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Abstract. In this paper, synchronisation of fractional-order time de-
layed chaotic systems in ring networks is investigated. Based on
Lyapunov stability theory, a new generic synchronisation criterion for
N -coupled chaotic systems with time delay is proposed. The synchro-
nisation scheme is applied to N -coupled fractional-order time delayed
simplified Lorenz systems, and the Adomian decomposition method
(ADM) is developed for solving these chaotic systems. Performance
analysis of the synchronisation network is carried out. Numerical ex-
periments demonstrate that synchronisation realises in both state vari-
ables and intermediate variables, which verifies the effectiveness of the
proposed method.

1 Introduction

Significant progress in fractional-order calculus has been witnessed in the last several
decades since its applications in many fields, such as flow dynamics, quantum theory
and anomalous diffusion [1–3]. In recent years, many investigations have been devoted
to the chaotic behaviours of fractional-order dynamical systems [3–6].
At the same time, synchronisation of fractional-order chaotic systems is a hot

topic [7,8]. Because of its importance in information encryption and secure com-
munication, synchronisation of fractional-order network is enjoying growing interest
among researchers [9–16]. Many synchronisation schemes for fractional-order chaotic
networks are proposed, including generalised synchronisation [10], robust synchro-
nisation [11], adaptive synchronisation [12], linear feedback control method [13] and
coupled synchronisation [14]. Among these methods, the coupled synchronisation with
ring connection can be implemented most easily [15], and there are many practical
applications [16]. Meanwhile, time delay is unavoidable due to signal propagation
in communication processes. Thus it is necessary to investigate synchronisation of
fractional-order time delayed chaotic ring networks.
Furthermore, to make the fractional-order time delayed network be available for

digital application, a suitable numerical algorithm for solution should be chosen. At
present, the numerical simulation of fractional-order time delayed chaotic systems is
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mainly carried out using the Adams-Bashforth-Moulton (ABM) algorithm [17]. It is
accurate for fractional-order calculus, but the calculation speed is quite slow [18]. A
frequency domain method has also been derived to solve the fractional-order time
delayed chaotic systems [19]. However, whether this algorithm is reliable in detecting
chaos in nonlinear systems has been questioned [20]. By employing the Adomian de-
composition method (ADM), the fractional-order chaotic system can generate chaos
with much lower order [21] and can be implemented in digital circuit [22]. It is rec-
ommended for solving fractional-order time delayed nonlinear systems [23,24], but
applying ADM for synchronisation of fractional-order time delayed chaotic network
is still a novel approach.
Motivated by the above discussion, in this paper, we focus on network synchroni-

sation of fractional-order time delayed chaotic systems by applying ADM. In Sect. 2,
ADM is developed to solve fractional-order time delayed chaotic systems and the
synchronisation scheme is presented. In Sect. 3, N -coupled ring connection synchro-
nisation of fractional-order time delayed simplified Lorenz systems is investigated.
Finally, we summarize the results and indicate future directions

2 Synchronisation principle of fractional-order time delayed
chaotic systems

In this section, ADM is derived to obtain the numerical solution of a fractional-order
time delayed chaotic system, and the synchronisation scheme is proposed.

2.1 Preliminaries and Adomian decomposition method

Firstly, definitions of fractional calculus are recalled. Fundamental properties and a
useful Lemma about the fractional-order calculus are presented. Solution algorithm
based on ADM for time delayed chaotic systems is introduced.

Definition 1 [25]: The Caputo derivative of fractional order q of x(t) is defined as

Dqt0x(t) =

{
1

Γ(m−q)
∫ t
t0
(x− τ)m−q−1x(m)(τ)dτ ,m− 1 < q < m

dm

dtm
x(t), q = m

, (1)

where m ∈ N, x(m)(t) is the mth-order derivative, Γ(·) is the Gamma function and
t > 0.

Definition 2 [26]: The Riemann-Liouville fractional integral operator with fractional
order q is defined as

Jqt0x(t) =
1

Γ(q)

∫ t
t0

(x− τ)q−1x(τ)dτ . (2)

When q = 0, J0t0x(t) = x(t). The fundamental properties of the operator are described
as follows.

Jqt0(t− t0)γ =
Γ(γ + 1)

Γ(γ + 1 + q)
(t− t0)γ+q, (3)
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Jqt0C =
C

Γ(q + 1)
(t− t0)q, (4)

Jqt0J
r
t0
x(t) = Jq+rt0

x(t), (5)

where t ∈ (t0, t1), γ > −1, r > 0, and C is a real constant.

Lemma 1: For q ∈ (0, 1], Dqt0 |x(t)| = sgn(x(t))Dqt0x(t).
Proof : If x(t) = 0, then Dqt0 |x(t)| = 0. Let y(t) = |x(t)|. If x(t) > 0, then

Dqt0 |x(t)| =
1

Γ(1− q)
∫ t
t0

ẏ(s)

(t− s)q ds =
1

Γ(1− q)
∫ t
t0

ẋ(s)

(t− s)q ds = D
q
t0
x(t). (6)

If x(t) < 0, then

Dqt0 |x(t)| =
1

Γ(1− q)
∫ t
t0

ẏ(s)

(t− s)q ds = −
1

Γ(1− q)
∫ t
t0

ẋ(s)

(t− s)q ds = −D
q
t0
x(t). (7)

Therefore, this Lemma is proved.
Here, ADM is derived for solving fractional-order time delayed system. For a given

fractional-order time delayed chaotic system with the form of{
Dqt0x(t) = f(x(t),x(t− τ)) + g(t) for t > 0
x(t) = H(t), for t ∈ [−τ, 0] , (8)

where x(t)=[x1(t), x2(t), ..., xn(t)] are state variables of the sytem, and g(t)=[g1(t),
g2(t), ..., gn(t)] are constants for autonomous systems. So it can be divided into three
parts as the form

Dqt0x(t) = L(x(t),x(t− τ)) +N(x(t),x(t− τ)) + g(t), (9)

where m ∈ N , m− 1 < q ≤ m. L(x(t), x(t− τ)) and N(x(t), x(t− τ)) are the linear
and nonlinear terms of the fractional differential equations respectively. We have [24]

x = Jqt0L(x,xτ ) + J
q
t0
N(x,xτ ) + J

q
t0
g +Φ, (10)

where Φ =
∑m−1
k=0 bk(t− t0)k/k!, xτ = x(t− τ) and bk are the initial conditions. By

applying the recursive relation

x0 =

{
Jqt0g +Φ for t > 0

H(t) for t ≤ 0 , (11)

xi =

{
Jqt0L(x

i−1,xi−1τ ) + J
q
t0
Ai−1(x0, ...,xi−1,x0τ , ...,xi−1τ ), for, t > 0

0, for, t ≤ 0 , (12)

where i = 1, 2, ...,∞. The analytical solution of the fractional-order system is pre-
sented as

x(t) =

∞∑
i=0

xi, (13)
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Fig. 1. The topological structure diagram of a ring network with N nodes.

where the nonlinear terms of the fractional-order differential equations N(x,xτ ) is
evaluated by [28]

N(x,xτ ) =

∞∑
n=0

An−1(x0, · · · ,xn−1,x0τ , · · · ,xn−1τ ), (14)

An =
1

n!

dn

dλn

[(
n∑
k=0

λkxk

)(
n∑
k=0

λkxkτ

)]
λ=0

. (15)

Thus, solution of the fractional-order time delayed chaotic system based on ADM is
obtained.

2.2 Synchronisation scheme

The synchronisation scheme for bidirectional N -coupled fractional-order time delayed
chaotic systems with ring connection is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dqt0x1(t) = L(x1,x1(t− τ)) +N(x1(t),x1(t− τ)) + d(xN + x2 − 2x1)
Dqt0x2(t) = L(x2,x2(t− τ)) +N(x2(t),x2(t− τ)) + d(x1 + x3 − 2x2)

...
Dqt0xN−1(t) = L(xN−1,xN−1(t− τ)) +N(xN−1(t),xN−1(t− τ))

+d(xN−2 + xN − 2xN−1)
Dqt0xN (t) = L(xN ,xN (t− τ)) +N(xN (t),xN (t− τ))

+d(xN−1 + x1 − 2xN )

. (16)

where x1, x2, ..., xN ∈ Rn are the state vectors of the fractional-order time delayed
chaotic systems, and d is the coupled strength. For this network, the structure is
shown in Fig. 1, where Si represents the data sent by system (i).



Synchronization and Control: Networks and Chaotic Systems 101

Definition 3: Define ei = xi − xi+1 for i = 1, 2, ..., N − 1 and eN = xN − x1 for
i = N , when all ||ei|| → 0 as t → ∞, the network is synchronised. Here ‖ei‖ =
p∑
j=1

|eij | =
p∑
j=1

∣∣xij − x(i+1)j∣∣ and p is the dimension of the chaotic system.
Theorem 1: For bidirectional N -coupled fractional-order time delayed chaotic sys-
tems with ring connection as presented in Eq. (16), the synchronisation can be
achieved with any d > 0.

Proof : According to Definition 3, we define the Lyapunov function as

V (t) =

N∑
i=1

‖ei‖. (17)

Obviously, it is also the synchronisation error of the network. Then

Dqt0V (t) =
N∑
i=1

Dqt0 ‖ei‖

=
p∑
j=1

Dqt0 |e1j |+
p∑
j=1

Dqt0 |e2j |+ · · ·+
p∑
j=1

Dqt0 |eNj |
. (18)

According to Lemma 1, we have

Dqt0V (t) =
p∑
j=1

sgn(e1j)[D
q
t0
x1j −Dqt0x2j ] +

p∑
j=1

sgn(e2j)[D
q
t0
x2j −Dqt0x3j ]

+ · · ·+
p∑
j=1

sgn(eNj)[D
q
t0
xNj −Dqt0x1j ]

≤
p∑
j=1

[Dqt0x1j −Dqt0x2j ] +
p∑
j=1

[Dqt0x2j −Dqt0x3j ]

+ · · ·+
p∑
j=1

[Dqt0xNj −Dqt0x1j ]
= 0

. (19)

When Dqt0V (t) = 0, it means eij ≥ 0 for i = 1, 2, ..., N and j = 1, 2, ..., p. So we have
Dqt0x1j ≥ Dqt0x2j , Dqt0x2j ≥ Dqt0x3j , ..., Dqt0x(N−1)j ≥ Dqt0xNj and Dqt0xNj ≥ Dqt0x1j .
Thus only when Dqt0x1j = D

q
t0
x2j = · · · = Dqt0xNj for j = 1, 2, ..., p, Dqt0V (t) = 0,

otherwise, Dqt0V (t) < 0. That is to say, V (t)→ 0 as t→∞. The coupled network is
synchronised.

Remark 1: The network can be synchronised for any number of nodes (N ≥ 3).

Remark 2: According to Theorem 1, the network can be synchronised for any d > 0.
However, in practice, it is difficult to obtain synchronisation when d is too small. In
our testing, the suggested value of d should be larger than 1.

3 Synchronisation simulation of the time delayed simplified Lorenz
system with ring connection

In this section, synchronisation of N fractional-order time delayed simplified Lorenz
systems with ring connection is investigated.
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3.1 Model and numerical solution of the network

The fractional-order simplified Lorenz system is investigated by [5,6]. It is described
as ⎧⎪⎨

⎪⎩
Dqt0x1 = 10(x2 − x1)
Dqt0x2 = (24− 4c)x1 − x1x3 + cx2
Dqt0x3 = x1x2 − 8x3/3

, (20)

where x1, x2, x3 are state variables, and c is the system parameter. In order to control
the fractional-order simplified Lorenz system, we need to design the state feedback
controller u = (u1, u2, u3) [29], then Eq. (20) becomes⎧⎪⎨

⎪⎩
Dqt0x1 = 10(x2 − x1) + u1
Dqt0x2 = (24− 4c)x1 − x1x3 + cx2 + u2
Dqt0x3 = x1x2 − 8x3/3 + u3

. (21)

Here, if we set the controllers u1 = κx1(t− τ), u2 = 0, u3 = 0, the following delayed
control system is defined as⎧⎪⎨

⎪⎩
Dqt0x1 = 10(x2 − x1) + κx1(t− τ)
Dqt0x2 = (24− 4c)x1 − x1x3 + cx2
Dqt0x3 = x1x2 − 8x3/3

, (22)

where κ is the control parameter and τ is the time delay. Here, Dqt0 is the Caputo
differential operator of order q ∈ (0, 1]. The fractional-order time delayed simplified
Lorenz system with bidirectional coupling is described by⎧⎪⎨

⎪⎩
Dqt0xi1 = 10(xi2 − xi1) + κxi1(t− τ) + d(x(i−1)1 + x(i+1)1 − 2xi1)
Dqt0xi2 = (24− 4c)xi1 − xi1xi3 + cxi2 + d(x(i−1)2 + x(i+1)2 − 2xi2)
Dqt0xi3 = xi1xi2 − 8xi3/3 + d(x(i−1)3 + x(i+1)3 − 2xi3)

. (23)

Next, we present the numerical solution of the network based on the ADM. Consider
an uniform grid {tn = nh, n = −m, −(m-1), ..., −1, 0, 1, 2, ..., N}, where m = �τ/h	
and N is the length of the time series. By applying ADM, the solution of system (23)
is represented as ⎧⎪⎪⎨

⎪⎪⎩
xi1(n+ 1) =

∑5
j=0K

j
i1h
jq
/
Γ(jq + 1)

xi2(n+ 1) =
∑5
j=0K

j
i2h
jq
/
Γ(jq + 1)

xi3(n+ 1) =
∑5
j=0K

j
i3h
jq
/
Γ(jq + 1)

. (24)

The intermediate variables are calculated by

K0i1 = xi1(n), K
0
i2 = xi2(n), K

0
i3 = xi3(n), (25)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K1i1 = 10(K
0
i2 −K0i1) + κK0i1τ + d(K0(i−1)1 +K0(i+1)1 − 2K0i1)

K1i2 = (24− 4c)K0i1 −K0i1K0i3 + cK0i2
+d(K0(i−1)2 +K

0
(i+1)2 − 2K0i2)

K1i3 = K
0
i1K

0
i2 − 8K0i3/3 + d(K0(i−1)3 +K0(i+1)3 − 2K0i3)

, (26)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K2i1 = 10(K
1
i2 −K1i1) + κK1i1τ + d(K1(i−1)1 +K1(i+1)1 − 2K1i1)

K2i2 = (24− 4c)K1i1 −K0i1K1i3 −K1i1K0i3 + cK1i2
+d(K1(i−1)2 +K

1
(i+1)2 − 2K1i2)

K2i3 = K
1
i1K

0
i2 +K

0
i1K

1
i2 − 8K1i3/3 + d(K1(i−1)3 +K1(i+1)3 − 2K1i3)

, (27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K3i1 = 10(K
0
i2 −K0i1) + κK2i1τ + d(K2(i−1)1 +K2(i+1)1 − 2K2i1)

K3i2 = (24− 4c)K2i1 −K0i1K2i3 −K1i1K1i3 Γ(2q+1)Γ2(q+1) −K2i1K0i3
+cK2i2 + d(K

2
(i−1)2 +K

2
(i+1)2 − 2K2i2)

K3i3 = K
0
i1K

2
i2 +K

1
i1K

1
i2
Γ(2q+1)
Γ2(q+1) +K

2
i1K

0
i2 − 8K2i3/3

+d(K2(i−1)3 +K
2
(i+1)3 − 2K2i3)

, (28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K4i1 = 10(K
3
i2 −K3i1) + κK3i1τ + d(K3(i−1)1 +K3(i+1)1 − 2K3i1)

K4i2 = (24− 4c)K3i1 −K0i1K3i3 − (K2i1K1i3 +K1i1K2i3) Γ(3q+1)
Γ(q+1)Γ(2q+1)

−K3i1K0i3 + cK3i2 + d(K3(i−1)2 +K3(i+1)2 − 2K3i2)
K4i3 = K

0
i1K

3
i2 + (K

2
i1K

1
i2 +K

1
i1K

2
i2)

Γ(3q+1)
Γ(q+1)Γ(2q+1) +K

3
i1K

0
i2

+8K3i3/3 + d(K
3
(i−1)3 +K

3
(i+1)3 − 2K3i3)

, (29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K5i1 = 10(K
4
i2 −K4i1) + κK4i1τ + d(K4(i−1)1 +K4(i+1)1 − 2K4i1)

K5i2 = (24− 4c)K4i1 −K0i1K4i3 − (K3i1K1i3 +K1i1K3i3) Γ(4q+1)
Γ(q+1)Γ(3q+1)

−K2i1K2i3 Γ(4q+1)Γ2(2q+1) −K4i1K0i3 + cK4i2
+d(K4(i−1)2 +K

4
(i+1)2 − 2K4i2)

K5i3 = K
0
i1K

4
i2 + (K

3
i1K

1
i2 +K

1
i1K

3
i2)

Γ(4q+1)
Γ(q+1)Γ(3q+1)

+K2i1K
2
i2
Γ(4q+1)
Γ2(2q+1) +K

4
i1K

0
i2 − 8K4i3/3

+d(K4(i−1)3 +K
4
(i+1)3 − 2K4i3)

, (30)

where Kji1τ = K
j
i1(t − τ). Obviously, when tn ≤ mh, tn−τ is located between

(n − 1 − m)h and (n − m)h. When tn > mh, tn−τ is located between (n − m)h
and (n−m+ 1)h. By applying linear interpolation, Kji1τ is calculated by

Kji1τ (tn) =
(
1−m+ τ

h

)
Kji1(tn−1−m) +

(
m− τ

h

)
Kji1(tn−m), (31)

for tn ≤ mh, and it is calculated by

Kji1τ (tn) =
(
1−m+ τ

h

)
Kji1(tn−m) +

(
m− τ

h

)
Kji1(tn−m+1), (32)

for tn > mh.
According to Eqs. (24)–(32), numerical simulation can be carried out. It also shows

that ADM provides a good scheme for digital circuit implementation of fractional-
order chaotic system synchronisation.
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Fig. 2. Synchronisation error curves. (a) e12, (b) e23, (c) e34, (d) e45.

3.2 Performance analysis of the network synchronisation

Here, we study the numerical simulation of the network with c = −1, τ = 1, κ = 1,
q = 0.98, d = 5, where the network contains five systems. The configuration matrix
of the network is obtained by

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 1

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1
1 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (33)

The initial values for systems one to five are (1, 2, 3), (4, 5, 6), (7, 8, 9,), (10, 11,
12) and (13, 14, 15), respectively. When t ≤ 0, H1(t) = 1, H2(t) = 2, H3(t) = 3,
H4(t) = 4 and H5(t) = 5. Let d = 5; the synchronisation results between different
systems are shown in Fig. 2. Here the synchronisation error eij = xi−xj . It is defined
as the error of different state variables between system (i) and system (j). According
to Fig. 2, synchronisation is realized between different systems, which means the
network is synchronised.
According to the synchronisation scheme shown in Fig. 1, Si (i = 1, 2, ..., N)

are sent to the target systems to make the network synchronised. In this paper, Si
contains Kkil (k=0, 1, 2, 3, 4, 5, l=1, 2, 3). Taking Sys1 as an example, phase diagrams
of these intermediate variables are plotted in Fig. 3. It shows that these signals are also
chaotic. We define the synchronisation error between different intermediate variables
as

Ek =

4∑
i=1

3∑
j=1

∣∣∣Kkij −Kk(i+1)j∣∣∣, (34)

where k=0, 1, 2, 3, 4 and 5. When k=0, E0 is the error of the state variables. The
simulation results are illustrated in Fig. 4. Synchronisation is also achieved in these
intermediate variables, which means they can also be used in the real application.
The synchronisation setup time with different q, τ and d are obtained as shown

in Fig. 5. It indicates in Fig. 5(a) that the synchronisation setup time increases with
order q, which means the fractional-order time delayed chaotic systems are more
suitable in the practice than integer-order ones. According to Fig. 5(b), the synchro-
nisation setup time decreases with d. Thus we should choose a relatively large coupling
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Fig. 3. Phase diagrams of intermediate variables in system one. (a)K011 − K012 − K013,
(b) K111 − K112 − K113, (c) K211 − K212 − K213, (d) K311 − K312 − K313, (e) K411 − K412 − K413,
(f) K511 −K512 −K513.

Fig. 4. Synchronisation results of intermediate variables. (a) E0, (b) E1, (c) E2, (d) E3,
(e) E4, (f) E5.

Fig. 5. Synchronisation setup time with different parameter. (a) q, (b) d, (c) τ .

strength d for practical application. Figure 5(c) also shows that the larger the time
delay τ is, the larger the synchronisation setup time is.

4 Conclusion

In this paper, synchronisation of the fractional-order time delayed simplified Lorenz
systems with ring connection is investigated based on the Adomian decomposition
method (ADM). Both theoretical analysis and numerical simulation illustrate that
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the N -coupled fractional-order time delayed systems can be well synchronised. We
also found that the synchronisation setup time decreases with the increase of control
parameter d and increases with the increase of derivative order q and time delay τ .
Synchronisation is also found in the intermediate variables of different systems. Our
further work will focus on FPGA circuit design and application of the network.

This work was supported by the National Natural Science Foundation of China (Grant
Nos. 61161006 and 61573383), and the authors would like to thank the editor and the
referees for their careful reading of this manuscript and for their valuable suggestions.
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