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Abstract. Synchronization of neural network response on spatially
localized periodic stimulation was studied. The network consisted
of synaptically coupled spiking neurons with spike-timing-dependent
synaptic plasticity (STDP). Network connectivity was defined by time
evolving matrix of synaptic weights. We found that the steady-state
spatial pattern of the weights could be rearranged due to locally applied
external periodic stimulation. A method for visualization of synaptic
weights as vector field was introduced to monitor the evolving con-
nectivity matrix. We demonstrated that changes in the vector field and
associated weight rearrangements underlay an enhancement of synchro-
nization range.

1 Introduction

Synchronization in neuron networks is known to play an important role in brain infor-
mation processing. Particularly, it underlies formation of brain rhythms contributing
to encoding memory traces, planning motor tasks, performing navigation in space and
other cognitive functions [1–4]. Also abnormal synchrony is associated with patho-
logical processes [5]. At the level of single cells the synchrony between a pair or a
small group of neurons may reflect the formation of functionally connected ensem-
bles. This involves structural changes in connections between the neurons, also known
as synaptic plasticity.
Synaptic plasticity is believed to be the key cellular mechanism of learning and

memory in the brain. Experimental discovery of spike-timing dependent synaptic plas-
ticity (STDP) [6,7] has sparked growing interest from the computational neuroscience
field. A plethora of models explaining various experimental results and bridging the
gap between neuronal and synaptic dynamics, plasticity and information processing
have been proposed [8–14]. Network-level modelling has explained how local STDP
rule can drive population dynamics [15,16].
However, little is known about the interplay between synaptic plasticity and syn-

chronization. Recent computational studies were focused on local dynamics of a pair
of neurons [17,18]. Sparse network-level models were mostly purposed to reveal the
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role of STDP in synchronization in autonomous network dynamics or to provide
theoretical approach to desynchronization of the network activity by external stimuli
[19] or in the autonomous mode [20].
In this paper we investigate the role of synaptic plasticity in synchronization of

evoked spiking neural network responses on locally applied periodic stimulation. The
mechanisms of such evoked synchronization can provide understanding of information
processing in living neural networks. Our network model simulates the dynamics of
dissociated neural networks cultured on microelectrode arrays (MEAs) [21–24].
Experimental results have demonstrated that cultured neural networks can gener-
ate a variety of spiking patterns with highly precise timings [25,26]. It is believed
that cultured networks can implement simple forms of memory [27–29]. In the ex-
periments the network was locally stimulated by electrical pulses, and the network
response was monitored. When the response became phase-locked with the stimulus
and satisfied a predefined condition (e.g. spike appearance in the certain time interval
or increasing average response activity) the stimulation was switched off providing
the reinforcement. Such training could be associated with formation of novel synap-
tic pathways in the cultured network providing the required characteristics of the
response. In our model we demonstrate how network responds to the local stimula-
tion and can be adaptively synchronized by local periodic stimulation. We show how
the network rearranges the synaptic weight matrix to enhance synchronization. This
rearrangement is associated with STDP update rule.

2 Methods

2.1 Model

We took Izhikevich neuron [30] as a single neuron model, since being computationally
efficient, it was able to reproduce spiking dynamics of most of the known neuron types.
The model is described by the following equations:

dVi

dt
= 0.04V 2i + 5Vi + 140− ui +

√
2Dξi + Ii;

dui

dt
= a(bVi − ui);

if Vi ≥ 30 mV, then Vi ← c, ui ← ui + d.

(1)

Here V represents the membrane potential of the neuron and u represents a membrane
recovery variable. After the membrane potential reaches its peak (Vpeak = 30 mV),
the membrane voltage and the recovery variable are reset according to the equations
and the neuron generates a spike transmitted to all its targets of the network. For
all the neurons in the network we use parameter values corresponding to the regular
spiking neuron [30]: a = 0.02, b = 0.2, c = −65, d = 8. Each neuron was exposed
by a mutually independent and uncorrelated Gaussian white noise with variance D,
< ξi(t) >= 0, < ξi(t)ξj(t

′) >= δijδ(t − t′). We took D = 3.2 leading the neurons to
fire with rate approximately 0.015 Hz.
Synaptic current Ii was calculated as the weighted sum of all synaptic inputs of

the ith neuron:
Ii =

∑

j

Imaxwijyij(t); (2)

where Imax = 20 is the maximal synaptic current, the range of index j is defined
for each ith neuron by a connectivity rule described below, wij is the weight of
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synaptic connection from neuron j to neuron i and yij(t) is the amount of active
neurotransmitter of neuron j, calculated according to Tsodyks-Markram equations
[31]

dxij

dt
=
zij

τrec
− fijxijδ(t− (tsp + dij)),

dyij

dt
= −yij

τ1
− fijxijδ(t− (tsp + dij)),

dzij

dt
=
yij

τ1
− zij
τrec
,

dfij

dt
= − fij
τfacil

+ U(1− fij)δ(t− (tsp + dij)),

(3)

where x, y, z are the fractions of synaptic resource in the recovered, active, and
inactive states respectively, tsp is time of spike arrival to the presynaptic terminal,
dij is axonal conduction time delay taken to be proportional to the distance between
ith and jth neurons. τ1 is the decay constant of postsynaptic currents, τrec is the
recovery time from synaptic depression. The variable f describes the effective use of
the synaptic resources, i.e. f is increased with each presynaptic spike and returns to
its baseline with a time constant τfacil. The parameter U determines the change in
the value of facilitation variable f when a presynaptic spike is generated. Throughout
the paper we used τrec = 50ms, τ1 = 10ms, τfacil = 1000ms and U = 0.5.
Long-term changes in synaptic weights were modeled by classical STDP rule im-

plemented with two local variables [8,10]. Let us consider a weight wij between two
neurons: j (presynaptic) and i (postsynaptic). A presynaptic spike induces a weight
decrease proportional to the value of the postsynaptic trace si. Similarly, a postsynap-
tic spike induces a weight potentiation proportional to the value of the presynaptic
trace sj :

dsi

dt
= −si
τi
+
∑

tisp

δ(t− (tisp)),

dsj

dt
= −sj
τj
+
∑

tjsp

δ(t− (tjsp)),

dwij

dt
= −F−(wij)siδ(t− (tjsp)) + F+(wij)sjδ(t− (tisp)).

(4)

Here si and sj are the local variables denoting the postsynaptic and presynaptic
traces respectively. τi and τj are their respective time constants. t

j
sp and t

i
sp are pre-

and postsynaptic spike timings respectively. Weight dependence F (wij) was taken to
obey the multiplicative update rule [9,10]:

F+(wij) = λ(1− wij),
F−(wij) = λαwij ,

(5)

where λ is the learning rate and α is an asymmetry parameter. Throughout the paper
we used the following values of STDP parameters: τpre = τpost = 20ms, λ = 0.001
and α = 5.
The network was composed of 500 neurons (400 excitatory and 100 inhibitory)

randomly distributed on 2D surface. We used the following connectivity rule to define
the range of the index j for each ith neuron in (2). Each ith neuron had the number
of input connections taken from a Gaussian distribution with mean 15 and standard
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Fig. 1. Schematic representation of algorithm for calculating the vector field.

deviation 2. Then we sorted indexes of all the neurons according to the distance
from those neurons to the ith neuron. To connect neurons to the ith neuron, we
took indexes from this sorted array according to a Gaussian distribution with mean
0 (index of the closest neuron) and standard deviation 15. Therefore each neuron
had about 15 input connections with predominance of local connections, i.e. most of
the input connections are local, however some of them are distant. Signal conduction
delays were proportional to the distance between neurons. The maximal value of delay
between two distant network regions was 40ms. Initial synaptic weights wij were taken
from a Gaussian distribution with mean 0.5 and standard deviation 0.1. With those
parameter values the network dynamics reproduced experimentally observed activity
patterns of living neural networks cultured on MEA [26,32]. Particularly, the network
exhibits population bursts, e.g. network-scaled synchronized events intermittent with
relatively low level of asynchronous activity.

2.2 Network visualization

In order to represent network state we have developed an algorithm for visualization of
synaptic weights in the form of vector field detecting average direction and strength of
all the connections passing particular area. Steps of the algorithm for the construction
of the vector field are shown in Fig. 1.

1. The network area was divided by a grid of square cells. In our simulations the
grid contained 24×24=576 cells.

2. The network was represented as directed graph with nodes denoting the
neurons and edges denoting the connections between them. All the edges
crossing a particular cell of the grid were represented as vectors with direc-
tion corresponding to this edge and length proportional to the connection
strength.
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Fig. 2. Network dynamics in the autonomous mode. From top to bottom: burst frequency,
TSR, raster plot.

3. For each grid cell a total vector was calculated as vector sum of all edge vectors.
4. The total vector field was plotted.

Network connectivity visualization by the vector field permits to monitor network
structure in the form of static spacial weight distribution and by directions of dy-
namical signal transmission. In a vast majority of cases the direction of spike prop-
agation match with direction of vector fields arrows (see supplementary material
video 1 and 2).
It is remarkable, that different neurons may play different roles in population burst

generation. Activation of some of them can evoke a general network response, e.g. the
population burst. We classify these neurons as “hubs”. The rest neurons can only
contribute to population busts generation together with their spiking neighbors. To
detect hubs we used the following simple procedure. The network was taken in the
quiescent state with zero noise and having all synaptic resources completely recovered.
Each neuron of the network was then subsequently stimulated to produce single spike.
If after the stimulation, the network generated more than 50 spikes during 100 ms,
this response was classified as a population burst and the neuron was assigned as a
hub.

3 Results

3.1 Network dynamics in the autonomous mode

First, let us consider autonomous network dynamics. Single neurons fed by noise can
be sporadically activated and spikes emitted by the neurons propagate to other neu-
rons, which in turn can involve the whole network to generate population burst event
[33]. Once initiated the population burst decays due to the short-term depression of
the excitatory connections (3) and activation of the inhibitory population [31,34].
The long-term synaptic plasticity mechanism (4) causes rearrangement of synaptic
weights. As a result, after several minutes of simulation time, the weight distribu-
tion becomes heterogeneous [8,9,15] and the network converges to a balanced mode
characterized by irregular generation of population bursts with burst frequency vary-
ing from 0.1 to 2 Hz. Figure 2 shows an example of the network activity after the
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Fig. 3. Network structure before (a and b) and after (c and d) STDP-driven weight
rearrangement. Neurons are shown as circles with thick black rings denoting hubs, red fills
denoting excitatory neurons and blue fills denoting inhibitory neurons. a) and c) show con-
nections visualized by lines with black saturation proportional to weight values (white color
corresponds to wij = 0, black color corresponds to wij = 1). b) and d) show the vector
fields.

STDP-evoked weight rearrangement. Top panel shows population burst frequency
trace during 10 minutes of simulation time. A fragment of total spike rate (TSR)
calculated among all the neurons in 50 ms bin is shown in the middle panel. The
bottom panel shows the same fragment of raster plot of network activity where each
dot represents spike generated by corresponding neuron.
To illustrate weight rearrangements during autonomous network activity we plot

the network structure in the initial state (Fig. 3a and b) and after STDP-driven
changes in the connection strengths (Fig. 3c and d). Note that during the simulation,
initially homogeneous synaptic weights transformed to the heterogeneous distribution
as illustrated in Fig. 3a and c. It is important that the vector fields (Fig. 3b and d)
originated from initially random state becomes directed and acquires preferable path-
ways of signal transmission. Note also the decrease of the number of hubs associated
with synaptic weight rearrangement.
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Fig. 4. Network synchronization under external periodic stimulation with input frequency
of 10 Hz. a) Burst frequency trace. b) Fragment of the transient process. c) Fragment of
the phase-locking mode. Blue dashed lines (colored online) show TSR traces, red solid lines
(colored online) represent the phase lag.

3.2 Synchronization under external periodic signal

Let us consider now the effect of external periodic stimulation. The stimulus was
introduced to the network by activation of an arbitrary chosen group containing one
inhibitory and five excitatory neurons located in the same small network area. Each
stimulus made all the neurons from the chosen group to fire, which in turn could
produce population burst (see supplementary materials, video 3) depending also on
particular group and mostly on the input frequency. For instance, under the stim-
ulation with input frequency value taken from the range between 3 and 8 Hz the
network immediately started to respond with one population burst per each stimu-
lus and no spontaneous bursts appeared between the subsequent stimuli. This mode
therefore could be classified as 1:1 frequency-locking mode or the entrainment mode
[35]. For lower values of the input frequency, the network generated spontaneous
bursts in addition to stimulus-evoked ones. Under stimulation with larger input fre-
quency values, the network failed to respond to each stimulus. Interestingly, that for
some input frequency values behind the range of 3–8 Hz, the entrainment mode could
also be established after some transient process. Figure 4 illustrates establishing the
entrainment mode under external periodic stimulation with the input frequency of
10 Hz. At the beginning of simulation, population bursts occurred with frequency
lower than the frequency of the input stimulation (Fig. 4a) and their amplitudes
varied significantly (Fig. 4b, blue dashed trace, colored online). However after about
4.5 minutes of simulation time the transient process led to the stable frequency-
locking mode. In this mode the burst frequency became equivalent to the input fre-
quency (Fig. 4a) and the burst amplitude became stable (Fig. 4c, blue dashed trace,
colored online). To classify the observed synchronization mode we calculated phase
of response defined in [35,36] as difference between timings of the maximal value of
TSR achieved during each population burst and the timings of corresponding stimuli
(shown in Fig. 4b and c, solid red trace, colored online). The phase exhibiting high
variability during the transient period (Fig. 4b) was stabilized after establishing the
frequency-locking mode (Fig. 4c). The observed mode of evoked synchronization was
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Fig. 5. Visualization of network structure as a vector fields before (a) and after (b) periodic
stimulation applied with frequency of 10 Hz.

therefore the phase-locking mode. Typically, in our simulations the phase lag in the
phase-locking mode was stable and consisted about 50ms.
We further investigate the mechanisms underlying this transient process leading to

establishment of the phase-locking mode. Figure 5 shows the vector fields of the simu-
lated network before (a) and after (b) periodic stimulation applied with frequency of
10 Hz. The source of external stimuli marked by red square (Fig. 5b, colored online) in-
dicates the location of the stimulated group. Difference between the two vector fields
indicated that the STDP-driven synaptic updates led structural changes occurred
at the network scale. It appeared that the balanced weight distribution established
during autonomous dynamics, was rearranged after applying periodic stimulation.
This rearrangement reflected changes in signal transmission pathways gained pre-
dominantly divergent structure with prevalent directions of signal transmission from
the stimulation site towards the neighboring neurons, whereas the other directions of
signal transmission disappeared or became less expressed. The new gained structure
could facilitate population burst generation in response to the external stimuli applied
locally at that particular stimulation site, which in turn led to the phase-entrainment
dynamics. It is noteworthy that different locations of the chosen stimulated group
led to similar results of redirecting the vector field. The role of STDP-driven struc-
tural changes can also be seen comparing hub distributions before and after the
stimulation.
To reveal the role of STDP-driven weight rearrangements in establishing the

synchronized mode, we simulated the network with and without STDP update rule,
under external periodic stimulations with different frequencies. During these simu-
lations we monitored population burst frequency normalized on the input frequency
and the phase lag observed in the synchronized state. The results are shown in Fig. 6,
where the blue lines (colored online) with square markers represent simulations with-
out the STDP weight update rule, and the red lines (colored online) with circle
markers represent simulations in the presence of STDP. Without STDP the net-
work could be synchronized by the external stimuli with input frequencies taken only
between 5 and 8 Hz (Fig. 6a). Similarly, the phase lag in the synchronized state was
stable and had low variability among responses to different stimuli (Fig. 6b) only for
input frequencies taken from this range. In contrast, when the STDP update rule
was activated the synchronized state could be achieved for much wider range of input
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Fig. 6. Normalized population burst frequency (a) and phase lag in the synchronized state
(b) depending on the input frequency. Blue lines with square markers represent simulations
without STDP weight update rule. Red lines with circle markers represent simulations in
the presence of STDP.

frequencies. It is illustrated in the graph depicting the normalized burst frequency
(Fig. 6a) and in the graph of the phase lag (Fig. 6b).

4 Discussion

We investigated the effect of network-level synchronization by local periodic stimula-
tion and analyzed the role of the synaptic dynamics in this process. The synchroniza-
tion phenomenon is believed to play an important role in the organizing functional
neural ensembles in the brain. Synchronous oscillations and propagating waves in-
volve global activation of large-scale brain networks clocking formation of memory
traces, learning and other cognitive processes. On the other side, local changes in the
efficacy of synaptic transmission governed by STDP and other Hebbian-like plasticity
rules can be also considered as biophysical substrate of information processing in the
brain. We believe that the effect of STDP-driven network synchronization found in
our model can be considered as a link between these two spacial scales of brain func-
tioning. It can also act as a binding mechanism between the network-level memory
formation and the local level of synaptic plasticity.
Our model predicted that the effect of synaptic plasticity can significantly enhance

frequency band of the synchronization. Interestingly, that bi-directional interaction
between STDP and synchronization may impact on signalling at network scale. In-
deed, the high level of network synchrony, from the one hand, may lead to occurrence
of many precise coincidences of spike-timings causing STDP-driven local changes of
synaptic weights. And on the other hand, as we have demonstrated, STDP-driven
changes of synaptic weights can increase network-level synchrony.
The developed vector field approach permitted to reveal the role of STDP-driven

structural changes in the effect of establishing the phase-entrainment mode with stable
phase lag. We have found that locally applied stimulation led to rearrangement of
the synaptic weights and to formation of the “trodden” pathways diverging from the
stimulus site towards the rest of the network. Thus the rearranged structure facilitates
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generation of similar responses on each subsequent stimulus applied to the same site.
Such stimulus-evoked activity can be compared to a surface wave propagating from
the perturbation spot (see supplementary materials, video 3 and video 4). Similar
responses propagating through the same synaptic pathways cause stable frequency
and phase lag.
To monitor changes in the structure and reveal their impact on the network dy-

namics we detected the activity hubs. Considering hub distributions we also conclude
that the hubs tend to form clusters during either the autonomous or evoked dynamics
(see Fig. 5). Such clustering can form an activity focus (or several foci) of the network
determining the initial site of population burst generation similar to burst leader neu-
rons [37,38]. Their rearrangement by an external stimulation can significantly alter
the network dynamics.
Several interesting questions can be formulated based on our results. (i) How

long can the stimulus-driven rearrangements remain after the stimulation is switched
off? This can be considered as “forgetting” the learned stimulation pattern. (ii) Can
the stimulus driven synchronization be achieved faster that in our simulations, if we
use different parameter values? (iii) Does short-term plasticity and signal conduction
delays play a critical role in the stimulus driven synaptic weights rearrangements and
their preserving after switching off the stimulation? They have to be considered in
future investigations.
Finally, our results may also predict new experimental findings on stimulus-evoked

synchronization of the cultured networks. Considering recordings made under con-
trol conditions with those made in the presence of chemicals blocking STDP-evoked
changes, one can expect that in the latter case the range of stimulation frequency in-
ducing network-level synchronization should dramatically decrease or even disappear
in comparison to the control experiments.

This work was supported by the Russian Science Foundation project 14-19-01381.
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