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Abstract. In this paper, a new type of chaos synchronization in
continuous-time is proposed by combining inverse matrix projec-
tive synchronization (IMPS) and generalized synchronization (GS).
This new chaos synchronization type allows us to study synchroniza-
tion between different dimensional continuous-time chaotic systems in
different dimensions. Based on stability property of integer-order
linear continuous-time dynamical systems and Lyapunov stability
theory, effective control schemes are introduced and new synchroniza-
tion criterions are derived. Numerical simulations are used to validate
the theoretical results and to verify the effectiveness of the proposed
schemes.

1 Introduction

The nature of our physical world is most commonly described by systems of nonlin-
ear equations. These nonlinear models of real-life problems generally exhibit chaotic
behaviors which is possess some special features, such as having bounded trajectories
with a positive leading positive Lyapunov exponent of the dynamics of the chaotic
system, extreme sensitivity to initial conditions and having noise-like behaviors. It
can be applied in the vast areas of in secure communications, chemical reactions,
biomedical science, social science, and many other fields. The idea of chaos synchro-
nization is to use the output of the master system to control the slave system so that
the output of the response system follows the output of the master system asymptot-
ically. Recently there has been growing interest in the investigation of various kinds
of synchronization in chaotic or hyperchaotic systems. This interest is spurred by
the possible applications of synchronous chaos particularly in secure communications
[1–7]. Recently, the topic of synchronization between different dimensional chaotic sys-
tems attract more and more attentions. Until now, a variety of control schemes have
been proposed to study the problem of synchronization between chaotic dynamical
systems with different dimensions such as modified function projective synchroniza-
tion [8], generalized matrix projective synchronization [9], generalized synchronization
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[10–12], inverse generalized synchronization [13], full state hybrid projective synchro-
nization [14], Q-S synchronization [15], increased order synchronization [16,17] and
reduced order generalized synchronization [18,19]. Among the aforementioned meth-
ods, the most effective synchronization approaches are inverse matrix projective syn-
chronization (IMPS) and generalized synchronization (GS) and have been used widely
to achieve the chaos synchronization with different dimensions [20–24]. However in
(IMPS), the slave system synchronize with the master system up to scaling constant
matrix. on the other hand in (GS) there exist a functional relationship between the
states of the master and the slave chaotic systems. However when we combine (IMPS)
and (GS), a new generalized-type of chaos synchronization, called Λ− φ generalized
synchronization, will appear. To the best of our knowledge most of theoretical results
about synchronization of chaos focus on the systems whose models are identical or
strictly different systems and systems of different order, especially the systems in bi-
ological science and social science. One example is the synchronization that occurs
between heart and lung, where one can observe that both circulatory and respiratory
systems behave in synchronous way, but their models are essentially different and
they have different order. So, the study of synchronization for strictly different dy-
namical systems and different order dynamical systems is both very important from
the perspective of control theory and very necessary from the perspective of practical
application.

In this paper, a new type of synchronization for different dimensional chaotic
dynamical system is proposed and experimented. The sufficient conditions for achiev-
ing Λ− φ generalized synchronization of two chaotic systems are derived based upon
the stability theory of linear systems and Lyapunov stability theorem. This paper pro-
vides further contribution to the topic of Λ−φ generalized synchronization. This pa-
per introduces a general control schemes with different structures that can be applied
to wide classes of chaotic and hyperchaotic systems. The proposed control method
is simple, efficient and easy to implement in practical applications. The rest of the
present paper is organized as follows. In Sect. 2 the definition of Λ − φ generalized
synchronization is introduced. In Sect. 3 different schemes for Λ− φ generalized syn-
chronization are proposed and new synchronization criterion are presented. In Sect. 4
the derived criterions and the proposed schemes are applied to some typical different
dimensional chaotic systems. Finally, the paper is concluded in Sect. 5.

2 Λ− φ generalized synchronization

Consider the following coupled chaotic systems

Ẋ(t) = F (X(t)), (1)

Ẏ (t) = G(Y (t)) + U, (2)

where X(t) ∈ Rn, Y (t) ∈ Rm are the states of the master system (1) and the slave
system (2), respectively, F : Rn → Rn, G : Rm → Rm and U ∈ Rm is a controller.
Before proceeding to the definition of Λ − φ generalized synchronization for the

coupled chaotic systems (1) and (2), the definitions of inverse matrix projective syn-
chronization (IMPS) and generalized synchronization (GS) are provided.

Definition 1. The n-dimensional master system X(t) and the m-dimensional slave
system Y (t) are said to be inverse matrix projective synchronization, if there exists
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a controller U = (ui)1≤i≤m and a matrix Λ ∈ Rn×m, such that the synchronization
error

e(t) = ΛY (t)−X(t), (3)

satisfies that lim
t→+∞ ‖e(t)‖ = 0.

Definition 2. The n-dimensional master system X(t) and the m-dimensional slave
system Y (t) are said to be Λ−φ generalized synchronization, if there exists a controller
U = (ui)1≤i≤m and a differentiable vector function φ : R

n → Rm, respectively, such
that the synchronization error

e(t) = Y (t)− φ (X(t)) , (4)

satisfies that lim
t→+∞ ‖e(t)‖ = 0.

Remark 1. Generalized synchronization and inverse matrix projective synchronization
of chaotic dynamical systems with different dimensions, based on Lyapunov stability
theory, have been studied and carried out, for example, see Refs. [10,20].

Definition 3. The n-dimensional master system X(t) and the m-dimensional slave
system Y (t) are said to be Λ−φ generalized synchronization, if there exists a controller
U = (ui)1≤i≤m , a constant matrix Λ, d × m, and a differentiable vector function
φ : Rn → Rd, respectively, such that the synchronization error

e(t) = ΛY (t)− φ (X(t)) , (5)

satisfies that lim
t→+∞ ‖e(t)‖ = 0. Where d is called the synchronization dimension.

Remark 2. When (Λ, φ(.)) = (I,X(t)), (Λ, φ(.)) = (I,−X(t)), (Λ, φ(.)) = (Λ,X(t))
and (Λ, φ(.)) = (I, φ(X(t))) complete synchronization, anti- synchronization, inverse
matrix projective synchronization and generalized synchronization will appear, re-
spectively.

3 Different schemes for Λ− φ generalized synchronization
The aim of this section is to address two different schemes of Λ − φ generalized
synchronization. We take two kinds of cases: (I) when the synchronization dimension
d = n and (II) when the synchronization dimension d = m into consideration.

3.1 Case I: d = n

In this case, we assume that the synchronization dimension d = n, where n < m.
Here, we assume that the master and the slave chaotic systems can be considered in
the following forms

Ẋ(t) = AX(t) + f1(X(t)), (6)

Ẏ (t) = g1(Y (t)) + U, (7)

where X(t) ∈ Rn, Y (t) ∈ Rm are the states of the master system (6) and the slave
system (7), respectively, A is a n×n constant matrix, f1 : Rn → Rn is the nonlinear
part of the system (6), g1 : R

m → Rm and U = (ui)1≤i≤m is a vector controller.
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The error system, according to the definition of Λ − φ generalized synchronization,
between the master system (6) and the slave system (7) is defined by

e(t) = ΛY (t)− φ(X(t)), (8)

where φ : Rn → Rn is a continuously differentiable function and

Λ =

⎛
⎜⎝
Λ11 · · · Λ1n · · · Λ1m
...
. . .

...
. . .

...
Λn1 · · · Λnn · · · Λnm

⎞
⎟⎠ , (9)

is the constant scaling matrix. The error system (8) can be written as

ė(t) = (A− C1) e(t) + ΛU +R1, (10)

where C1 ∈ Rn×n is a control matrix to be designed later and
R1 = (C1 −A) e(t) + Λg1(Y (t))−Dφ(X(t))× (AX(t) + f1(X(t))) , (11)

where Dφ(X(t)) is the Jacobian matrix of the function φ : Rn → Rn, given by

Dφ(X(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂φ1

∂x1

∂φ1

∂x2
· · · ∂φ1
∂xn

∂φ2

∂x1

∂φ2

∂x2
· · · ∂φ2
∂xn

...
...
. . .

...

∂φn

∂x1

∂φn

∂x2
· · · ∂φn
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Theorem 1. Λ − φ generalized synchronization between the master system (6) and
the slave system (7) will occur if the following conditions are satisfied
(i) The vector controller is constructed as

(u1, ..., un)
T
= −Λ̃−1R1, (13)

ui = 0, for : i = n+ 1, ...,m, (14)

where Λ̃−1 is the inverse of Λ̃ =

⎛
⎜⎝
Λ11 · · · Λ1n
...
. . .

...
Λn1 · · · Λnn

⎞
⎟⎠

(ii) All eigenvalues of A− C1 have negative real part.
Proof. Using Eq. (14), then the error system (10) can be described as follow:

ė(t) = (A− C1) e(k) + Λ̃Ũ +R1, (15)

where Ũ = (u1, . . . , un)
T . Now, applying the control law described by Eq. (13) to

Eq. (15) yields the resulting error dynamics as follows:

ė(t) = (A− C1) e(k). (16)

According to the stability theory of the linear systems, if all eigenvalues of A − C1
have negative real parts, This choice will lead to the error states Eq. (16) converge to
zero as time t tends to infinity. Therefore, the systems (6) and (7) are globally Λ− φ
generalized synchronized in n−D.
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3.2 Case II: d = m

Define the master and the slave systems as follows

Ẋ(t) = f2(X(t)), (17)

and

Ẏ (t) = BY (t) + g2(Y (t)) + U, (18)

where X(t) ∈ Rn, Y (t) ∈ Rm are the state of the master system (17) and the slave
system (18), f2 : R

n → Rn, B ∈ Rm×m, g2 : Rm → Rm is a nonlinear function and
U ∈ Rm is the control law. In this case, the error system, is given by

e(t) = ΛY (t)− φ(X(t)), (19)

where Λ ∈ Rm×m is the scaling matrix and φ : Rn → Rm is a continuously differen-
tiable function. The error system (19) can be written as

ė(t) = (B − C2) e(t) + ΛU +R2, (20)

where

R2 = (C2 −B) e(t) + ΛBY (t) + Λg2(Y (t))−Dφ(X(t))× f2(X(t)), (21)

and C2 is an, m×m, unknown control matrix to be determined.

Theorem 2. Λ− φ generalized synchronization between the master system (17) and
the slave system (18) will occur if the following conditions are satisfied
(I) U = −Λ−1R2, where Λ−1 is the inverse of the matrix Λ.
(II) (B − C2)T + (B − C2) is a negative definite matrix.

Proof. By using condition (I), the error system (20) can be described as

ė(t) = (B − C2) e(t). (22)

Construct the candidate Lyapunov function in the form: V (e(t)) = eT (t)e(t), then
we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)

= eT (t)(B − C2)T e(t) + eT (t)(B − C2)e(t)
= eT (t)

[
(B − C2)T + (B − C2)

]
e(t),

and by using condition (II), we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability
theory, it is immediate that lim

t→∞ ei(t) = 0, 1 ≤ i ≤ m. Therefore, the systems (17)
and (18) are globally Λ− φ generalized synchronized in m−D.

4 Numerical examples

In this section, we will consider two examples to illustrate the effectiveness of the
synchronization results which proposed in the previous section.
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4.1 Example 1: Λ− φ generalized synchronization of Lorenz system and
hyperchaotic Cai system in 3-D

Assume that Lorenz system drives the hyperchaotic Cai system. Therefore, we define
the master system as follows

ẋ1 = α(x2 − x1), (23)

ẋ2 = γx1 − x2 − x1x3,
ẋ3 = −βx3 + x1x2,

where x1, x2 and x3 are state variables and α, γ and β are positive parameters. Bi-
furcation studies show that with the parameters α = 10, γ = 28, system (23) exhibits
chaotic behavior when β = 8

3 [25]. The controlled Hyperchaotic Cai system can be
described as

ẏ1 = a(y2 − y1) + u1, (24)

ẏ2 = by1 + cy2 − y1y3 + u2,
ẏ3 = y

2
2 − dy4 + u3,

ẏ4 = −hy1 + u4,
where y1, y2, y3 and y4 are state variables, a, b, c, d and h are positive parameters and
(u1, u2, u3, u4)

T is the vector controller. Hyperchaotic Cai system (i.e., the system
(24) with u1 = u2 = u3 = u4 = 0) exhibits hyperchaotic behavior when a = 27.5, b =
3, c = 19.3, d = 2.9 and h = 3.3 [26]. The linear part A and the nonlinear part f1 of
the Lorenz system (23) are given by

A =

⎛
⎜⎝
−10 10 0

28 −1 0

0 0 −83

⎞
⎟⎠ , f1 (x1, x2, x3) =

⎛
⎜⎝

0

−x1x3
x1x2

⎞
⎟⎠ .

In this case, the scaling matrix Λ = (Λij)3×4 and the function φ : R
3 → R3 are

selected as

Λ =

⎛
⎜⎝
1 0 0 1

0 2 0 1

0 0 3 2

⎞
⎟⎠ , φ (x1, x2, x3) =

⎛
⎜⎝

x21

x21 + x
2
2

x21 + x
2
2 + x

2
3

⎞
⎟⎠ .

Hence, the error system between the master system (23) and the slave system (24) is
defined by

e1 = y1 + y4 − x21, (25)

e2 = 2y2 + y4 − x21 − x22,
e3 = 3y3 + 2y4 − x21 − x22 − x23.

According to our approach presented in Sect. 3.1, if we choose the control matrix
C1 as

C1 =

⎛
⎜⎝
0 10 0

28 0 0

0 0 0

⎞
⎟⎠ ,
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Fig. 1. Λ− φ generalized synchronization errors, e1, e2, e3, of the slave system (24) and the
drive system (23) with time t.

then the controllers ui, i = 1, 2, 3, 4 can be constructed as follow:

u1 = 10e1 + (a+ h) y1 − ay2 + 2αx1(x2 − x1), (26)

u2 =
1

2
e2 +

(
1

2
h− b

)
y1 − cy2 − y1y3 + αx1(x2 − x1) + x2 (γx1 − x2 − x1x3) ,

u3 =
8

9
e3 − y22 + dy4 +

2

3
hy1 − 2

3
αx21 −

2

3
x22 −

2

3
βx23 +

2

3
(α+ γ)x1x2,

u4 = 0.

It is easy to know that all eigenvalues of A − C1 have negative real part. Then the
conditions of Theorem 1 are satisfied. Therefore, the systems (23) and (24) are globally
Λ−φ generalized synchronized in 3-D and the error system can be described as follow:

ė1 = −10e1, (27)

ė2 = −e2,
ė3 = −8

3
e3.

The evolution of Λ− φ generalized synchronization errors is shown in Fig. 1.

4.2 Example 2: Λ− φ generalized synchronization of Rössler system and
hyperchaotic Liu system in 4D

Now, we consider Rössler system as the master system and hyperchaotic Liu system
as the slave system. The Rössler system can be described as

ẋ1 = −x2 − x3, (28)

ẋ2 = x1 + αx2,

ẋ3 = γ + x3(x1 − β),
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here x1, x2 and x3 are state variables and α, γ and β are positive parameters. Bifur-
cation studies show that with the parameters α = 0.2, γ = 0.2, system (28) exhibits
chaotic behavior when β = 5.7 [28]. The controlled hyperchaotic Liu system can be
described as

ẏ1 = a (y2 − y1) + u1, (29)

ẏ2 = by1 + y1y3 − y4 + u2,
ẏ3 = −cy3 − y1y2 + y4 + u3,
ẏ4 = dy1 + y2 + u4,

where y1, y2, y3 and y4 are state variables, a, b, c, d and h are positive parameters and
(u1, u2, u3, u4)

T is the vector controller. Hyperchaotic Liu system (i.e., the system
(29) with u1 = u2 = u3 = u4 = 0) exhibits hyperchaotic behavior when a = 10, b =
35, c = 1.4 and d = 5 [27]. Here, the linear part B and the nonlinear part g2 of the
hyperchaotic Liu system are given by

B =

⎛
⎜⎜⎜⎝

−10 10 0 0

35 0 0 −1
0 0 −1.4 0

5 1 0 0

⎞
⎟⎟⎟⎠ , g2 (y1, y2, y3, y4) =

⎛
⎜⎝
0
y1y3
−y1y2
0

⎞
⎟⎠ .

In this case, the scaling matrix Λ = (Λij)4×4 and the function φ : R3 → R4 are
chosen as

Λ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 3

⎞
⎟⎟⎟⎠ , φ (x1, x2, x3) =

⎛
⎜⎜⎜⎝

x1

x1 + x2 + x3

x2 + x3

x1

⎞
⎟⎟⎟⎠ .

Then, the error system between the master system (28) and the slave system (29) is
defined by

e1 = y1 − x1, (30)

e2 = 2y2 − x1 − x2 − x3,
e3 = y3 − x2 − x3,
e4 = 3y4 − x1.

According to the control scheme proposed in Sect. 3.2, if we select the control matrix
C2 as

C2 =

⎛
⎜⎜⎜⎝

0 10 0 0

35 −1 0 −1
0 0 0 0

5 1 0 −1

⎞
⎟⎟⎟⎠ ,

then the controllers ui, i = 1, 2, 3, 4, can be designed as follow:

u1 = −10e1 − a (y2 − y1)− x2 − x3, (31)

u2 = −1
2
e2 − by1 − y1y3 + y4 + 1

2
x1 +

1

2
(α− 1)x2 − 1

2
x3 +

1

2
x3(x1 − β) + 1

2
γ,

u3 = −1.4e3 + cy3 + y1y2 − y4 + x1 + αx2 + x3(x1 − β) + γ,

u4 = −1
3
e4 − dy1 − y2 − 1

3
x2 − 1

3
x3.
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Fig. 2. Λ− φ generalized synchronization errors, e1, e2, e3 and e4, of the slave system (29)
and the master system (28) with time t.

It is easy to show that (B − C2)T + (B − C2) is a negative definite matrix, and
the conditions of Theorem 2 are satisfied. Therefore, the systems (28) and (29) are
globally Λ − φ generalized synchronized in 4-D and the error system can be written
as follow:

ė1 = −10e1, (32)

ė2 = −e2,
ė3 = −1.4e3,
ė4 = −e4.

The evolution Λ− φ generalized synchronization errors is shown in Fig. 2.

5 Conclusion

This paper has illustrated a new generalized type of synchronization, called Λ−φ gen-
eralized synchronization, between a master system of dimension n and a slave system
of dimension m. Some new synchronization criterions were derived and proved theo-
retically using the stability of linear system and Lyapunov stability theory. Firstly, to
observe Λ− φ generalized synchronization behavior with respect to dimension n, the
synchronization scheme was proposed based on the control of the linear part of the
master system. Secondly, to achieve Λ − φ generalized synchronization with respect
to dimension m, the synchronization criterion was obtained via controlling the linear
part of the slave system. Finally, numerical examples and simulations results were
used to verify the effectiveness of the proposed schemes.
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