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Abstract. Insects use flight muscles attached at the base of the
wings to produce impressive wing flapping frequencies. The maxi-
mum power output of these flight muscles is insufficient to maintain
such wing oscillations unless there is good elastic storage of energy in
the insect flight system. Here, we explore the intrinsic self-oscillatory
behavior of an insectile wing model, consisting of two rigid wings
connected at their base by an elastic torsional spring. We study the
wings behavior as a function of the total energy and spring stiffness.
Three types of behavior are identified: end-over-end rotation, chaotic
motion, and periodic flapping. Interestingly, the region of periodic flap-
ping decreases as energy increases but is favored as stiffness increases.
These findings are consistent with the fact that insect wings and flight
muscles are stiff. They further imply that, by adjusting their muscle
stiffness to the energy level at which they are operating, insects can
maintain periodic flapping mechanically for a range of operating
conditions.

1 Introduction

The flapping of insect wings is a marvelous example of autonomous oscillations.
Insects use flight muscles (see Fig. 1a,b) attached at the base of the wings [1] to pro-
duce wing flapping frequencies that, in certain species, far exceed the animals’ neural
capacity [2]. In these species, the contractile activity of flight muscles is maintained by
a self-oscillatory mechanism that is under mechanical, not nervous, control [3]. Calcu-
lations of mechanical power suggest that the maximum power output of flight muscles
is adequate for the aerodynamic power requirements, but insufficient to also oscillate
the wings’ mass unless there is good elastic storage of the inertial energy. Elastic en-
ergy could be stored in several components of the insect flight system, including flight
muscles. Insect flight muscles are very stiff such that, even at small operating strains,
they can store elastically much of the inertial energy of the oscillating wing [3].
In this paper, we formulate and analyze the dynamics of an idealized insectile

wing model, consisting of two rigid wings connected at their base by an elastic tor-
sional spring (see Fig. 1c). The wings are two-dimensional and free to “flap” and
“roll” in plane. That is to say, the chord of the wings is assumed to be infinite and
the pitch and yaw rotational degrees of freedom are ignored. Our goal is to examine
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Fig. 1. (a) Schematic of a honeybee and its thoracic structure containing indirect flight
muscles at the wing base connected to the thorax such that deformations of the thorax
result in the up-down motion of the wings [1]. (b) Schematic of a dragonfly which uses
flight muscles that are direct hinged at the wing base such that muscle contractions lead to
flapping of the wings [1]. (c) Insectile wing model: two rigid wings connected by a torsional
spring of stiffness κ. The wings are free to flap (angle α) and rotate about their base point
(angle θ).

the intrinsic up-and-down self-oscillations of the wings under their own inertial load
by drawing upon tools from nonlinear dynamical systems. This approach is aimed
at complementing past and ongoing research efforts on flapping insect wings. The
impressive aerodynamic performance of insects have stimulated a great deal of interest
among biologists, physicists and engineers. The main goals of these research efforts
are to decipher the biomechanics underlying insect flight and to translate this knowl-
edge into design principles for engineered micro-air vehicles. Flight biomechanics is
a complicated problem that requires an understanding of the coupling between wing
kinematics and aerodynamic forces. This is a challenging task for two main reasons.
First, the wing hinge of insects is a complicated joint consisting of multiple steering
muscles and tendons, all intertwined to direct power from the main flight muscles to
the wing and allows fine-tuned control over the wing motion [4,5] (Fig. 1). Second,
the fluid-structure interaction between the wing and its own unsteady flow field is
highly complex. The unsteady mechanisms responsible for the generation of remark-
able lift forces in flapping flight has been examined in recent experimental [6–11] and
theoretical [12–19] studies, mostly emphasizing the importance of leading-edge and
wake vorticity in force production [20,21]. Attention turned recently to the stabil-
ity of flapping flight in response to environmental disturbances [22], with conflicting
accounts of intrinsic instability [23,24] and passive stability [25–27]. Given that an
assessment of the passive stability of live organisms is not feasible experimentally,
proxy models of inanimate flyers are proposed in [28,29] and their passive stability
is discussed in [30,31]. Experimental studies of live organisms seem to favor active
stabilization by linear feedback control as the mechanism by which these organisms
recover from inflicted perturbations [32–34].
The present paper does not focus on wing aerodynamics, but on the intrinsic

nonlinear dynamics of insect-like wings when subject to their own weight and elastic
energy storage. Evolution and natural selection have made insect wings stiff enough
to withstand the aerodynamic load [35]. Unlike birds and bats which have active
muscles in their modified forelimbs to control the wing shape, insect wings twist and
camber due to their elastic properties [36]. Wing flexural stiffness varies along the
wing [37,38]. However, we consider here a “lumped” spring model, where the wing
and muscle stiffness are both modeled via a linear elastic torsional spring at the base
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Fig. 2. Uncoupled wings (κ=0): Poincaré sections at θ=0 for (a) E = E1 + E2=2/3 and
(b) E = 2. Insets show projections of the Poincaré sections onto the plane θ̇ = 0. As energy
increases, the compact energy surface becomes periodic in α.

of two rigid wings. We analyze the stability of this insectile wing system around the
vertically down position and explore its global behavior as a function of total energy
and spring stiffness. Interestingly, we identify regions of rotational motion where the
two wings roll 360◦ around their attachment point (roll end-over-end), as well as
regions of chaotic behavior and periodic flapping. The region of periodic flapping
decreases as energy increases, and increases as spring stiffness increases. We conclude
by discussing the potential implications of these findings on flapping flight.

2 Model

We consider two rigid wings, of mass m and length l each, connected at their base
by a torsional spring of stiffness κ (see Fig. 1c). We let 2α denote the opening angle
of the wings, or the “flapping” degree of freedom, and 2αo denote the spring rest
angle such that the internal spring torque is equal to 2κ(α− αo). Further, the wings
are free to rotate about their base point; their orientation angle from the vertical is
denoted by θ. Ignoring aerodynamic forces, and under gravitational effects only, the
equations of motion governing the behavior of α and θ are derived from the balance
of angular momentum, M = dH/dt, where M is the total moment and H the angular
momentum, taken with respect to the fixed attachment point of each wing separately.
To this end, one gets

2

3
ml2θ̈ = −mgl cosα sin θ
2

3
ml2α̈ = −mgl sinα cos θ − 4κ(α− αo). (1)

Here, g is the gravitational constant. In order to re-write the above equations in
non-dimensional form, we use the length scale l∗= l and time scale t∗=

√
2l/3g, and

introduce the dimensionless spring constant κ∗=4κ/mgl. To this end, we get

θ̈ = − cosα sin θ
α̈ = − sinα cos θ − κ(α− αo), (2)

where we dropped the ()∗ notation with the understanding that all quantities are now
non-dimensional. The total energy E of the wings is conserved,

E =
1

2
(α̇2 + θ̇2)− cosα cos θ + 1

2
κ(α− αo)2. (3)

For zero spring stiffness, κ=0, this wing model is equivalent to a system of two
uncoupled rigid pendula. This system is integrable because it admits two conserved
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Fig. 3. Insectile wings: (a) Stable flapping angle α∗ as a function of the spring coefficient κ
and rest angle αo. (b) Projection onto the (κ, αo) plane, showing the two stable regions for
θ∗ = 0 and θ∗ = π, separated by αo=π/2.

quantities, namely, E1=
1
2 (
1
2 (α̇+ θ̇)

2−cos(α+θ)) and E2= 12 ( 12 (α̇− θ̇)2−cos(α−θ)),
such that E=E1+E2. Poincaré section in the four-dimensional phase space (θ, α, θ̇, α̇)
is taken at θ=0. A depiction is shown in Fig. 2 for two total energy levels E = 2/3
and E=2. At lower E, the energy surface is compact and closed, while at higher E,
the energy surface is periodic in the α-direction.
For infinite spring stiffness, κ=∞, the two wings behave as one rigid pendulum,

whose dynamics is governed by θ̈= − cosα sin θ. The frequency of oscillations of the
pendulum depends on its shape, defined by the fixed parameter α. As α increases
from 0 to π, the oscillation frequency first decreases then increases. It reaches zero at
α=π/2, where the gravitational torques on the two wings of the rigid pendulum are
perfectly balanced and the system is in a state of equilibrium for all θ.

3 Results

We examine the behavior of the coupled insectile wings in Eq. (2) for finite spring
stiffness κ and rest angle αo. Given the left-right symmetry of the wings, it suffices
to examine the dynamical behavior of α and θ in the range [0, π]. In this range, the
equilibrium points (α∗, θ∗) of Eq. (2) can be identified as a function of κ and αo as
follows

θ∗ = 0, sinα∗ = −κ(α∗ − αo),
θ∗ = π, sinα∗ = κ(α∗ − αo), (4)

α∗ = π/2, cos θ∗ = κ(αo − π/2).
We study the linear stability of these equilibrium points by linearizing Eq. (2) about
(α∗, θ∗), (

θ̈
α̈

)
=

(− cosα∗ cos θ∗ sinα∗ sin θ∗
sinα∗ sin θ∗ − cosα∗ cos θ∗ − κ

)(
θ
α

)
(5)

with the understanding that θ and α in Eq. (5) are small. Linear stability analysis of
the equilibrium points in Eq. (4) reveals the existence of two sets of linearly stable
points,

For
π

2
≤ αo ≤ π

2
+
1

κ
, θ∗ = 0 and α∗ ∈

[
0,
π

2

]
,

For
π

2
− 1
κ
≤ αo ≤ π

2
, θ∗ = π and α∗ ∈

[π
2
, π
]
. (6)
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Fig. 4. (a) Periodic behavior around the equilibrium point (0, α∗) shown as a red dot for
κ = 32, αo=π/4 and initial conditions θ=π/3, α=π/6, θ̇=0, α̇=0. (b) Chaotic behavior
for κ = 8, αo=π/4 and initial conditions θ=π/3, α=π/4, θ̇=1.15, α̇=0 with the same
total energy as in (a).

Figure 3(a) illustrates the stable flapping angle α∗ as a function of κ and αo. Blue
and red colors represent acute (α∗<π/2) and obtuse (α∗>π/2) flapping angles, re-
spectively. A projection onto the (κ, αo) parameter space is shown in Fig. 3(b). Insets
show the physical configurations of the wing system in these equilibrium positions.
While the two configurations are the same, the internal torques used to balance the
gravitational effects have opposite signs, namely, sinα∗= ∓ κ(α∗ − αo), where the
minus sign corresponds to θ∗=0, meaning that the internal spring is in a state of
compression.
Numerical examination of the nonlinear response of the system around one of

these equilibrium points shows that it exhibits regular or chaotic behavior depend-
ing on initial conditions (θ, α, θ̇, α̇). Figure 4 shows examples of periodic behavior
for κ=32, αo=π/4 and initial conditions (π/3, π/6, 0, 0), and chaotic response for
κ=8, αo=π/4 and initial conditions (π/3, π/4, 1.15, 0). The two types of behavior
have same total energy E=0.66. To characterize the global nonlinear dynamics of
the coupled wings, we construct Poincaré sections (see, e.g., [39]) at θ=0, which

reduces the phase space to a three-dimensional space (α, θ̇, α̇). Conservation of en-
ergy restricts the dynamical response of the system to lie on a two-dimensional energy
surface within this space defined by 12 (α̇

2 + θ̇2)− cosα+ 12κ(α− αo)2 − E=0.
Figure 5(a) depicts Poincaré sections for κ=4 and three energy levels

E=2/3, 2, 10/3. On each energy level, three regions can be distinguished: region I
is characterized by periodic rotations where the wings rotate around the fixed attach-
ment point, i.e., they roll end-over-end, region II shows apparently chaotic behavior,
and region III is characterized by periodic oscillations, which correspond to regular
flapping behavior of the wings. Note that as energy increases, regions I and II grow,
while region III shrinks.
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Fig. 5. (a) Poincaré sections for κ=4, αo=π/4 and E=2/3, 2, 10/3. Three types of be-
havior can be distinguished on the energy surface (shown in light blue): periodic rotations
(region I) where the two wings rotate together end-over-end, apparently chaotic behavior
(region II), and periodic oscillations (region III) which correspond to regular flapping be-
havior of the wings. As energy increases, regions I and II grow, while region III shrinks.
(b) Side views of the Poincaré sections in (a).
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Fig. 6. Poincaré sections for E=2, αo=π/4 and κ=0.8, 4, 20. The case of κ=4 is same as
the one shown in Fig. 5 (E=2). Similarly to Fig. 5, as the spring stiffness increases, regions
I and II grow while region III shrinks.

We now explore the effects of spring stiffness κ on the nonlinear response of the
wings. Figure 6 depicts the energy surfaces for a constant energy value E=2 and
three different values of spring stiffness, κ=0.8, 4 and 20. For small κ, the behavior
of the wings is predominantly chaotic. As κ increases, the energy surface turns oblate
in the α-direction, indicating smaller flapping amplitudes, and the chaotic region II
shrinks. A few comments on the limits as κ goes to 0 and ∞ are in order here. At
κ=0, the dynamical response is regular as depicted in Fig. 2, but for small non-zero
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κ, the behavior becomes immediately irregular. That is to say, weak elastic coupling
between the wings induces chaotic flapping. The limit as κ→ 0 is singular. Stronger
elastic coupling between the wings tends to suppress the chaotic behavior, in favor
of regular flapping oscillations which decrease as κ → ∞. In this non-singular limit,
region I expands and shifts towards the rest angle, indicating small periodic flapping
about the spring rest position αo. At κ=∞, this periodic flapping is suppressed and
the wings behave as a rigid pendulum, as mentioned in Sect. 2.

4 Discussion

We proposed an idealized two-dimensional model of insect-like wings. The model
consists of two rigid wings connected at their base via an elastic torsional spring.
We studied the passive dynamics of this system under gravitational effects, empha-
sizing the coupling between the wings flapping and rotational motions. We identified
regimes where the wings flap stably and others where the wings rotate (roll end-over-
end) or behave chaotically. For a given energy level, the flapping region increases as
the stiffness of the torsional spring increases. These findings are qualitatively consis-
tent with insect wings. Insect wings and the flight muscles at their base are known
to be very stiff; even at the small operating strains, they can store elastically much
of the inertial energy of the oscillating wings [3]. More importantly, our results sug-
gest that, by manipulating the stiffness of their flight muscles, insects can maintain
periodic flapping when operating at a range of energy levels. It is known that muscle
force can be modulated using a number of mechanisms such as changing the muscle
stiffness or length (introducing pre-tensioning in the muscle) [40]. We conjecture that
modulation of muscle stiffness helps insect wings operate at a range of aerodynamic
loads.
The effects of aerodynamics on the wings dynamics introduce an additional ap-

plied moment in Eq. (2). The value of these aerodynamic moments can be accounted
for using a vortex sheet model in the inviscid fluid context, as shown in Fig. 7. Here,
the wings are modeled as a bound vortex sheet that satisfies zero normal flow. A
point vortex is released at each time step from the two outer edges, and the shed
vorticity is modeled as a regularized free sheet [41–46]. No separation is allowed at
the apex. We followed the algorithm in [42] for imposing the Kutta condition that
determines the amount of circulation shed from the outer two edges at each time
step. The vortex sheet model depends on the regularization parameter for the free
sheet, which we set to δ/l=0.1. To emulate the effect of viscosity, we allowed the shed
vortex sheet to decay gradually by dissipating each incremental point vortex after a
finite time Tdiss from the time it is shed in the fluid. This computational scheme is
validated and used in [31,47]. Figure 7 shows a depiction of the wings passive flapping
behavior given an initial storage of elastic energy, α(0) �= αo, under both gravitational
and aerodynamic forces and torques. Interestingly, the wings flap stably about the
vertical position, even though the initial orientation θ of the wings is perturbed away
from the vertical position. Note that this stable flapping is observed at a larger value
of spring stiffness than the ones explored in Fig. 6. A larger stiffness is needed to
support the aerodynamic forces and torques due to the surrounding fluid. A detailed
study of the aerodynamic effects on the wing behavior will be the subject of a future
study.
We conclude by noting that, in addition to neglecting aerodynamic effects, we

made a number of assumptions in this paper to ensure the problem is tractable analyt-
ically and computationally. We assumed the motion is planar, but three-dimensional
wing rotations play an important role in force production in insect wings [6,7,22].
We “lumped” all elastic components into a single torsional spring that couples the
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αo = π/4 in unbounded fluid domain that is initially at rest. (a) Snapshots of vortex shedding
at four time instants highlighted by the dashed lines in (b) and (c). Clockwise circulation is
shown in blue and counterclockwise circulation in red. (b) Time evolution of the orientation
which approaches the vertically down position θ=0. (c) Flapping response α versus time.
Initial conditions are set as θ(0)=π/6, α(0)=π/3, θ̇(0)= 0 and α̇(0)= 0. Dissipation time
Tdiss=1.22.

dynamics of the two wings. The elasticity of insect flight systems is nonlinearly dis-
tributed along the wings and in the flight and thoracic muscles [1,36–38]. Future
extensions of this work will interrogate the effect of each of these simplifying assump-
tions on the wing flapping dynamics.

This work is partially supported by the NSF grant CMMI 13-63404.
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