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Abstract. We found critical exponents for the dynamics of an ensemble
of particles described by a family of Hamiltonian mappings by using the
formalism of escape rates. The mappings are described by a canonical
pair of variables, say action J and angle 6 and the corresponding phase
spaces show a large chaotic sea surrounding periodic islands and lim-
ited by a set of invariant spanning curves. When a hole is introduced
in the dynamical variable action, the histogram for the frequency of
escape of particles grows rapidly until reaches a maximum and then
decreases towards zero for long enough time. The survival probability
of the particles as a function of time is measured and statistical in-
vestigations show it is scaling invariant with respect to v and time for
chaotic orbits along the phase space.

1 Introduction

In the last years, different problems were considered in order to characterize
the chaotic dynamics described by two-dimensional nonlinear and area-preserving
mappings. Applications can be seen in study of channel flows, waveguide, transport
properties, Fermi acceleration and also for the study of magnetic field lines in toroidal
plasma devices with reversed shear (like tokamaks) [1-6].

Generally, the mappings have more than a control parameter. One of them control
the intensity of the non-linearity hence controlling also a transition from integrability
to non integrability. In the majority of the cases, the phase spaces of the mappings
are mixed. They are composed by a chaotic sea that eventually surrounds periodic
islands and is limited by a set of invariant spanning curves. The size of the chaotic sea
is strongly influenced by the control parameters since they play the rule of controlling
the intensity of the nonlinearity.
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Recently a detailed study of statistical properties such as deviation of average
along the chaotic sea for a class of two-dimensional Hamiltonian mappings were
made to allow connections with other models [7,8]. Statistical properties are also
close related to the statistics of escape from a region containing a hole [9]. These
properties provide useful information for the control of chaotic systems [10]. Escape
properties measured as a function of a varying hole provide a further sensitive and
non-destructive probe of the dynamics [11]. Recently this approach has also been
successfully applied in a Hamiltonian system to show that the diffusion coefficient is
scaling invariant in the fully chaotic region [12].

In this paper, we investigate some escape properties in a special class of two dimen-
sional nonlinear and area-preserving mapping. We then study the escape properties
along the chaotic sea and therefore find critical exponents that allow us to define
and compare classes of universality. Such critical exponents are confirmed in terms
of scaling hypotheses. The critical exponents are obtained for several values of the
control parameters.

This paper is organized as follows: in Sect. 2 we define the model and obtain our
numerical results. In Sect. 3 we present the final discussions.

2 The model and numerical results

We consider in this paper a mapping that can be obtained from a perturbed
Hamiltonian. In generalized coordinates the controlling Hamiltonian is given by [13],

H(Ji,J2,01,02) = Ho(J1, J2) + €Hy(J1, J2,01,02), (1)

where the variables J; and 6; with ¢ = 1,2 are respectively the action and angle. Hy
represents the integrable part while H; is the non integrable part of the Hamiltonian.
One sees that the control parameter €, which defines the magnitude of coupling con-
trols a transition from integrability to non integrability. To characterize the dynamics
in terms of a mapping, we consider a Poincaré section defined by the plane J; x #; and
assume 0 as constant (mod 27). A generic two dimensional map which qualitatively
describes the behavior of (1) is

T Jn+1 = Jn+€ﬁ(9na']n+1) 9
s = 0 + F(Jusr) + p(Ou, Jusr)] mod (27) @)

where 71, F and p are assumed to be nonlinear functions of their variables and the
index n denotes the nth iteration of the mapping. Since the map, in Eq. (2) should
be area preserving, the expressions for ﬁ(&n, Jnt1) and p(0,,, J,11) must satisfy the
following condition

8])(9”, Jn+1) + ah(ena Jn-‘rl)
69n aJn+1

~ 0. (3)

For many mappings considered in the literature, the function h(6,) = sin(6,)
and we have liberty to chose p and F'. Without losing generality, for a wide class of
systems the function p is considered p(6,,, Jn+1) = constant which we will consider it
as fixed p(0,,, J,+1) = 0 from now on and hence F is varied. The systems within the
scope of the general two dimensional map include, the logistic twist mapping [14], the
Taylor-Chirikov map [15], Fermi-Ulam accelerator model [16,17], Fermi-Pustylnikov
accelerator [18] or bouncer model and Hybrid-Fermi-Ulam-bouncer model [19,20].
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Fig. 1. Phase space for mapping (2) using ¢ = 1072 and v = 3/4.

In this work, our main goal is to investigate the dynamical properties for an
ensemble of particles considering the following expression

F(J) =177, (4)

where 0 < v < 1 is a control parameter. Incorporating the functions F(J,1+1) =
1/|Jn41|7, p = 0 and h = sin(f,,), the map has assumes the following form

Jnt1 = Jp + €sin(f,)
O = [0 + sy mod (27) - (5)

17

In this case, a detailed study of the average properties for the action as a function of
the control parameters as well as the time was recently discussed in [7,8]. The phase
space generated from mapping (5) is shown in Fig. 1. One sees that the phase space
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Fig. 2. For v = 3/4 we have: (a) A plot of the histogram as a function of n,, where n, was
highlighted; (b) n, x h for different values of ¢, namely: ¢ = 107°, ¢ = 3.107° and ¢ = 10™*;
(¢) np X h/e.

is mixed and contains a set of periodic islands surrounded by a large chaotic sea that
is limited by a set of invariant spanning curves.

We consider a set of particles with initial conditions in a region of small J (we
take Jy = 0.01 in our simulations). For this set of particles, if one of them has J > h —
which is a typical position in the phase space — we assume the particle reached a hole
and then through it, the particle escapes. After escaping, the particle is eliminated
from the simulation, the number of iterations spent until the escape is registered
in a vector and a new initial condition, with a different phase and same initial Jy is
started. The procedure is repeated until the ensemble is exhausted. Figure 2(a) shows
a histogram (or frequency) for the number of particles that escaped for an iteration
n. We notice the histogram starts to growth with for short n and, eventually, reaches
a maximum value for a characteristic n,, while after the peak it starts to decrease to
zero asymptotically.
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Fig. 3. A closest approximation for the position of the lowest invariant spanning curve J*
as a function of the parameter ¢ for five different values of v, namely: v = 1/2, v = 3/5,
vy=3/4,y=4/5and y=1.

In Fig. 2(b) we show n, as a function of h for three different values of €. After a
scaling transformation h — h/e, all curves shown in 2(b) are overlapped onto each
other as shown in Fig. 2(c). Therefore, we can write that

moe (1)) ©)

where u ~ 2 is the slope for n, as a function of h.

In Fig. 3 we show an approximated position for the first invariant spanning curve
for different values of 7. To obtain such a position, we divided the 6 axis in 1,000
peaces uniformly spaced along the range [0, 1] and evolved a single orbit for over 10°
iterations. For each window in 6, we keep the corresponding maximum value for a
chaotic orbit. When all peaces are joint, the resulting set of points furnishes a closest
approximation for the position of the first invariant spanning curve J*. The plots
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Fig. 4. Plot of n, vs. € for v = 3/4.

Table 1. Critical exponents obtained numerically for e € [107°,1077].

¥ e z

1/2 0.674(5) —0.630(4)

3/5 0.635(5) —0.718(6)

3/4 0.580(3) —0.814(7)

4/5 0.569(3) —0.834(8)
1 0.505(1) —0.968(4)

are constructed by the corresponding lowest value of J* along the invariant spanning
curve. Figure 3 shows J* as a function of ¢, and after a power law fit we obtained the
critical exponent « for different values of v. We can conclude that

J* o e (7)

Figure 4 shows n,, as a function of € for different values of y. We considered

h=c,J", (8)
where ¢, is chosen to be 20% of the higher of J*. A power law fitting gives the critical
exponent z. We can see in Table 1 a set of critical exponents a and z for different
values of 7. Using a scaling hypothesis we can write

n, < €. (9)

Comparing Eq. (6) and Eq. (8) we can obtain that

moe (22 (10)

€
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and using Eq. (9) we have
T o (J*)™. (11)

Now using this last expression and combining with Eq. (7) we obtained
€% oc e, (12)

We conclude that
z = au — u. (13)

There is an interesting interpretation for u. When comparing the results with
those used in the scaling hypothesis we obtained v = 1/, where 8 = 0.5 for many
problems with normal diffusion. In our simulations, we obtained u = 2, therefore the
equation for z can be written as

a 1
z2=—=—=. 14

We show in Fig. 5(a) the histogram for the frequency of escape as a function of
n using different values of h and €. One can see that depending on the parameters,
the curves have different values of n,. If a rescale n — n/(c,€*) is applied in the
horizontal axis, all curves overlap each other onto a single and universal curve as
shown in Fig. 5(b), hence confirming the scaling invariance of the histogram. The
vertical axis was chosen such that the maximum value was set as one.

Let us now to discuss the behavior of the survival probability, which is defined as

1
P = NZNSWU(”) ) (15)

where the summation is taken along the ensemble of N different initial conditions
and Ngy,(n) is the number of initial conditions that do not escape through the hole
until a time n. When Eq. (15) is evaluated in a fully chaotic dynamics its behavior
is an exponential [11] while for a mixed phase space where periodic orbits exist,
the exponential decay may turn into a power law [9] or other laws like stretched
exponentials.

The behavior of P vs. n is shown in Fig. 6(a). We see that the typical behavior
is an exponential decay P o< exp(vn). The slope of the decay is plotted as function
of the position of the hole, as shown in Fig. 6(b). Figure 6(c) shows an overlap of
all curves shown in Fig. 6(b) after the transformation n — h/e, hence confirming a
scaling invariance of the survival probability as a function of n.

For large enough n the diffusion is no longer Brownian. The stickiness surrounding
the elliptic islands leads to the power law decays. Interestingly, even in the intermedi-
ate time regime, where decay is approximately exponential, there is a subtle deviation
from a normal diffusive law: The exponents in Fig. 6(b) are approximately —2.

In Table 2 we show the critical exponent (z’) obtained from the curves shown in
Fig. 7. We can observe that

2~z (16)

where the values of z are shown in Table 1.

Extensions of the formalism made in this paper can be made for different models.
As for example, for the case of v = 1 and considering the transformations J — V'
and 6 — ¢, one can recover the so called Fermi-Ulam accelerator model [21]. For the
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Fig. 5. (a) Plot of the histogram for the frequency of escape as a function of n for four
different values of € and h, as labeled in the figure; (b) after rescaling the horizontal axis, all
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curves overlap onto each other in a single and universal plot.

Table 2. Critical exponent 2’ for different values of .

¥ z
1/2 0.62(1)
3/5 0.720(5)
3/4 0.818(7)
4/5 0.839(8)

1 0.973(4)
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Fig. 6. (a) Plot of Ps vs. n confirming exponential behavior for small n. The slope obtained
is v = —0.0057715(8); (b) plot of v vs. h for three different values of ¢ namely: ¢ = 1077,
e = 3.107° and e = 10™%; (c) overlap of the curves shown in (b) after the transformation
h — h/e.

p—
=)

case where J — v and § — X where « in this transformation represents angular
coordinate instead of control parameter (as is the case for this paper), one can have
the periodically corrugate waveguide [22]. In these two cases, the critical exponents
obtained were o = 0.5 and z = —1 which is very well predicted in Table 1. On the
other hand, for the case of v = 1/2, one can describe the dynamics of a classical
particle confined inside an infinitely deep box of potential containing a periodically
moving square well [23,24] or time varying barrier [25]. For these cases, the critical
exponent is a = 0.674(5) and —0.630(4), as shown in Table 1.
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Fig. 7. Plot of —v x € for different values of v (as labeled in the figure).

3 Conclusion

In this paper we have used some escape properties to investigate the behavior of the
survival probability for a set particles moving chaotically in a phase space of an area
preserving map. Critical exponents were obtained numerically and confirmed using
scaling hypothesis for several different values of v, denoting then different models.

JAO thanks PROPe/UNESP, CNPq (311105/2015-7) and FAPESP(2014/18672-8) by finan-
cial support. DRC acknowledges Brazilian agency FAPESP (2013/22764-2) and EDL thanks
to CNPq (303707/2015-1), FUNDUNESP and FAPESP (2012/23688-5) (Brazilian agencies).

References

1. G.A. Luna-Acosta, J.A. Méndez-Bermudéz, P. Seba, K.N. Pichugin, Phys. Rev. E 65,
046605 (2002)

2. G.M. Zaslavsky, Phys. Rep. 371, 461 (2002)

3. D.G. Ladeira, J.K.L. da Silva, J. Phys. A: Math. Theor. 40, 11467 (2007)



13.

14.
15.
16.
17.

18.
19.
20.
21.
22.
23.

24.
25.

Temporal and Spatio-Temporal Dynamic Instabilities 2761

F.R.N. Kock, F. Lenz, C. Petri, F. K. Diakonos, P. Schmelcher, Phys. Rev. E 78, 056204
(2008)

J.E. Howard, A.J. Lichtenberg, M.A. Lieberman, R.H. Cohen, Physica D 20, 259 (1986)
G.A. Luna-Acosta, K. Na, L.E. Reichl, Phys. Rev. E 53, 3271 (1996)

J.A. de Oliveira, R.A. Bizao, E.D. Leonel, Phys. Rev. E 81, 046212 (2010)

E.D. Leonel, J. Penalva, R.N.M. Teixeira, R.N. Costa Filho, M.R. Silva, J.A. de Oliveira,
Phys. Lett. A 379, 1808 (2015)

E.G. Altmann, T. Tél, Phys. Rev. E 79, 016204 (2009)

. H. Buljan, V. Paar, Phys. Rev. E 63, 066205 (2001)
. L.A. Bunimovich, C.P. Dettmann, EPL 80, 40001 (2007)
. J.A. de Oliveira, C.P. Dettmann, D.R. da Costa, E.D. Leonel, Phys. Rev. E 87, 062904

(2013)

A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Vol. 38 of Applied
Mathematical Sciences (Springer Verlag, New York, 1992)

J.E. Howard, J. Humpherys, Physica D 80, 256 (1995)

B.V. Chirikov, Phys. Rep. 52, 263 (1979)

M.A. Lieberman, A.J. Lichtenberg, Phys. Rev. A 5, 1852 (1971)

J.K.L. da Silva, D.G. Ladeira, E.D. Leonel, P.V.E. McClintock, S.O. Kamphorst,
Braz. J. Phys. 36, 700 (2006)

L.D. Pustylnikov, Trans. Moscow Math. Soc. 2, 1 (1978)

E.D. Leonel, P.V.E. McClintock, J. Phys. A 38, 823 (2005)

D.G. Ladeira, E.D. Leonel, Chaos 17, 013119 (2007)

E.D. Leonel, P.V.E. McClintock, J.K.L. da Silva, Phys. Rev. Lett. 93, 014101 (2004)
E.D. Leonel, Phys. Rev. Lett. 98, 114102 (2007)

G.A. Luna-Acosta, G. Orellana-Rivadeneyra, A. Mendoza-Galvan, and C. Jung, Chaos,
Solitons and Fractals, 12, 349 (2001)

E.D. Leonel, P.V. McClintock, Chaos 15, 033701 (2005)

E.D. Leonel, P.V.E. McClintock, Phys. Rev. E 70, 016214 (2004)



	1 Scaling Properties in Maps
	1 Introduction
	2 The model and numerical results
	3 Conclusion
	References




