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Abstract. In this paper, we study the controllability results for non-
linear fractional order stochastic dynamical systems with distributed
delayed control and Poisson jumps in finite dimensional space. New
set of sufficient conditions are derived based on Schauder’s fixed point
theorem and the controllability Grammian matrix is defined by Mittag-
Leffler matrix function. Finally, a numerical example has been given to
validate the efficiency of the proposed theoretical results.

1 Introduction

Fractional-order calculus is an area of mathematics that deals with derivatives and
integrals from non-integer order. Although fractional calculus dates from the 17th
century, fractional differential systems have recently been identified an usual field
in diffusion, turbulence, electromagnetism, signal processing, and quantum evolu-
tion of complex systems. There are two essential differences between fractional-order
derivation and integer-order derivation. Firstly, the fractional-order derivative is con-
cerned with the whole time domain for a mechanical or physical process, while the
integer-order derivative indicates a variation or certain attribute at particular time.
Secondly, the fractional-order derivative is related to the whole space for a physical
process, while the integer-order derivative describes the local properties of a certain
position (see e.g. [1–6]). An advantage of fractional-order models in comparison with
classical integer-order models is that fractional-order systems have infinite memory.
Taking into account of this fact, it is easy to see that the incorporation of a memory
term into a neural network model is an extremely important improvement. Nowa-
days, the dynamics analysis of fractional-order artificial neural networks has become
a very promising research topic, and has received some attention. The systematic
presentation of the applications of fractional differential equations could be seen in
the books [7,8] also one can refer the monographs [9–12].
Recently there has been an increasing interest in dynamical systems involving time

delays with applications ranging from biology and population dynamics to physics and
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engineering, and from economics to medicine. So what makes time-delayed systems
important? The answer is simple: time delays are intrinsic in many real systems,
and therefore must be properly accounted for when developing models. Delay is a
common feature of many real processes, and with a growing demand for more precise
predictions, control and performance there is a greater need for models to behave as
close to real systems as possible. Neural networks provide a perfect real-life example
where the time delay is an intrinsic part of the system and also one of the key
factors that determines the dynamics. In this particular case, time delay occurs in the
interaction between neurons, and is induced by the finite switching speed of amplifiers
and the communication time of neurons. Recent studies on synchronization in coupled
systems with a time delay in the interactions have shown that delays can induce
oscillations but they can also enhance synchrony between coupled elements. It is well
known that time delays cause different types of oscillations, but it can also be shown
that they cause an amplitude death (i.e. no oscillations in a coupled system while each
subsystem oscillates when isolated) within certain regions of the parameter space (see
e.g. [13–16]).
As one of the fundamental concepts in mathematical control theory, controllabil-

ity plays an important role both in deterministic and stochastic control theory. Also
it plays a vital role in the analysis and design of control systems. The approximate
controllability of impulsive fractional integro-differential systems with nonlocal con-
ditions in Hilbert space has been studied in [17]. Controllability of stochastic systems
with distributed delays in control has been investigated in [18]. Moreover, in [19] rela-
tive controllability of fractional dynamical systems with distributed delays in control
has been discussed.
Systematic study of controllability was started at the beginning of sixties in XX

century and theory of controllability is based on the mathematical description of the
dynamical system. Many dynamical systems are such that the control does not af-
fect the complete state of the dynamical system but only a part of it. On the other
hand, very often in real industrial processes it is possible to observe only a certain
part of the complete state of the dynamical system. Therefore, it is very important
to determine whether or not control of the complete state of the dynamical system is
possible. Roughly speaking, controllability generally means, that it is possible to steer
dynamical system from an arbitrary initial state to an arbitrary final state using the
set of admissible controls. For stochastic control systems both linear and nonlinear
the situation is less satisfactory. In recent years the extensions of the deterministic
controllability concepts to stochastic control systems have been recently discussed
only in a rather few number of publications [20,21]. In many cases, deterministic
models often fluctuate due to noise, which is random or at least appears to be so.
Therefore, we must move from deterministic problems to stochastic ones. The con-
trollability for neutral stochastic functional differential inclusions with infinite delay
in abstract space has been studied in [22]. Stochastic controllability of linear systems
with delayed control has received much research attentions [21]. The major drawback
of studying the fractional differential equations with jumps is the fractional derivative
Dq it self contain the term dtq. A great deal of attention has been given over the past
two decades to the analysis of controllability of linear as well as nonlinear stochastic
systems. Convergence of numerical solution to the stochastic delay differential equa-
tions with jumps and complete controllability of stochastic evolution equations with
jumps has been studied in [23,24]. The neutral stochastic functional differential equa-
tion with infinite delay and Poisson jumps in an abstract space has been discussed
in [25].
Based on the facts, relative controllability of nonlinear systems with distributed

delays in control has attracted increasing attention for [18,19,26,27]. However, to
the best of authors knowledge, there are no relevant reports on the study of relative



Synchronization and Control: Networks and Chaotic Systems 85

controllability results for fractional order stochastic dynamical systems with distrib-
uted delays in the control term and Poisson jumps in the finite dimensional space.
Motivated by the above, the goal of this paper is to describe a relative controllabil-
ity results for fractional order stochastic dynamical systems with distributed delayed
control and Poisson jumps. Sufficient conditions for controllability results are ob-
tained by using Schauder’s fixed point theorem with a Grammian matrix defined by
Mittag-Leffler matrix function.
The paper is organized as follows: In Sect. 2, some well known fractional operators

and special functions, along with a set of properties are defined. The solution repre-
sentation for linear fractional differential equation is also discussed. In Sect. 3, the
nonlinear fractional stochastic dynamical systems with distributed delayed control
and Poisson jumps is proposed also the controllability results are derived by using
the Schauder’s fixed point theorem. Numerical example is illustrated in Sect. 4 to
show the effectiveness of the derived results. Finally, conclusion is drawn in Sect. 5.

2 Preliminaries

Let q > 0, p > 0 with n − 1 < q < n, n − 1 < p < n, and n ∈ N. Let Rn be the
n-dimensional Euclidean space. The following notations, definitions and properties
are well known, for a suitable function f ∈ L1(R+),R+ = [0,∞). The function f
follows the assumptions given in the references [9,12].

Definition 1. Riemann-Liouville fractional operators:

(Iq0+f)(x) =
1

Γ(q)

∫ x
0

(x− t)q−1f(t)dt

(Dq0+f)(x) = D
n(In−qa+ f)(x),

and the Laplace transform of the Riemann-Liouville fractional integral is given by

L{Iqt f(t)} =
1

λq
f̂(λ),

where

f̂(λ) =

∫ ∞
0

e−λtf(t)dt.

The Riemann-Liouville fractional derivative of order 0 < q < 1 for the function f
can be defined as

Dqt f(t) =
d

dt
I1−qt f(t).

Definition 2. Mittag-Leffler Function:
A two parameter function of the Mittag-Leffler type is defined by the series expansion

Eq,p(z) =
∞∑
k=0

zk

Γ(kq + p)
, q, p > 0, z ∈ C.

The most interesting properties of the Mittag-Leffler function are associated with their
Laplace integral

∫ ∞
0

e−sttp−1Eq,p(±atq)dt = sq−p

(sq ∓ a) ·
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That is

L{tp−1Eq,p(±atq)}(s) = sq−p

(sq ∓ a) ·

Solution representation:
The linear fractional differential equation

d[I1−qt (x(t)− x0)] = [Ax(t) + f(t)] dt, t ∈ [0, T ] := J,
x(0) = x0, (1)

where 0 < q < 1, I1−qt is the (1 − q)− order Riemann-Liouville fractional integral
operator x ∈ Rn and A is an n × n matrix. Now applying the Riemann-Liouville
integral operator on both sides, we get

x(t) = x0 +
1

Γ(q)

∫ t
0

(t− s)q−1Ax(s)ds+ 1

Γ(q)

∫ t
0

(t− s)q−1f(s)ds.

Taking Laplace transformation on both sides, we have

x̂(s) =
1

s
x0 +

1

sq
Ax̂(s) +

1

sq
f̂(s).

Taking inverse Laplace transformation on both sides, we get the solution of the frac-
tional differential Eq. (1) as

x(t) = Eq(At
q)x0 +

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)f(s)ds.

Let us consider the linear fractional deterministic system with distributed delays in
the control which is represented in the following form

d[I1−qt (x(t)− x0)] =
[
Ax(t) +

∫ 0
−h
dτB(t, τ)u(t+ τ)

]
dt, t ∈ J,

x(0) = x0, (2)

where 0 < q < 1, I1−qt is the (1 − q)− order Riemann-Liouville fractional integral
operator x ∈ Rn, and the second integral term is in the Lebesgue Stieltjes sense with
respect to τ. Let h > 0 be given. For function u : [−h, T ] −→ Rm and t ∈ J, we
use the symbol ut to denote the function on [−h, 0], defined by ut(s) = u(t + s) for
s ∈ [−h, 0). A is a n×n matrix, B(t, τ) is an n×m dimensional matrix continuous in
τ for fixed t and is of bounded variation in t on [−h, 0] for each t ∈ J and continuous
from left in t on the interval (−h, 0).
The solution of the system (2) is given by the following expression [28,29]

x(t) = Eq(At
q)x0 +

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
[∫ 0
−h
dτB(s, τ)u(s+ τ)

]
ds.

Definition 3. The set y(t) = {x(t), ut} is the complete state of the system (2) at
time t.

Definition 4. System (2) is said to be globally relatively controllable on J if for every
complete state y(0) and every vector x1 ∈ Rn there exists a control u(t) defined on
J such that the corresponding trajectory of the system (2) satisfies x(T ) = x1.
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In this paper, we adopt the following notations that will be used throughout this
paper.
Let (Ω,F , P ) denotes the complete probability space with a probability measure

P on Ω and w(t) = (w1(t), w2(t), · · · , wn(t))∗ be an n−dimensional Wiener process
defined on the probability space. Let {Ft|t ∈ J} is the filtration generated by {w(s) :
0 ≤ s ≤ t} defined on the probability space (Ω,F , P ). Let L2(Ω,Ft,Rn × Rm) is the
Hilbert space of all Ft− measurable square integrable random variables with values in
R
n×Rm. Let LF2 (J,Rn) is the Hilbert space of all square-integrable and Ft-measurable
processes with values in Rn. Let Cn(J) = C(J, L2(Ω,Ft,Rn)) be the Banach space of
continuous maps from J into L2(Ω,Ft,Rn). Define B = Cn(J) × Cm(J) be the Ba-
nach space of continuous L2(Ω,F ,Rn × Rm) valued Ft− adapted square integrable
functions (z(t), v(t)) with norm ‖(z, v)‖2 = ‖z‖2 + ‖v‖2, where ‖z‖2 = sup

t∈J
E‖z(t)‖2,

E(·) denotes the mathematical expectation operator of stochastic process with respect
to the given probability measure P and Uad := LF2 (J,Rm) is the set of admissible
controls. Let {N(dt, dη), t, η ∈ J} is a centered Poisson random measure with para-
meter Π(dη)dt and Ñ(dt, dη) = N(dt, dη)−Π(dη)dt is a compensated Poisson random
measure which is independent of w(t) and satisfied

∫ +∞
−∞ Π(dη) < ∞. Let us assume

the following assumptions for further discussion.

(H1) Let h > 0 be given. For functions u : [−h, T ] −→ Rm and t ∈ J, we use the
symbol ut to denote the function on [−h, 0], defined by ut(s) = u(t + s) for
s ∈ [−h, 0).

(H2) B(t, τ) is an n × m dimensional matrix continuous in t for fixed τ and is of
bounded variation in τ on [−h, 0] for each t ∈ J and continuous from left in τ
on the interval (−h, 0).

(H3) The functions f, σ, and g are continuous and satisfies the usual linear growth
condition, that is, there exists a constants L > 0,M > 0, N > 0 and Π(dη) is a
parameter

(i) ‖f(t, x, u)‖2 ≤ L(1 + ‖x‖2 + ‖u‖2)
(ii) ‖σ(t, x, u)‖2 ≤M(1 + ‖x‖2 + ‖u‖2)
(iii)

∫ +∞
−∞ ‖g(t, x, u, η)‖2Π(dη) ≤ N(1 + ‖x‖2 + ‖u‖2)

for all t ∈ J, and all x ∈ Rn, u ∈ Rm.
(H4) The linear fractional stochastic system with distributed delays in the control

and Poisson jumps is controllable on J.

3 Controllability results for fractional order system with distributed
delays

Using the well known result of unsymmetric Fubini theorem [30] and change of order
of integration in the second term, we have

x(t) = Eq(At
q)x0

+

∫ 0
−h
dBτ

[∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
]

+

∫ t
0

[∫ 0
−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)

]
u(s)ds

where

Bt(s, τ) =

{
B(s, τ), s ≤ t
0, s > t
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and dBτ denotes the integration of Lebesgue Stieltjes sense with respect to the vari-
able τ in the function B(t, τ). For brevity, let us introduce the following notations

G(t, s) :=

∫ 0
−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ),

N(t) :=

∫ 0
−h
dBτ

[∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
]
.

Theorem 1. The linear control system (2) is relatively controllable on J if and only
if the controllability Grammian matrix

W (0, T ) =

∫ T
0

G(T, s)G∗(T, s)E{·|Fs}ds

is positive definite, for some T > 0, G∗ is the transpose of G. �
For convenience, let us introduce the following constants

ϕ = sup
t∈J
‖Eq,q(A(t− s)q)‖2, υ = sup

t∈J
‖Eq(A(t− s)q)‖2,

a1 = max{6‖G∗(T, t)‖2T 2, 1}
e = 4× 6‖G∗(T, t)‖2‖W−1‖2

[
‖x1‖2 + ‖Eq(AT q)x0‖2

+

∥∥∥∥
∫ 0
−h
dBτ

(∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
)∥∥∥∥
2 ]
,

ς = 4× 6
[
‖Eq(AT q)x0‖2

+

∥∥∥∥
∫ 0
−h
dBτ

(∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
)∥∥∥∥
2 ]
,

κ = 4× 6‖G∗(T, t)‖2‖W−1‖2
(
T 2υL+

T 2q+1

q2
ϕMσM +

T 2q

q2
ϕN

)

×
(
1 + sup

t∈J
E‖z(t)‖2 + sup

t∈J
E‖v(t)‖2

)
,

ν = 4× 6
(
T 2υL+

T 2q+1

q2
ϕMσM +

T 2q

q2
ϕN

)(
1 + sup

t∈J
E‖z(t)‖2 + sup

t∈J
E‖v(t)‖2

)
.

Consider the nonlinear fractional order stochastic dynamical system with distributed
delayed control and Poisson jumps represented by the fractional differential equation
of the form

d[I1−qt (x(t)− x0)] =
[
Ax(t) +

∫ 0
−h
dτB(t, τ)u(t+ τ) + I

1−q
t f(t, x(t), u(t))

+

∫ t
0

σ(s, x(s), u(s))dw(s)
]
dt

+

∫ +∞
−∞

g(t, x(t), u(t), η)Ñ(dt, dη), t ∈ J,
x(0) = x0, (3)
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where A and B are defined as above and f : J×Rn×Rm −→ Rn, σ : J×Rn×Rm −→
R
n×n and g : J × Rn × Rm × R+ −→ Rn are continuous functions. Now, for each
(z, v) ∈ B, consider the linear fractional order stochastic dynamical system with
distributed delayed control and Poisson jumps

d[I1−qt (x(t)− x0)] =
[
Ax(t) +

∫ 0
−h
dτB(t, τ)u(t+ τ) + I

1−q
t f(t, z(t), v(t))

+

∫ t
0

σ(s, z(s), v(s))dw(s)
]
dt

+

∫ +∞
−∞

g(t, z(t), v(t), η)Ñ(dt, dη), t ∈ J,

x(0) = x0. (4)

Then the solution of the system (4) can be expressed in the following form (see [28,29])

x(t) = Eq(At
q)x0 +

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
[∫ 0
−h
dτB(s, τ)u(s+ τ)

]
ds

+

∫ t
0

Eq(A(t− s)q)f(s, z(s), v(s))ds

+

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
[∫ s
0

σ(θ, z(θ), v(θ))dw(θ)

]
ds

+

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
∫ +∞
−∞

g(s, z(s), v(s), η)Ñ(ds, dη).

Using the well known result of unsymmetric Fubini theorem [30] and change of order
of integration in the second term of the following equation, we have

x(t) = Eq(At
q)x0

+

∫ 0
−h
dBτ

[∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
]

+

∫ t
0

[∫ 0
−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)

]
u(s)ds

+

∫ t
0

Eq(A(t− s)q)f(s, z(s), v(s))ds

+

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
[∫ s
0

σ(θ, z(θ), v(θ))dw(θ)

]
ds

+

∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
∫ +∞
−∞

g(s, z(s), v(s), η)Ñ(ds, dη). (5)
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Theorem 2. Suppose that the hypothesis (H1)–(H4) are satisfied then the nonlinear
system (3) is globally relatively controllable on J. Provided that the following hold
d1 = max{e, ς}, r0 = max{κ, ν}.

Proof. Define the operator Ψ : B −→ B by Ψ(z, v) = (x, u), with

u(t) = G∗(T, t)E
{
W−1

(
x1 − Eq(AT q)x0 −N(T )

−
∫ T
0

Eq(A(T − s)q)f(s, z(s), v(s))ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
[∫ s
0

σ(θ, z(θ), v(θ))dw(θ)

]
ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
∫ +∞
−∞

g(s, z(s), v(s), η)Ñ(ds, dη)
)∣∣∣Ft

}

and x(t) is defined in (5),W−1 inverse ofW . Then, it is easy to establish the following
estimates

E‖u(t)‖2 = E
∥∥∥G∗(T, t)W−1

(
x1 − Eq(AT q)x0 −

∫ 0
−h
dBτ

[ ∫ 0
τ

(T − (s− τ))q−1

×Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds
]

−
∫ T
0

Eq(A(T − s)q)f(s, z(s), v(s))ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
[∫ s
0

σ(θ, z(θ), v(θ))dw(θ)

]
ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
∫ +∞
−∞

g(s, z(s), v(s), η)Ñ(ds, dη)
)∥∥∥2

≤ 6‖G∗(T, t)‖2‖W−1‖2
[
‖x1‖2 + ‖Eq(AT q)x0‖2

+

∥∥∥∥
∫ 0
−h
dBτ

(∫ 0
τ

(t−(s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
)∥∥∥∥
2

+
(
T 2υL+

T 2q+1

q2
ϕMσM +

T 2q

q2
ϕN
)(
1 + sup

t∈J
E‖z(t)‖2 + sup

t∈J
E‖v(t)‖2

)]

≤ e

4a1
+
κ

4a1

≤ 1

4a1
[d1 + r0] := r1,
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and

E‖x(t)‖2 ≤ 6E‖Eq(Atq)x0‖2 + 6E
∥∥∥
∫ 0
−h
dBτ

[ ∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)

×B(s− τ, τ)u0(s)ds
]∥∥∥2 + 6E

∥∥∥
∫ t
0

[ ∫ 0
−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)

×dτBt(s− τ, τ)
]
u(s)ds

∥∥∥2 + 6E
∥∥∥∥
∫ t
0

Eq(A(t− s)q)f(s, z(s), v(s))ds
∥∥∥∥
2

+6E

∥∥∥∥
∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
[∫ s
0

σ(θ, z(θ), v(θ))dw(θ)

]
ds

∥∥∥∥
2

+6E

∥∥∥∥
∫ t
0

(t− s)q−1Eq,q(A(t− s)q)
∫ +∞
−∞

g(s, z(s), v(s), η)Ñ(ds, dη)

∥∥∥∥
2

≤ 6
[
‖Eq(AT q)x0‖2 + T 2‖G∗(T, t)‖2

[ 1
4a1
(d1 + r0)

]

+

∥∥∥∥
∫ 0
−h
dBτ

(∫ 0
τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds
)∥∥∥∥
2

+
(
T 2υL+

T 2q+1

q2
ϕMσM +

T 2q

q2
ϕN
)(
1 + sup

t∈J
E‖z(t)‖2 + sup

t∈J
E‖v(t)‖2

)]

≤ ς
4
+
1

4
(d1 + r0) +

ν

4

≤ 1
2
[d1 + r0] := r2.

Therefore, E‖u(t)‖2 ≤ r1, for all t ∈ J , which gives E‖x‖2 ≤ r2. Thus, we have proved
that, if B(r′) = {(z, v) ∈ B : E‖z‖2 ≤ r′ and E‖v‖2 ≤ r′}, then Ψ maps B(r′) into
itself.

Now let us take t1, t2 ∈ J with t1 < t2, and for all (x, u) ∈ B(r), we need to show
that Ψ[B(r)] is equicontinuous for all r > 0. To prove the result, compute

E‖u(t1)− u(t2)‖2

= E
∥∥∥G∗(T, t1)W−1

(
x1 −Eq(AT q)x0 −

∫ 0
−h
dBτ

[ ∫ 0
τ

(T − (s− τ))q−1

×Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds
]
−
∫ T
0

Eq(A(T − s)q)f(s, x(s), u(s))ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
[∫ s
0

σ(θ, x(θ), u(θ))dw(θ)

]
ds
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−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
∫ +∞
−∞

g(s, x(s), u(s), η)Ñ(ds, dη)
)

−G∗(T, t2)W−1
(
x1 − Eq(AT q)x0 −

∫ 0
−h
dBτ

[ ∫ 0
τ

(T − (s− τ))q−1

×Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds
]
−
∫ T
0

Eq(A(T − s)q)f(s, x(s), u(s))ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
[∫ s
0

σ(θ, x(θ), u(θ))dw(θ)

]
ds

−
∫ T
0

(T − s)q−1Eq,q(A(T − s)q)
∫ +∞
−∞

g(s, x(s), u(s), η)Ñ(ds, dη)
)∥∥∥2

≤ 6‖G∗(T, t1)−G∗(T, t2)‖2‖W−1‖2
[
‖x1‖2 + ‖Eq(AT q)x0‖2

+
∥∥∥
∫ 0
−h
dBτ

[ ∫ 0
τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds
]∥∥∥2

+
(
T 2υL+

T 2q+1

q2
ϕMσM +

T 2q

q2
ϕN
)(
1 + sup

t∈J
E‖x(t)‖2 + sup

t∈J
E‖u(t)‖2

)]
(6)

and

E‖x(t1)− x(t2)‖2 = E
∥∥∥Eq(Atq1)x0

+

∫ 0
−h
dBτ

[ ∫ 0
τ

(t1 − (s− τ))q−1Eq,q(A(t1 − (s− τ))q)B(s− τ, τ)u0(s)ds
]

+

∫ t1
0

[∫ 0
−h
(t1 − (s− τ))q−1Eq,q(A(t1 − (s− τ))q)dτBt1(s− τ, τ)

]
u(s)ds

+

∫ t1
0

Eq(A(t1 − s)q)f(s, x(s), u(s))ds

+

∫ t1
0

(t1 − s)q−1Eq,q(A(t1 − s)q)
[∫ s
0

σ(θ, x(θ), u(θ))dw(θ)

]
ds

+

∫ t1
0

(t1 − s)q−1Eq,q(A(t1 − s)q)
∫ +∞
−∞

g(s, x(s), u(s), η)Ñ(ds, dη)

−Eq(Atq2)x0 −
∫ 0
−h
dBτ

[ ∫ 0
τ

(t2 − (s− τ))q−1Eq,q(A(t2 − (s− τ))q)

×B(s− τ, τ)u0(s)ds
]

−
∫ t2
0

[ ∫ 0
−h
(t2 − (s− τ))q−1Eq,q(A(t2 − (s− τ))q)dτBt2(s− τ, τ)

]
u(s)ds

−
∫ t2
0

Eq(A(t2 − s)q)f(s, x(s), u(s))ds
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−
∫ t2
0

(t2 − s)q−1Eq,q(A(t2 − s)q)
[∫ s
0

σ(θ, x(θ), u(θ))dw(θ)

]
ds

−
∫ t2
0

(t2 − s)q−1Eq,q(A(t2 − s)q)
∫ +∞
−∞

g(s, x(s), u(s), η)Ñ(ds, dη)
∥∥∥2

≤ 10
{
‖Eq(Atq1)x0 − Eq(Atq2)x0‖2 +

∥∥∥
∫ 0
−h
dBτ

[ ∫ 0
τ

[R(t1, s)−R(t2, s)]B(s− τ, τ)

×u0(s)ds
]∥∥∥2 + (t2 − t1)

∫ t2
t1

‖G(t2, s)‖2E‖u(s)‖2ds+ t1
∫ t1
0

‖G(t1, s)−G(t2, s)‖2

×E‖u(s)‖2ds+ (t2 − t1)
∫ t2
t1

‖Eq(A(t2 − s)q)‖2L(1 + E‖x(s)‖2 + E‖u(s)‖2)ds

+t1

∫ t1
0

‖Eq(A(t1 − s)q)− Eq(A(t2 − s)q)‖2L(1 + E‖x(s)‖2 + E‖u(s)‖2)ds

+(t2 − t1)
∫ t2
t1

(t2 − s)2(q−1)‖Eq,q(A(t2 − s)q)‖2TMσM(1 + E‖x(s)‖2+ E‖u(s)‖2)ds

+t1

∫ t1
0

‖(t1 − s)(q−1)Eq,q(A(t1 − s)q)− (t2 − s)(q−1)Eq,q(A(t2 − s)q)‖2

×TMσM(1 + E‖x(s)‖2 + E‖u(s)‖2)ds
+(t2 − t1)

∫ t2
t1

(t2 − s)2(q−1)‖Eq,q(A(t2 − s)q)‖2N(1 + E‖x(s)‖2 + E‖u(s)‖2)ds

+t1

∫ t1
0

‖(t1 − s)(q−1)Eq,q(A(t1 − s)q)− (t2 − s)(q−1)Eq,q(A(t2 − s)q)‖2

×N(1 + E‖x(s)‖2 + E‖u(s)‖2)ds
}

(7)

where
R(t1, s)−R(t2, s) = (t1−(s−τ))q−1Eq,q(A(t1−(s−τ))q)−(t2−(s−τ))q−1Eq,q(A(t2−
(s− τ))q). Moreover, for all (x, u) ∈ B(r),

E‖u(t)‖2 ≤ 6‖G∗(T, t)‖2‖W−1‖2
(
‖x1‖2 + ‖Eq(AT q)x0‖2

+
∥∥∥
∫ 0
−h
dBτ

[ ∫ 0
τ

(T − (s− τ))q−1

×Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds
]∥∥∥2 + T

∫ T
0

‖Eq(A(T − s)q)‖2

×E‖f(s, x(s), u(s))‖2ds+ TMσ
∫ T
0

(T − s)2(q−1)

×
[∫ s
0

E ‖σ(θ, x(θ), u(θ))‖2 dθ
]
‖Eq,q(A(T − s)q)‖2ds

+T

∫ T
0

(T − s)2(q−1)‖Eq,q(A(T − s)q)‖2

×
∫ +∞
−∞

E‖g(s, x(s), u(s), η)‖2Ñ(ds, dη)
)
.

Thus the right sides of the Eqs. (6) and (7) are independent of (x, u) ∈ B(r) and tend
to zero as t1 −→ t2. Hence Ψ[B(r)] is equicontinuous for all r > 0 and by the regularity



94 The European Physical Journal Special Topics

assumptions on f, σ and g are continuous, and hence it is completely continuous by
the application of Arzela-Ascoli’s theorem. Since B(r′) is closed, bounded and convex,
the Schauder fixed point theorem guarantees that Ψ has a fixed point (z, v) ∈ B(r)
such that Ψ(z, v) = (z, v) ≡ (x, u). Hence x(t) is the solution of the system (3), and
it is easy to verify that x(T ) = x1. Further the control function u(t) ∈ Uad steers
the system (3) from initial complete state y(0) to x1 on J . Hence the system (3) is
globally relatively controllable on J . �

Remark 1. System (3) is said to be null controllable on J if for every complete state
y(0) and every vector x1 ∈ Rn there exists a control u(t) defined on J such that the
corresponding trajectory of the system (3) satisfies x(T ) = 0. Any vector ω ∈ Rn
in n− dimensional vector space is said to reachable if there exists an admissible
initial point x0 ∈ Rn, admissible control input u(t) ∈ Rm and T > 0 such that the
solution of system (3) satisfies x(T, x0) = ω. System (3) is said to be approximately
controllable on J if given an arbitrary ε > 0 it is possible to steer from the point x0
to within a distance ε from all points in the state space Rn at time T. The proposed
results can also be extended to study the problem of null controllability, reachability
and approximate controllability of the nonlinear fractional order stochastic dynamical
system with Poisson jumps.

4 Example

Example 1. Consider the following nonlinear fractional order stochastic dynamical
system with distributed delayed control and Poisson jumps

d
[
I1−qt (x(t)− x0)

]
=

[
Ax(t) +

∫ 0
−1
dτB(t, τ)u(t+ τ)

+I1−qt f(t, x(t)) +

∫ t
0

σ(s, x(s))dw(s)

]
dt

+

∫ +∞
−∞

g(t, x(t), η)Ñ(dt, dη),

x(0) = x0

for t ∈ J and 0 < q < 1. In the matrix form, we have

A =

(
0 1
−1 0

)
, B(t, τ) =

(
eτ cos t eτ sin t
−eτ sin t eτ cos t

)
, f(t, x(t)) =

⎛
⎝

10x1(t)
1+x21(t)+x

2
2(t)

x2(t)
1+x22(t)+t

⎞
⎠ ,

σ(t, x(t)) =

(
5tx1(t)e

−t

1+t
(1+t)x2(t)e

−t

1+t

)
and g(t, x(t), η) =

(
2tx1(t)e

−t

η
−x2(t)e−t

η

)
.

The Mittag-Leffler matrix function of the systems is given by (see [28])

Eq(At
q) =

⎛
⎜⎜⎜⎝

∞∑
j=0

(−1)jt2jq
Γ[1+2jq]

∞∑
j=0

(−1)jt(2j+1)q
Γ[1+(2j+1)q]

−
∞∑
j=0

(−1)jt(2j+1)q
Γ[1+(2j+1)q]

∞∑
j=0

(−1)jt2jq
Γ[1+2jq]

⎞
⎟⎟⎟⎠ .
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Further

Eq,q(A(T − (s− τ))q) =

⎛
⎜⎜⎝

∞∑
j=0

(−1)j(T−(s−τ))2jq
Γ[(1+2j)q]

∞∑
j=0

(−1)j(T−(s−τ))(2j+1)q
Γ[(j+1)2q]

−
∞∑
j=0

(−1)j(T−(s−τ))(2j+1)q
Γ[(j+1)2q]

∞∑
j=0

(−1)j(T−(s−τ))2jq
Γ[(1+2j)q]

⎞
⎟⎟⎠ ,

and

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q) =
(
cosq(t) sinq(t)
− sinq(t) cosq(t)

)
,

where cosq(t) and sinq(t) are given by

cosq(t) =
∞∑
j=0

(−1)j(T − (s− τ))(2j+1)q−1
Γ[(1 + 2j)q]

,

sinq(t) =

∞∑
j=0

(−1)j(T − (s− τ))(j+1)2q−1
Γ[(j + 1)2q]

·

Also, G(T, s) =

∫ 0
−1
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBT (s− τ, τ),

=

(
p(s) q(s)
−q(s) p(s)

)
,

p(s) =

∫ 0
−1
eτ[cosq(T − (s− τ)) cos(s− τ)− sinq(T − (s− τ)) sin(s− τ)] dτ,

q(s) =

∫ 0
−1
eτ[sinq(T − (s− τ)) cos(s− τ)− cosq(T − (s− τ)) sin(s− τ)] dτ.

By simple matrix calculations, one can see that the controllability matrix

W (0, T ) =

∫ T
0

G(T, s)G∗(T, s)ds,

=

∫ T
0

[p2(s) + q2(s)]

(
1 0
0 1

)
ds,

is positive definite for any T > 0. Further it is easy to verity the hypothe-
sis (H1)-(H4) hold and it is easy to show that for all x ∈ R2, ‖f(t, x(t))‖2 ≤
100‖x‖2, ‖σ(t, x(t))‖2 ≤ 100t2‖x‖2e−2t

(1+t)2 and ‖g(t, x(t), η)‖ ≤ 16t2‖x‖2e−2t
η2

. Hence all the

assumptions in Theorem 2 are satisfied. Thus the fractional order system is globally
relatively controllable on J.

5 Conclusion and future work

This paper has promoted the controllability results for fractional order stochastic
dynamical systems with distributed delayed control and Poisson jumps. The results
have been obtained based on suitable fixed point theorem. Finally, a numerical ex-
ample has been given to validate the efficiency of the proposed theoretical results.
Impulsive differential equations, that is, differential equations involving impulse ef-
fect, appear as a natural description of observed evolution phenomena of several real
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world problems. Inspired by the applications of fractional order system and impulsive
differential equations, solving the fractional order stochastic dynamical systems with
distributed delayed control and impulsive deserves our future concern.

The work of authors are supported by Council of Scientific and Industrial Research, Extra-
mural Research Division, Pusa, New Delhi, India under the grant No. 25/(0217)/13/EMR-II.
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