant: it is
often much more useful to look at expected quantities. To illustrate the point, it is
sufficient to consider a single oscillator described by a phase reduced model, the full
network model (13a), (13b) is conceptually analogous. Let f(θ) be an arbitrary scalar
function of the phase, and let u(t, θ) = E[f(θ)] be the expected value of this function,
with initial value u(0, θ) = f(θ). Then the time evolution of u(t, θ) is governed by the
Kolmogorov Backward Equation [5]

∂u

∂t
= Au, (18)

where A is the generator of the Itô diffusion

Af(θ) = (1 + ε2âθ(θ))∂f(θ)
∂θ

+
ε2

2

(
Bθ(θ)B

T
θ (θ)
) ∂2f(θ)

∂θ2
· (19)

Equation (19) shows that both the O(ε2) drift coefficient and the O(ε) diffusion
coefficient in (17) contribute for O(ε2) terms to the evolution of expected quantities
in (18), (19), and therefore we are not allowed to neglect one contribution with respect
to the other.
Expected quantities can be determined using Itô calculus without solving the

Kolmogorov Backward Equation (19). In fact, let X be the solution of an Itô SDE,
and let f be a non anticipating function (adapted process), then the zero expectation
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property of Itô stochastic integral holds

E

[∫ t
t0

f(X) dW

]
= 0. (20)

Taking the stochastic expectation on both sides of Eqs. (13a), (13b) and using the
zero expectation property we can transform the SDEs for the amplitude and phase
into a set of ODEs for the expectation values

E

[
dθi

dt

]
= 1 + E

[
aθi(θi,Ri)

]
+ εE[cθi(θ1 . . .RN )] + ε

2E
[
âθi(θ1 . . .RN )

]
(21a)

dE
[
Ri
]

dt
= E
[
L(θi)Ri

]
+ E
[
a2i(θi,Ri)

]
+ εE[cRi(θ1 . . .RN )]

+ε2E
[
âRi(θ

(1) . . . R(N))
]

(21b)

where the property dE[θ]/dt = E[dθ/dt] has been used. The problem here is the
nonlinear nature of the ODEs. In fact, to compute the expectation of the nonlinear
functions one needs all the moments for the amplitudes and the phases. We illustrate
the issue for the function aθi for the simple case of a scalar amplitude Ri. Taking the
Taylor series in the neighborhood of θi = 0, Ri = 0 we have

E
[
aθi(θi, Ri)

]
= aθi(0, 0) +

∂aθi(0, 0)

∂θi
E
[
θi
]
+
∂aθi(0, 0)

∂Ri
E
[
Ri
]

+
1

2

∂2aθi(0, 0)

∂θ2i
E
[
θ2i
]
+
1

2

∂2aθi(0, 0)

∂R2i
E
[
R2i
]
+
∂2aθi(0, 0)

∂Ri∂θi
E
[
Riθi
]
. . .

(22)

Therefore, to compute E[θi] and E[Ri], one needs all the moments of θi, Ri, i.e. the
system is open. To close the system various approaches are available [20,21]. Among
others, moment closure techniques are procedures to approximate the exact (but
open) moment dynamics with a closed (but approximate) system. A relatively simple
closure technique amounts to assume that higher order moments can be expressed in
terms of the lowest order ones, assuming that the stochastic processes satisfy certain
distribution laws (e.g. Gaussian distribution). Equation (22) is also instrumental to
show the limit of the phase reduction method. Although the amplitude is expected to
remain small (E

[
Ri
] ≈ 0), higher order moments (e.g. the variance) may play a rele-

vant role to modify the expected angular frequency. Obviously, the same consideration
holds true for the amplitude variable.
We close this section with a final remark. One may argue that the drift terms

âθi and âRi are artifacts due to Itô interpretation. However, it turns out that the
frequency drift is also present if Stratonovich interpretation is used [8–10]. To clarify
the point, consider the Stratonovich SDE describing the network of oscillators

dXi = [ai(Xi) + εci(X1, . . . ,XN )] dt+ εBi(X1, . . . ,XN ) ◦ dW i i = 1, . . . , N.
(23)

Taking into account that in Stratonovich interpretation traditional calculus rules
apply, repeating the procedure used in the previous section the following reduced
phase model is derived

dθi = [1 + εcθi(θ1, . . . , θN )] dt+ εBθi(θ1, . . . , θN ) ◦ dW i. (24)

However, in Stratonovich interpretation is no longer true that the stochastic processes
and the noise increments are uncorrelated. Because of the anticipating nature dis-

cussed in Sect. 2, E[
∫ t
t0
f(X) ◦ dW ] 	= 0. To resolve the correlation, a Stratonovich
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SDE has to be transformed into its equivalent Itô SDE by the addition of the drift
correction term [4,5]. Here is where the drift coefficient, that arises naturally from
the quadratic terms in Itô formula, comes into play [8–10].

5 Example

In this section we give an example to show the derivation of the phase and amplitude
deviation equations starting from the network’s state equations. To keep everything
reasonably simple, we consider a network composed by two oscillators written in polar
coordinates

dρi = ρi (1− ρi) dt+ ε ρidWρi (25a)

dφi = [νiρi + ε(φj − φi)] dt+ ερj dWφi (25b)

for i, j = 1, 2, and j 	= i. The real parameters νi define the free running frequencies
of the oscillators in absence of noise. Although most of the information concerning
expectation values and phase locking can be directly obtained from Eqs. (25a)–(25b),
we first transform these equations into the equivalent amplitude and phase models
using theorems 1 and 2 to show the application of the method.
For ε = 0, Eq. (25a) admits two stationary solutions: ρi = 0 that corresponds

to an unstable equilibrium point, and ρi = 1, that corresponds to an asymptotically
stable limit cycle with angular frequency dφi/dt = νi. Without loss of generality, we
shall assume ν1 > ν2. To investigate the synchronization of the two oscillators we
look at the phase difference ψ = φ1−φ2. The oscillators are phase locked if the phase
difference remains constant in time. If the two oscillators have different free running
frequencies ν1 	= ν2, the phase difference ψ = (ν1 − ν2)t grows unboundedly large
(in absolute value) as the time passes. Conversely, if the coupling effect is taken into
account but the noise influence is ignored, the phase difference evolves according to

dψ

dt
= ν1 − ν2 − 2εψ.

Asymptotically the two oscillators become phase locked with phase difference

ψs =
ν1 − ν2
2ε

· (26)

Moreover, since dψ/dt > 0 for ψ < ψs and dψ/dt < 0 for ψ > ψs, the phase locked
state is asymptotically stable.

5.1 Amplitude and phase equations using an orthogonal frame

Each uncoupled oscillator of the network (25a)–(25b) admits the limit cycle

xSi(ρi, φi) =

[
1
νi t

]
· (27)

It follows that the orthogonal basis is given by the tangent vector u1i(t) = [0, 1]
T and

the orthogonal unit vector u2i(t) = [1, 0]
T . Since the matrix U i(t) = [u1i(t),u2i(t)]

is orthogonal, we have v1i(t) = u1i(t) and v2i(t) = u2i(t). The change of coordinates
(12) implies ρi = 1 + Ri and φi = νiθi. Since the Jacobian of the transformation is
|Dhi(θi, Ri)

∣∣
Ri=0

= νi, the coordinate transformation holds for any value of the noise
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intensity. Using theorem 1 it is straightforward to derive the amplitude and phase
equations

dθi =

[
1 +Ri + ε

(
νj

νi
θj − θi

)]
dt+ ε

1 +Rj
νi

Wφi (28a)

dRi = [−Ri(1 +Ri)] dt+ ε(1 +Ri)dWρi . (28b)

As it was expected from theorem 2, in the phase equation the drift coefficient contains
a linear term in Ri.

5.2 Amplitude and phase equations using a Floquet frame

The Jacobian matrix of (25a), (25b) for ε = 0 evaluated over the limit cycle for
ε = 0 is

Ai(xSi) =

[−1 0
νi 0

]
(29)

with eigenvalues λ1i = 0, λ2i = −1, for all i. The corresponding eigenvectors are
the Floquet vectors u1i(t) = [0, 1]

T and u2i(t) = [1,−νi]T . Inverting the matrix
U i(t) = [u1i(t),u2i(t)] we find the Floquet co–vectors v1i(t) = [νi, 1]

T and v2i(t) =
[1, 0]T . The relation between the old and the new coordinates is ρi = 1 + Ri and
φi = νi(θi − Ri). As before the Jacobian matrix Dhi is regular on the whole plane
θi, Ri. Consequently the phase and amplitude equations in the new basis are

dθi =

{
1−R2i + ε

[
νj

νi
(θj −Rj)− (θi −Ri)

]}
dt

+ε

[
μi(1 +Ri)dWρi +

1 +Rj
νi

dWφi

]
(30a)

dRi = − [Ri (1 +Ri)] dt+ εμi(1 +Ri)dWρi . (30b)

Comparing (28a) to (30a) we observe that according to theorem 2, the latter has a
drift coefficient that starts with a quadratic term in Ri. The use of Floquet basis also
emphasizes the role played by higher order moments, e.g. the variance, on the angular
frequencies of the oscillators.
In this particular example E[Ri] and E[R

2
i ] can be determined analytically, be-

cause Eq. (30b) depends on Ri only. Thus we can write a one dimensional Fokker–
Planck equation (see [4]) for the probability density function (PDF) of the amplitude
variable

∂pi(Ri, t)

∂t
= − ∂

∂Ri
[−Ri (1 +Ri) pi(Ri, t)] + ε2

2

∂2

∂R2i

[
(1 +Ri)

2pi(Ri, t)
]

(31)

In the limit t→ +∞ it admits the stationary solution

pi(Ri) =
N

(1 +Ri)2
exp

{
2

ε2
[ln(1 +Ri)−Ri]

}
(32)

where N is normalization constant that can be determined through the requirement∫ +∞
−∞ pi(Ri) dRi = 1. Using the stationary PDF we can compute the expectation value
for an arbitrary function of the amplitude through

E[f(Ri)] =

∫ +∞
−∞

f(Ri) pi(Ri) dRi. (33)
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Fig. 2. Probability density function for the amplitude deviation given by (32), for different
values of the noise intensity ε.

Fig. 3. Left: expected amplitude E[Ri] versus the noise intensity ε. Right: expected squared
amplitude E[R2i ] versus the noise intensity ε.

Figure 2 shows the stationary PDF pi(Ri) for different values of the parameter ε.
For small noise intensity the PDF is well approximated by a Gaussian distribution.
Increasing the noise intensity, we observe an increase in the variance (due to diffusion)
and a shift in the mode (the most probable value of the amplitude). We also observe
the PDF becomes asymmetric with respect to the maximum value, thus indicating
that higher order moments become more and more relevant. Figure 3 shows the first
two moments for the amplitude deviation. It is seen the quadratic dependence on the
noise intensity as predicted by theorem 1.

Taking stochastic expectations of (30a) and using the zero expectation property
of Itô integral we have

E

[
dθi

dt

]
= 1− E [R2i ]+ ε

[
νj

νi
(E[θj ]− E[Rj ])− (E[θi]− E[Ri])

]
· (34)

Multiplying4 by νi it is straightforward to obtain the equation for the expected phase
difference

dE[ψ]

dt
= νi − νj + νjE[R2j ]− νiE[R2i ]− 2ε (νjE[Rj ]− νiE[Ri])− 2εE[ψ]. (35)

4 We recall that θi is a normalized phase variable, multiplication for νi is necessary to
retrieve the non normalized phase variable.
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Fig. 4. Left: comparison between the expected asymptotic phase difference E[ψ] obtained
solving (36) and the phase difference given by (26), versus the noise intensity ε for two
oscillators with different free running angular frequencies, ν1 = 1 and ν2 = 2. Right: phase
difference for two oscillators (free running angular frequencies are ν1 = 1 and ν2 = 2 respec-
tively), as a function of time for a specific realization of the noise. The noise intensity is set
to ε = 0.05. The phase difference in absence of noise is shown for reference.

Since the amplitude equation is the same for all the oscillators5, we have E[R1] =
E[R2] and E[R

2
1] = E[R

2
2], then

dE[ψ]

dt
= (ν1 − ν2)

(
1− E[R21] + 2εE[R1]

)− 2εE[ψ]. (36)

Asymptotically the oscillators converge to the phase locked state

E[ψ] =
(ν1 − ν2)

(
1− E[R21] + 2εE[R1]

)
2ε

(37)

which is different from the phase locked state in absence of noise (26). The phase
difference in presence of noise is compared with that obtained without noise in Fig. 4.
On the left we can see the asymptotic expected phase difference versus the noise
intensity, while on the right it is shown the phase difference versus time for a specific
realization of the noise process. It can be seen how noise operates to actively reduce
the phase difference between the oscillators.

6 Conclusions

We have considered networks of coupled nonlinear oscillators subject to white
Gaussian noise. We have shown that the network can be conveniently described by
stochastic differential equations. The advantages and disadvantages of the two most
popular interpretations, i.e. Itô and Stratonovich, have been briefly outlined.
Using projection techniques and Itô calculus, we have derived a rigorous mathe-

matical description for the network dynamics, in terms of the phases and amplitude
deviations of the oscillators. We have shown that using Floquet theory a partial decou-
pling between the phase and the amplitude dynamics can be obtained. This idea leads
to the development of phase reduced models analogous to the celebrated Kuramoto
model.
The amplitude and phase description highlights the influence of noise on the phases

of the oscillators. It represents a good starting point for the analysis of the role of noise

5 The case where the noise intensity ε is not equal for all the oscillators can be treated
similarly. Obviously E[Ri] �= E[Rj ] and E[R

2
i ] �= E[R2j ] and the solution of (35) would be

more complicated.



184 The European Physical Journal Special Topics

on synchronization. It is shown that noise can prevent phase locking of oscillators,
by producing phase diffusion. It also shown that noise can favor synchronization. In
fact the oscillators may adjust their frequency in response to noise intensity, and as
a consequence noise can actively contribute to the synchronization by decreasing the
frequency mismatch. A simple example has been used to illustrate the derivation of
the amplitude and phase equations and their analysis.

This work was supported by the Università Italo Francese-Campus France in the framework
Galileo 2014–2015 (project number G14-145, 32338ZG).

Appendix A: Proof of theorem 1

First we show that a neighborhood of the limit cycle exists, where θi and Ri are Itô
processes. The Jacobian matrix of the coordinate transformation (12) evaluated on
the limit cycle is

Dhi(θi,Ri)
∣∣
Ri=0

=
[
ri(θi)u1i(θi),u2i(θi), . . . ,uni(θi)

]
.

Since {u1i(t), . . . ,uni(t)} is a basis for Rn, it follows that detDhi(θi,Ri)
∣∣
Ri=0

	= 0.
Then by the inverse function theorem a neighborhood of Ri = 0 exists, where hi is
invertible. Moreover, if hi is of class Ck then its inverse is also of class Ck. Taking the
inverse of hi we can write θi = θi(xi) and Ri = R(xi), and if the basis vectors are
smooth enough it follows from Itô formula that θi and Ri are Itô processes.
Now we prove that θi and Ri satisfy Eqs. (13a) and (13b). Using Itô formula and

Eq. (9), xi = hi(θi,Ri) implies

dxi =
∂hi

∂θi
dθi +

∂hi

∂Ri
dRi +

1

2

∂2hi

∂θ2i
(dθi)

2 +
1

2
dRTi

∂2hi

∂R2i
dRi +

∂2hi

∂θi∂Ri
dθidRi

=
[
ai(hi(θi,Ri)) + εci(h1(θ1,R1), . . . ,hN (θN ,RN ))

]
dt

+Bi(h1(θ1,R1), . . . ,hN (θN ,RN )) dW i

where ∂hi/∂Ri and ∂
2hi/∂R

2
i are the Jacobian and the Hessian matrices, respec-

tively. Introducing (12) yields

(
ai(xSi) +

∂Y i

∂θi
Ri

)
dθi + Y idRi +

1

2

(
∂ai(xSi)

∂θi
+
∂2Y i

∂θ2i
Ri

)
(dθi)

2 +
∂Y i

∂θi
dθi dRi

=
[
ai(xSi + Y iRi) + εci(xS1 + Y 1R1, . . . ,xSN + Y NRN )

]
dt

+εBi(xS1 + Y 1R1, . . . ,xSN + Y NRN )dW i.
(38)

Multiplying (38) to the left by vT1i and using the bi–orthogonality condition we get

(
ri + v

T
1i

∂Y i

∂θi
Ri

)
dθi +

1

2
vT1i

(
∂ai(xSi)

∂θi
+
∂2Y i

∂θ2i
Ri

)
(dθi)

2 + vT1i
∂Y i

∂θi
dθi dRi

= vT1i [ai(xSi + Y iRi) + εci(xS1 + Y 1R1, . . . ,xS1 + Y 1R1)] dt

+εvT1iBi(xS1 + Y 1R1, . . . ,xSN + Y NRN )dW i.
(39)
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Multiplying (38) to the left by ZTi gives

ZTi
∂Y i

∂θi
Ri dθi + dRi +

1

2
ZTi

(
∂ai(xSi)

∂θi
+
∂2Y i

∂θ2i
R

)
(dθi)

2 +ZTi
∂Y i

∂θi
dθi dRi

= ZTi [ai(xSi + Y iRi) + εci(xS1 + Y 1R1, . . . ,xSN + Y NRN )] dt

+εZTi Bi(xS1 + Y 1R1, . . . ,xSN + Y NRN )dW i.

(40)

Since θi and Ri are Itô processes they satisfy relations of type dθi = αi dt+βi dW i,
and dRi = γi dt + σi dW i, respectively. By Itô lemma (dθi)

2 = βiβ
T
i dt, and

dθi dRi = σiβ
T
i dt. Introducing these results in (39), (40) and equating terms in

dW i we obtain

βi = ε

(
ri + v

T
1i

∂Y i

∂θi
Ri

)−1
vT1I Bi(xS1 + Y 1R1, . . . ,xSN + Y N RN ) (41a)

σi = εZTi Bi(xS1 + Y 1R1, . . . ,xSN + Y N RN )−ZTi
∂Y i

∂θi
Ri βi. (41b)

Finally, using (41a), (41b) together with (dθi)
2 = βiβ

T
i dt, dθi dRi = σiβ

T
i dt in

(39), (40), and rearranging the terms we get the thesis. �

Appendix B: Proof of theorem 2

First of all, we observe that by hypothesis the columns of matrix P i(t) are linearly
independent for any t, and therefore they can be chosen as a basis for Rn. Moreover,
from Eq. (11), we have riu1i(t) = dxSi/dt. Therefore ν1i = 0, since dxSi/dt is the
solution of the variational equation associated to the structural Floquet exponent.
Furthermore, Eq. (15) implies P i(t) = Φi(t)P i(0)e

−Dit. Taking the derivatives of
(15) yields

dΦi

dt
=
dP i

dt
eDtP−1i (0)− P i(t)DieDitP−1i (0)

and taking into account that Φi(t) is a fundamental matrix of the variational equation

we obtain: dP i/dt = AiP i − P iDi and consequently dY i/dt = AiY i − Y iD̃i.
Substituting the expression of dY i/dt in (14a), (14e) and (14f), taking the Taylor
series ai(xSi + Y iRi) = ai(xSi) + AiY iRi + . . . , and using the bi-orthogonality
condition the thesis follows. �
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